Collisions with Comets and Asteroids the Chances of a Celestial Body Colliding with the Earth Are Small, but the Consequences Would Be Catastrophic

Total Page:16

File Type:pdf, Size:1020Kb

Collisions with Comets and Asteroids the Chances of a Celestial Body Colliding with the Earth Are Small, but the Consequences Would Be Catastrophic Collisions with Comets and Asteroids The chances of a celestial body colliding with the earth are small, but the consequences would be catastrophic by Tom Gehrels re we going to be hit by an aster- Comets and asteroids are, in fact, left- disturbed by events beyond the solar oid? Planetary scientists are di- over planetesimals. Most asteroids in- system. If the sun passes by another A vided on how worrisome the habit the vast belt between the orbits of star or a massive molecular cloud, some danger is. Some refuse to take it seri- Mars and Jupiter. Being quite close to the of these cometary orbits are jarred. The ously; others believe the risk of dying sun, they were formed hot; as on the planetesimal might then swing into a from such an impact might even be early earth, the high temperatures va- narrow elliptical orbit that brings it to- greater than the risk of dying in an air- porized the lighter substances, such as ward the inner solar system. As it nears plane crash. After years of studying the water, leaving mostly silica, carbon and the sun, the heat vaporizes its volatile problem, I have become convinced that metals. (Only recently have astronomers materials, which spew forth as if from the danger is real. Although a major im- found some rare asteroids that contain a geyser. In ancient cultures, this celes- pact is unlikely, the energies released crystalline water embedded in rocks.) tial spectacle was sometimes an omi- could be so horrendous that our fragile Comets, on the other hand, hover at nous event. society would be obliterated. the outer edges of the solar system. As Some visitors from the Oort cloud are Early in our planetÕs history, asteroids the solar system was formed, a good never seen again; others have periods and comets made life possible by accret- deal of matter was thrown outward, be- that get shorter with each successive ing into the earth and then by bringing yond the orbits of Uranus and Neptune. pass. The best known of these comets water to the newborn planet. And they Coalescing far from the sun, the com- are those that return regularly, such as have already destroyed, at least once, ets were born cold, at temperatures as HalleyÕs, with a period of 76 years. The an advanced form of that life. The di- low as Ð260 degrees Celsius. They re- chance that such a comet will collide nosaurs were killed by such an impact, tained their volatile materials, the gas, with the earth is exceedingly small, be- making way for the age of the mam- ice and snow. Sometimes called dirty cause it comes by so infrequently. But mals. Now for the Þrst time, creatures snowballs, these objects are usually ten- the patterns of their orbits suggest that have evolved to a point where they can uous aggregates of carbon and other in the next millennia, comet Halley or wrest control of their fate from the light elements. Swift-Tuttle (with a period of 130 years) heavenly bodies, but humans must will sometimes swing by too close for come to grips with the danger. Fiery Visitors comfort. Some four and a half billion years ago, In 1951 Gerard P. Kuiper, then at the solar system formed out of a swirl- n 1950 Jan H. Oort, professor of as- Yerkes Observatory of the University of ing cloud of gas and dust. Initially the I tronomy at Leiden University in the Chicago, surmised that another belt of planetesimalsÑcoarse collections of Netherlands, was teaching a class that I comets exists, just beyond NeptuneÕs rocky materialsÑcoagulated, merging was allowed to attend as an undergrad- orbit, much nearer than the Oort cloud. with one another to create planets. Be- uate. While reviewing astronomical cal- Working at the University of Hawaii, cause of the energy released by the col- culations for his students, Oort noted David C. Jewitt and Jane Luu discovered liding rocks, the earth began as a molten that a number of known comets reach the Þrst of these objects in 1992 after a globe, so hot that the volatile substanc- their farthest point from the sunÑcalled persistent search; by now some 31 bod- esÑwater, carbon dioxide, ammonia, the aphelionÑat a great distance. He ies belonging to the Kuiper belt have methane and other gasesÑboiled oÝ. As went on to formulate the idea that a been found. In fact, Pluto, with its un- the material of the inner solar nebula cloud of comets exists as a diÝuse usually elliptical orbit, is now consid- was mopped up by the growing planets, spherical shell at about 50,000 or more ered to be the largest of these objects; the bombardment of the earth slowed. astronomical units. (One astronomical Clyde Tombaugh, who discovered Pluto The glowing planet cooled, and a crust unit is the distance from the earth to in 1930, calls it the ÒKing of the Kuiper solidiÞed. Only then did waterÑthe life- the sun.) This distant cloud, containing belt.Ó giving ßuid that covers three quarters perhaps some 1013 objects, envelops Comets belonging to the Kuiper belt of the earthÕs surfaceÑreturn, borne on the solar system. are not directly disturbed by rival stars. cold comets arriving from the solar The Oort cloud reaches a Þfth of the Instead they can stray close to Neptune, systemÕs distant reaches. Fossil records distance to the nearest star, Alpha Cen- which may either help stabilize them or, show that simple life-forms started tauri. Inhabitants of this shell are thus conversely, throw them out of orbit. (An evolving almost right away. loosely bound to the sun and readily as yet unknown 10th planet may also 54 SCIENTIFIC AMERICAN March 1996 Copyright 1996 Scientific American, Inc. be stirring the cometsÕ path, but the ev- impossible to tell where a particular come by only every century or so. A idence for its existence is inconclusive.) cometÑsuch as Tempel-Tuttle, which collision with such a short-period com- The comets may then come very close sweeps by at 72 kilometers per second et might occur once in some three mil- to the sun. Although those from the every 33 yearsÑoriginated from. lion years. Kuiper belt tend to have shorter periods Some comets are bound into small However infrequent a cometary colli- than those from the Oort cloud, both orbits and have short periods, on the sion might be, the consequences would types of comets can be captured in tight order of 10 years. These comets pose be calamitous. The orbits of comets are orbits around the sun. It is therefore more of a concern than the ones that often steeply inclined to the earthÕs; oc- Explorer . GOHIER F METEOR CRATER in northern Arizona, a depression 1.2 kilo- wide but, being metallic, was strong enough to penetrate the meters in diameter, was carved out by an asteroid that struck atmosphere without disintegrating. The earth collides with the earth 50,000 years ago. The asteroid was only 30 meters an object of this size or larger once in a century. Copyright 1996 Scientific American, Inc. SCIENTIFIC AMERICAN March 1996 55 MARS casionally, a comet is even going in the if the asteroid goes around the sun glomerate of silicates about 60 meters opposite direction. Thus, comets typi- thrice in the same time that Jupiter or- wide, entered the atmosphere and burst cally pass the earth with a high relative bits once, the planetÕs gravitational in- apart above the Tunguska Valley in Sibe- velocity. For example, Swift-Tuttle, which ßuence on the rock is greatly enhanced. ria. The explosion was heard as far away is about 25 kilometers across, ßies by Just as a child on a swing ßies ever high- as London. Although the fragments did at 60 kilometers per second. It would er if someone pushes her each time the not leave a crater, the area below the impact with cataclysmic eÝect. swing returns, JupiterÕs rhythmic nudg- explosion is still marked by burnt trees Unless it runs into something, a com- es ultimately cause the asteroid to veer laid out in a region roughly 50 kilome- et probably remains active, emitting gas- out of its original orbit into an increas- ters across. The identity of the Tungus- es and dust for some 500 passages by ingly eccentric one. ka object inspired a lot of nonsensical the sun. Eventually, the volatile materi- The asteroid may either leave the so- speculation for decades, and some high- als are used up, and the comet fades lar system or move in toward the ter- ly imaginative suggestions were made, away as a dead object, indistinguish- restrial, rocky planets. Eventually, such including that it was a miniÐblack hole able from an asteroid. Up to half of the vagrants collide with Mars, the earth- or an alien spacecraft. Scientists, how- nearest asteroids might in fact be dead, moon system, Venus, Mercury or even ever, have always understood that it short-period comets. the sun. A major fragment enters the in- was a comet or asteroid. ner solar system once in roughly 10 mil- Events such as the Tunguska explo- Falling Rocks lion years and survives for about as long. sion may occur once a century, and it To estimate the chances of such a is most likely that they would occur ndeed, most of the danger to the earth rock hitting the earth, the asteroids have over the oceans or remote land areas. I comes from asteroids. Like comets, Þrst to be sorted according to size. The But they would be devastating if they asteroids have solar orbits that are nor- smallest ones we can observe, which are happened near a populated area.
Recommended publications
  • Spacewalch Discovery of Near-Earth Asteroids Tom Gehrele Lunar End
    N9 Spacewalch Discovery of Near-Earth Asteroids Tom Gehrele Lunar end Planetary Laboratory The University of Arizona Our overall scientific goal is to survey the solar system to completion -- that is, to find the various populations and to study their statistics, interrelations, and origins. The practical benefit to SERC is that we are finding Earth-approaching asteroids that are accessible for mining. Our system can detect Earth-approachers In the 1-km size range even when they are far away, and can detect smaller objects when they are moving rapidly past Earth. Until Spacewatch, the size range of 6 - 300 meters in diameter for the near-Earth asteroids was unexplored. This important region represents the transition between the meteorites and the larger observed near-Earth asteroids (Rabinowitz 1992). One of our Spacewatch discoveries, 1991 VG, may be representative of a new orbital class of object. If it is really a natural object, and not man-made, its orbital parameters are closer to those of the Earth than we have seen before; its delta V is the lowest of all objects known thus far (J. S. Lewis, personal communication 1992). We may expect new discoveries as we continue our surveying, with fine-tuning of the techniques. III-12 Introduction The data accumulated in the following tables are the result of continuing observation conducted as a part of the Spacewatch program. T. Gehrels is the Principal Investigator and also one of the three observers, with J.V. Scotti and D.L Rabinowitz, each observing six nights per month. R.S. McMillan has been Co-Principal Investigator of our CCD-scanning since its inception; he coordinates optical, mechanical, and electronic upgrades.
    [Show full text]
  • Using a Nuclear Explosive Device for Planetary Defense Against an Incoming Asteroid
    Georgetown University Law Center Scholarship @ GEORGETOWN LAW 2019 Exoatmospheric Plowshares: Using a Nuclear Explosive Device for Planetary Defense Against an Incoming Asteroid David A. Koplow Georgetown University Law Center, [email protected] This paper can be downloaded free of charge from: https://scholarship.law.georgetown.edu/facpub/2197 https://ssrn.com/abstract=3229382 UCLA Journal of International Law & Foreign Affairs, Spring 2019, Issue 1, 76. This open-access article is brought to you by the Georgetown Law Library. Posted with permission of the author. Follow this and additional works at: https://scholarship.law.georgetown.edu/facpub Part of the Air and Space Law Commons, International Law Commons, Law and Philosophy Commons, and the National Security Law Commons EXOATMOSPHERIC PLOWSHARES: USING A NUCLEAR EXPLOSIVE DEVICE FOR PLANETARY DEFENSE AGAINST AN INCOMING ASTEROID DavidA. Koplow* "They shall bear their swords into plowshares, and their spears into pruning hooks" Isaiah 2:4 ABSTRACT What should be done if we suddenly discover a large asteroid on a collision course with Earth? The consequences of an impact could be enormous-scientists believe thatsuch a strike 60 million years ago led to the extinction of the dinosaurs, and something ofsimilar magnitude could happen again. Although no such extraterrestrialthreat now looms on the horizon, astronomers concede that they cannot detect all the potentially hazardous * Professor of Law, Georgetown University Law Center. The author gratefully acknowledges the valuable comments from the following experts, colleagues and friends who reviewed prior drafts of this manuscript: Hope M. Babcock, Michael R. Cannon, Pierce Corden, Thomas Graham, Jr., Henry R. Hertzfeld, Edward M.
    [Show full text]
  • The Catalina Sky Survey
    The Catalina Sky Survey Current Operaons and Future CapabiliKes Eric J. Christensen A. Boani, A. R. Gibbs, A. D. Grauer, R. E. Hill, J. A. Johnson, R. A. Kowalski, S. M. Larson, F. C. Shelly IAWN Steering CommiJee MeeKng. MPC, Boston, MA. Jan. 13-14 2014 Catalina Sky Survey • Supported by NASA NEOO Program • Based at the University of Arizona’s Lunar and Planetary Laboratory in Tucson, Arizona • Leader of the NEO discovery effort since 2004, responsible for ~65% of new discoveries (~46% of all NEO discoveries). Currently discovering NEOs at a rate of ~600/year. • 2 survey telescopes run by a staff of 8 (observers, socware developers, engineering support, PI) Current FaciliKes Mt. Bigelow, AZ Mt. Lemmon, AZ 0.7-m Schmidt 1.5-m reflector 8.2 sq. deg. FOV 1.2 sq. deg. FOV Vlim ~ 19.5 Vlim ~ 21.3 ~250 NEOs/year ~350 NEOs/year ReKred FaciliKes Siding Spring Observatory, Australia 0.5-m Uppsala Schmidt 4.2 sq. deg. FOV Vlim ~ 19.0 2004 – 2013 ~50 NEOs/year Was the only full-Kme NEO survey located in the Southern Hemisphere Notable discoveries include Great Comet McNaught (C/2006 P1), rediscovery of Apophis Upcoming FaciliKes Mt. Lemmon, AZ 1.0-m reflector 0.3 sq. deg. FOV 1.0 arcsec/pixel Operaonal 2014 – currently in commissioning Will be primarily used for confirmaon and follow-up of newly- discovered NEOs Will remove follow-up burden from CSS survey telescopes, increasing available survey Kme by 10-20% Increased FOV for both CSS survey telescopes 5.0 deg2 1.2 ~1,100/ G96 deg2 night 19.4 deg2 2 703 8.2 deg 2 ~4,300 deg per night New 10k x 10k cameras will increase the FOV of both survey telescopes by factors of 4x and 2.4x.
    [Show full text]
  • An Early Warning System for Asteroid Impact
    An Early Warning System for Asteroid Impact John L. Tonry(1) ABSTRACT Earth is bombarded by meteors, occasionally by one large enough to cause a significant explosion and possible loss of life. It is not possible to detect all hazardous asteroids, and the efforts to detect them years before they strike are only advancing slowly. Similarly, ideas for mitigation of the danger from an impact by moving the asteroid are in their infancy. Although the odds of a deadly asteroid strike in the next century are low, the most likely impact is by a relatively small asteroid, and we suggest that the best mitigation strategy in the near term is simply to move people out of the way. With enough warning, a small asteroid impact should not cause loss of life, and even portable property might be preserved. We describe an \early warning" system that could provide a week's notice of most sizeable asteroids or comets on track to hit the Earth. This may be all the mitigation needed or desired for small asteroids, and it can be implemented immediately for relatively low cost. This system, dubbed \Asteroid Terrestrial-impact Last Alert System" (AT- LAS), comprises two observatories separated by about 100 km that simulta- neously scan the visible sky twice a night. Software automatically registers a comparison with the unchanging sky and identifies everything which has moved or changed. Communications between the observatories lock down the orbits of anything approaching the Earth, within one night if its arrival is less than a week. The sensitivity of the system permits detection of 140 m asteroids (100 Mton impact energy) three weeks before impact, and 50 m asteroids a week be- fore arrival.
    [Show full text]
  • Neofixer a Broker for Near Earth Asteroid Follow-Up Rob Seaman & Eric Christensen Catalina Sky Survey
    NEOFIXER A BROKER FOR NEAR EARTH ASTEROID FOLLOW-UP ROB SEAMAN & ERIC CHRISTENSEN CATALINA SKY SURVEY Building the Infrastructure for Time-Domain Alert Science in the LSST Era • May 22-25, 2017 • Tucson CATALINA SKY SURVEY • LPL runs 2 NEO projects, CSS and SpacewatcH • Talk to Eric or me about CSS, Bob McMillan for SW • CSS demo at 3:30 pm CONGRESSIONAL MANDATE • Spaceguard goal: 1 km Near EartH Objects ✔ • George E Brown Act to find > 140m (H < 22) NEOs • 90% complete by 2020 ✘ (2017: ~ 30%) • ROSES 2017 language is > 100m • Chelyabinsk was ~20m (H ~ 25.8) or ~400 kiloton (few per century likeliHood) SUMMARY • Near EartH Asteroid inventory is “retail Big Data” • NEOfixer will be NEO-optimized targeting broker • No one broker will address all use cases • Will benefit LSST as well as current surveys • LSST not tasked to study NEOs, but ratHer tHe Solar System (slower objects and fartHer away) • What is tHe most valuable NEO observation a particular telescope can make at a particular time? CHESLEY & VERES (1705.06209) • 55 ± 5.0% for LSST baseline operating alone • But 42% of NEOs witH H < 22 will be discovered before 2022 • And witHout LSST, current surveys would discover 61% of the catalog by 2032 • Completion CH<22 will be 77% combined LSST will add 16% to CH<22 Can targeted follow-up increase this? CHESLEY & VERES (CAVEATS) • Lots of details worth reading • CH<22 degrades by ~1.8% for every 0.1 mag loss in sensitivity • Issues of linking efficiency including: • Efficiency down to H < 25 is lower • 4% false MBA-MBA links ASTROMETRIC
    [Show full text]
  • Planetary Defense: Near-Earth Objects, Nuclear Weapons, and International Law James A
    Hastings International and Comparative Law Review Volume 42 Article 2 Number 1 Winter 2019 Winter 2019 Planetary Defense: Near-Earth Objects, Nuclear Weapons, and International Law James A. Green Follow this and additional works at: https://repository.uchastings.edu/ hastings_international_comparative_law_review Part of the Comparative and Foreign Law Commons, and the International Law Commons Recommended Citation James A. Green, Planetary Defense: Near-Earth Objects, Nuclear Weapons, and International Law, 42 Hastings Int'l & Comp.L. Rev. 1 (2019). Available at: https://repository.uchastings.edu/hastings_international_comparative_law_review/vol42/iss1/2 This Article is brought to you for free and open access by the Law Journals at UC Hastings Scholarship Repository. It has been accepted for inclusion in Hastings International and Comparative Law Review by an authorized editor of UC Hastings Scholarship Repository. Planetary Defense: Near-Earth Objects, Nuclear Weapons, and International Law BY JAMES A. GREEN ABSTRACT The risk of a large Near-Earth Object (NEO), such as an asteroid, colliding with the Earth is low, but the consequences of that risk manifesting could be catastrophic. Recent years have witnessed an unprecedented increase in global political will in relation to NEO preparedness, following the meteoroid impact in Chelyabinsk, Russia in 2013. There also has been an increased focus amongst states on the possibility of using nuclear detonation to divert or destroy a collision- course NEO—something that a majority of scientific opinion now appears to view as representing humanity’s best, or perhaps only, option in extreme cases. Concurrently, recent developments in nuclear disarmament and the de-militarization of space directly contradict the proposed “nuclear option” for planetary defense.
    [Show full text]
  • AAS/DPS Poster (PDF)
    Spacewatch Observations of Asteroids and Comets with Emphasis on Discoveries by WISE AAS/DPS Poster 13.22 Thurs. 2010 Oct 7: 15:30-18:00 Robert S. McMillan1, T. H. Bressi1, J. A. Larsen2, C. K. Maleszewski1,J. L. Montani1, and J. V. Scotti1 URL: http://spacewatch.lpl.arizona.edu 1University of Arizona; 2U.S. Naval Academy Abstract • Targeted recoveries of objects discovered by WISE as well as those on impact risk pages, NEO Confirmation Page, PHAs, comets, etc. • ~1900 tracklets of NEOs from Spacewatch each year. • Recoveries of WISE discoveries preserve objects w/ long Psyn from loss. • Photometry to determine albedo @ wavelength of peak of incident solar flux. • Specialize in fainter objects to V=23. • Examination for cometary features of objects w/ comet-like orbits & objects that WISE IR imagery showed as comets. Why Targeted Followup is Needed • Discovery arcs too short to define orbits. • Objects can escape redetection by surveys: – Surveys busy covering other sky (revisits too infrequent). – Objects tend to get fainter after discovery. • Followup observations need to outnumber discoveries 10-100. • Sky density of detectable NEOs too sparse to rely on incidental redetections alone. Why Followup is Needed (cont’d) • 40% of PHAs observed on only 1 opposition. • 18% of PHAs’ arcs <30d; 7 PHAs obs. < 3d. • 20% of potential close approaches will be by objects observed on only 1 opposition. • 1/3rd of H≤22 VI’s on JPL risk page are lost and half of those were discovered within last 3 years. How “lost” can they get? • (719) Albert discovered visually in 1911. • “Big” Amor asteroid, diameter ~2 km.
    [Show full text]
  • Project Pan-STARRS and the Outer Solar System
    Project Pan-STARRS and the Outer Solar System David Jewitt Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 ABSTRACT Pan-STARRS, a funded project to repeatedly survey the entire visible sky to faint limiting magnitudes (mR ∼ 24), will have a substantial impact on the study of the Kuiper Belt and outer solar system. We briefly review the Pan- STARRS design philosophy and sketch some of the planetary science areas in which we expect this facility to make its mark. Pan-STARRS will find ∼20,000 Kuiper Belt Objects within the first year of operation and will obtain accurate astrometry for all of them on a weekly or faster cycle. We expect that it will revolutionise our knowledge of the contents and dynamical structure of the outer solar system. Subject headings: Surveys, Kuiper Belt, comets 1. Introduction to Pan-STARRS Project Pan-STARRS (short for Panoramic Survey Telescope and Rapid Response Sys- tem) is a collaboration between the University of Hawaii's Institute for Astronomy, the MIT Lincoln Laboratory, the Maui High Performance Computer Center, and Science Ap- plications International Corporation. The Principal Investigator for the project, for which funding started in the fall of 2002, is Nick Kaiser of the Institute for Astronomy. Operations should begin by 2007. The science objectives of Pan-STARRS span the full range from planetary to cosmolog- ical. The instrument will conduct a survey of the solar system that is staggering in power compared to anything yet attempted. A useful measure of the raw survey power, SP , of a telescope is given by AΩ SP = (1) θ2 where A [m2] is the collecting area of the telescope primary, Ω [deg2] is the solid angle that is imaged and θ [arcsec] is the full-width at half maximum (FWHM) of the images { 2 { produced by the telescope.
    [Show full text]
  • Equity Partners Overview
    The Minor Planet Center Data Processing System Matthew J. Holman Harvard-Smithsonian Center for Astrophysics Of Minor Planets OUTLINE Brief Minor Planet Center History Motivation Minor Planet Center Roles and Responsibilities Minor Planet Center Operations Current Focus Areas 1 Brief Minor Planet Center History After WWII, the IAU established the Minor Planet Center at the Cincinnati Observatory in 1947. Initial task: Recovering all the lost minor planets Of 1564 numbered objects (i.e. with good orbits), 30% were lost. The MPC moved to the Smithsonian Astrophysical Observatory (SAO) in 1978. The last two lost numbered asteroids (878) Mildred, discovered in 1916 and rediscovered in 1991; and (719) Albert, discovered in 1911 and rediscovered in 2000, were identified by Gareth Williams (MPC). Ancient MPC Data Processing System 4 ITF Obs 5 Galache et al (2015) 6 MOTIVATION Congressional Mandates Regarding Potentially Hazardous Asteroids (PHAs) 1998: Find 90% of PHAs with D > 1km. (Achieved in 2010.) 2006: Find 90% of PHAs with D > 140m by the end of 2020. Budget to support NEO surveys is growing $4 M in 2010 PHA Criteria: $20 M in 2012 • q < 1.3 au $40 M in 2014 • MOID < 0.05 au $50 M in 2016 • H < 22 ( D > 140m for 0.14 albedo) Chelyabinsk, 15 February 2013 By Alex Alishevskikh - Flickr: Meteor trace, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=24726667 Catalina Sky Survey NEOWISE ATLAS Pan-STARRS ZTF 2012 TC4 Spacewatch 10 2014 AA Discovered 1 Jan 2014 by Catalina Sky Survey 2012 TC4 NASA/JPL-Caltech/CSS-Univ.
    [Show full text]
  • The National Aeronautics and Space Administration Planetary Astronomy Program
    FRS 347320 FINAL REPORT FOR GRANT NAG5-3938 SUBMITTED TO: The National Aeronautics and Space Administration Planetary Astronomy Program TITLE: Beginning Research with the 1.8-meter Spacewatch Telescope ORGANIZATION: The University of Arizona Lunar and Planetary Laboratory PERIOD OF GRANT: 1996 Dec. 1 - 2000 Nov. 30 PERIOD REPORTED ON: 1996 Dec. I - 2001 Feb. 9 2._o[ PRINCIPAL INVESTIGATOR: Tom Gehrels Date Professor Lunar and Planetary Laboratory University of Arizona Kuiper Space Sciences Building 1629 East University Boulevard Tucson, AZ 85721-0092 Phone: 520/621-6970 FAX: 520/621-1940 Email: [email protected] BUSINESS REPRESENTATIVE: Ms. Lynn A. Lane Senior Business Manager Lunar and Planetary Laboratory University of Arizona Kuiper Space Sciences Building 1629 East University Boulevard Tucson, AZ 85721-0092 Phone: 520/621-6966 FAX: 520/621-4933 Email: [email protected] c:_w_nnsaknag53938.fnl Participating Professionals (all at the Lunar and Planetary Laboratory): Terrence H. Bressi (B. S., Astron. & Physics) Engineer Anne S. Descour (M. S., Computer Science) Senior Systems Programmer Tom Gehrels (Ph. D., Astronomy) Professor, observer, and PI Robert Jedicke (Ph.D., Physics) Principal Research Specialist Jeffrey A. Larsen (Ph. D., Astronomy) Principal Research Specialist and observer Robert S. McMiUan (Ph.D., Astronomy) Associate Research Scientist & observer Joseph L. Montani (M. S., Astronomy) Senior Research Specialist and observer Marcus L. Perry (B. A., Astronomy) (Chief) Staff Engineer James V. Scotti (B. S., Astronomy) Senior Research Specialist and observer PROJECT SUMMARY The purpose of this grant was to bring the Spacewatch 1.8-m telescope to operational status for research on asteroids and comets.
    [Show full text]
  • SPACEWATCH SEARCH for MATERIAL RESOURCES NEAR EARTH Robert S
    SPACEWATCH SEARCH FOR MATERIAL RESOURCES NEAR EARTH Robert S. McMillan Lunar & Planetary Laboratory University of Arizona Tucson, AZ Abstract smaller than 100 m. Spacewatch can find the large NEOs while they are as far away as the main asteroid Since 1989 the Spacewatch Project has belt, near the aphelia of their orbits. It is important discovered more than 192 Near-Earth Objects (NEOs). that the discoveries ofNEOs are made with a system of By virtue of a fainter limit of detection compared to known biases and known absolute efficiency so that the other surveys, Spacewatch finds a higher proportion of true distributions versus absolute magnitude and orbital small asteroids (less than 300 meters in diameter). One elements and the total number of objects can be of these, 1998 KY26, is the most accessible to spacecraft extrapolated accurately. The absolute sensitivity and among asteroids with well-known orbits. Spacewatch efficiency of Spacewatch scans have been 10 11 has provided the first- and so far the only- empirical characterized. • information on the critical specific energy and tensile strength of asteroid material. These parameters are With more NEOs found with the well­ relevant to the mechanics of large-scale mining. Our understood Spacewatch system and more thorough new 1.8-meter telescope will reach a magnitude fainter analyses, more refined understanding of the present than the venerable 0.9-m Spacewatch Telescope. It distributions of NEOs as well as the mechanism by will help NEOs discovered on previous apparitions to which they left the main· belt should be possible. be recovered years later, thus improving knowledge of Spacewatch initially debiased in the four "dimensions" their orbital elements well enough that they will not be of (a, e, i, H), a procedure that is appropriate for · lost.
    [Show full text]
  • Asteroids and Comets: U.S
    Columbia Law School Scholarship Archive Faculty Scholarship Faculty Publications 1997 Asteroids and Comets: U.S. and International Law and the Lowest-Probability, Highest Consequence Risk Michael B. Gerrard Columbia Law School, [email protected] Anna W. Barber Follow this and additional works at: https://scholarship.law.columbia.edu/faculty_scholarship Part of the Environmental Law Commons, and the International Law Commons Recommended Citation Michael B. Gerrard & Anna W. Barber, Asteroids and Comets: U.S. and International Law and the Lowest- Probability, Highest Consequence Risk, 6 N.Y.U. ENVTL. L. J. 4 (1997). Available at: https://scholarship.law.columbia.edu/faculty_scholarship/697 This Article is brought to you for free and open access by the Faculty Publications at Scholarship Archive. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of Scholarship Archive. For more information, please contact [email protected]. COLLOQUIUM ARTICLES ASTEROIDS AND COMETS: U.S. AND INTERNATIONAL LAW AND THE LOWEST-PROBABILITY, HIGHEST ICONSEQUENCE RISK MICHAEL B. GERRARD AND ANNA W. BARBER* INTRODUCrION Asteroids' and comets2 pose unique policy problems. They are the ultimate example of a low probability, high consequence event: no one in recorded human history is confirmed to have ever died from an asteroid or a comet, but the odds are that at some time in the next several centuries (and conceivably next year) an asteroid or a comet will cause mass localized destruction and that at some time in the coming half million years (and con- ceivably next year), an asteroid or a comet will kill several billion people.
    [Show full text]