Vector Spaces with an Order Unit
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Isometries of Absolute Order Unit Spaces
ISOMETRIES OF ABSOLUTE ORDER UNIT SPACES ANIL KUMAR KARN AND AMIT KUMAR Abstract. We prove that for a bijective, unital, linear map between absolute order unit spaces is an isometry if, and only if, it is absolute value preserving. We deduce that, on (unital) JB-algebras, such maps are precisely Jordan isomorphisms. Next, we introduce the notions of absolutely matrix ordered spaces and absolute matrix order unit spaces and prove that for a bijective, unital, linear map between absolute matrix order unit spaces is a complete isometry if, and only if, it is completely absolute value preserving. We obtain that on (unital) C∗-algebras such maps are precisely C∗-algebra isomorphism. 1. Introduction In 1941, Kakutani proved that an abstract M-space is precisely a concrete C(K, R) space for a suitable compact and Hausdorff space K [10]. In 1943, Gelfand and Naimark proved that an abstract (unital) commutative C∗-algebra is precisely a concrete C(K, C) space for a suitable compact and Hausdorff space K [6]. Thus Gelfand-Naimark theorem for commutative C∗-algebras, in the light of Kakutani theorem, yields that the self-adjoint part of a commutative C∗-algebra is, in particular, a vector lattice. On the other hand, Kadison’s anti-lattice theorem suggest that the self-adjoint part of a general C∗-algebra can not be a vector lattice [8]. Nevertheless, the order structure of a C∗- algebra has many other properties which encourages us to expect a ‘non-commutative vector lattice’ or a ‘near lattice’ structure in it. Keeping this point of view, the first author introduced the notion of absolutely ordered spaces and that of an absolute order unit spaces [14]. -
ORDERED VECTOR SPACES If 0>-X
ORDERED VECTOR SPACES M. HAUSNER AND J. G. WENDEL 1. Introduction. An ordered vector space is a vector space V over the reals which is simply ordered under a relation > satisfying : (i) x>0, X real and positive, implies Xx>0; (ii) x>0, y>0 implies x+y>0; (iii) x>y if and only if x—y>0. Simple consequences of these assumptions are: x>y implies x+z >y+z;x>y implies Xx>Xy for real positive scalarsX; x > 0 if and only if 0>-x. An important class of examples of such V's is due to R. Thrall ; we shall call these spaces lexicographic function spaces (LFS), defining them as follows: Let T be any simply ordered set ; let / be any real-valued function on T taking nonzero values on at most a well ordered subset of T. Let Vt be the linear space of all such functions, under the usual operations of pointwise addition and scalar multiplication, and define />0 to mean that/(/0) >0 if t0 is the first point of T at which/ does not vanish. Clearly Vt is an ordered vector space as defined above. What we shall show in the present note is that every V is isomorphic to a subspace of a Vt. 2. Dominance and equivalence. A trivial but suggestive special case of Vt is obtained when the set T is taken to be a single point. Then it is clear that Vt is order isomorphic to the real field. As will be shown later on, this example is characterized by the Archimedean property: if 0<x, 0<y then \x<y<px for some positive real X, p. -
A Note on Riesz Spaces with Property-$ B$
Czechoslovak Mathematical Journal Ş. Alpay; B. Altin; C. Tonyali A note on Riesz spaces with property-b Czechoslovak Mathematical Journal, Vol. 56 (2006), No. 2, 765–772 Persistent URL: http://dml.cz/dmlcz/128103 Terms of use: © Institute of Mathematics AS CR, 2006 Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz Czechoslovak Mathematical Journal, 56 (131) (2006), 765–772 A NOTE ON RIESZ SPACES WITH PROPERTY-b S¸. Alpay, B. Altin and C. Tonyali, Ankara (Received February 6, 2004) Abstract. We study an order boundedness property in Riesz spaces and investigate Riesz spaces and Banach lattices enjoying this property. Keywords: Riesz spaces, Banach lattices, b-property MSC 2000 : 46B42, 46B28 1. Introduction and preliminaries All Riesz spaces considered in this note have separating order duals. Therefore we will not distinguish between a Riesz space E and its image in the order bidual E∼∼. In all undefined terminology concerning Riesz spaces we will adhere to [3]. The notions of a Riesz space with property-b and b-order boundedness of operators between Riesz spaces were introduced in [1]. Definition. Let E be a Riesz space. A set A E is called b-order bounded in ⊂ E if it is order bounded in E∼∼. A Riesz space E is said to have property-b if each subset A E which is order bounded in E∼∼ remains order bounded in E. -
Contents 1. Introduction 1 2. Cones in Vector Spaces 2 2.1. Ordered Vector Spaces 2 2.2
ORDERED VECTOR SPACES AND ELEMENTS OF CHOQUET THEORY (A COMPENDIUM) S. COBZAS¸ Contents 1. Introduction 1 2. Cones in vector spaces 2 2.1. Ordered vector spaces 2 2.2. Ordered topological vector spaces (TVS) 7 2.3. Normal cones in TVS and in LCS 7 2.4. Normal cones in normed spaces 9 2.5. Dual pairs 9 2.6. Bases for cones 10 3. Linear operators on ordered vector spaces 11 3.1. Classes of linear operators 11 3.2. Extensions of positive operators 13 3.3. The case of linear functionals 14 3.4. Order units and the continuity of linear functionals 15 3.5. Locally order bounded TVS 15 4. Extremal structure of convex sets and elements of Choquet theory 16 4.1. Faces and extremal vectors 16 4.2. Extreme points, extreme rays and Krein-Milman's Theorem 16 4.3. Regular Borel measures and Riesz' Representation Theorem 17 4.4. Radon measures 19 4.5. Elements of Choquet theory 19 4.6. Maximal measures 21 4.7. Simplexes and uniqueness of representing measures 23 References 24 1. Introduction The aim of these notes is to present a compilation of some basic results on ordered vector spaces and positive operators and functionals acting on them. A short presentation of Choquet theory is also included. They grew up from a talk I delivered at the Seminar on Analysis and Optimization. The presentation follows mainly the books [3], [9], [19], [22], [25], and [11], [23] for the Choquet theory. Note that the first two chapters of [9] contains a thorough introduction (with full proofs) to some basics results on ordered vector spaces. -
Riesz Vector Spaces and Riesz Algebras Séminaire Dubreil
Séminaire Dubreil. Algèbre et théorie des nombres LÁSSLÓ FUCHS Riesz vector spaces and Riesz algebras Séminaire Dubreil. Algèbre et théorie des nombres, tome 19, no 2 (1965-1966), exp. no 23- 24, p. 1-9 <http://www.numdam.org/item?id=SD_1965-1966__19_2_A9_0> © Séminaire Dubreil. Algèbre et théorie des nombres (Secrétariat mathématique, Paris), 1965-1966, tous droits réservés. L’accès aux archives de la collection « Séminaire Dubreil. Algèbre et théorie des nombres » im- plique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Seminaire DUBREIL-PISOT 23-01 (Algèbre et Theorie des Nombres) 19e annee, 1965/66, nO 23-24 20 et 23 mai 1966 RIESZ VECTOR SPACES AND RIESZ ALGEBRAS by Lássló FUCHS 1. Introduction. In 1940, F. RIESZ investigated the bounded linear functionals on real function spaces S, and showed that they form a vector lattice whenever S is assumed to possess the following interpolation property. (A) Riesz interpolation property. -If f , g~ are functions in S such that g j for i = 1 , 2 and j = 1 , 2 , then there is some h E S such that Clearly, if S is a lattice then it has the Riesz interpolation property (choose e. g. h = f 1 v f~ A g 2 ~, but there exist a number of important function spaces which are not lattice-ordered and have the Riesz interpolation property. -
Math. Res. Lett. 20 (2013), No. 6, 1071–1080 the ISOMORPHISM
Math. Res. Lett. 20 (2013), no. 6, 1071–1080 c International Press 2013 THE ISOMORPHISM RELATION FOR SEPARABLE C*-ALGEBRAS George A. Elliott, Ilijas Farah, Vern I. Paulsen, Christian Rosendal, Andrew S. Toms and Asger Tornquist¨ Abstract. We prove that the isomorphism relation for separable C∗-algebras, the rela- tions of complete and n-isometry for operator spaces, and the relations of unital n-order isomorphisms of operator systems, are Borel reducible to the orbit equivalence relation of a Polish group action on a standard Borel space. 1. Introduction The problem of classifying a collection of objects up to some notion of isomorphism can usually be couched as the study of an analytic equivalence relation on a standard Borel space parametrizing the objects in question. Such relations admit a notion of comparison, Borel reducibility, which allows one to assign a degree of complexity to the classification problem. If X and Y are standard Borel spaces admitting equivalence relations E and F respectively then we say that E is Borel reducible to F , written E ≤B F ,ifthereisaBorelmapΘ:X → Y such that xEy ⇐⇒ Θ(x)F Θ(y). In other words, Θ carries equivalence classes to equivalence classes injectively. We view E as being “less complicated” than F . There are some particularly prominent degrees of complexity in this theory which serve as benchmarks for classification problems in general. For instance, a relation E is classifiable by countable structures (CCS) if it is Borel reducible to the isomorphism relation for countable graphs. Classification problems in functional analysis (our interest here) tend not to be CCS, but may nevertheless be “not too complicated” in that they are Borel reducible to the orbit equivalence relation of a Borel action of a Polish group on a standard Borel space; this property is known as being below a group action. -
Basic Concepts of Linear Order
Basic Concepts of Linear Order Combinatorics for Computer Science (Unit 1) S. Gill Williamson ©S. Gill Williamson 2012 Preface From 1970 to 1990 I ran a graduate seminar on algebraic and algorithmic com- binatorics in the Department of Mathematics, UCSD. From 1972 to 1990 al- gorithmic combinatorics became the principal topic. The seminar notes from 1970 to 1985 were combined and published as a book, Combinatorics for Com- puter Science (CCS), published by Computer Science Press. Each of the "units of study" from the seminar became a chapter in this book. My general goal is to re-create the original presentation of these (largely inde- pendent) units in a form that is convenient for individual selection and study. Here, we isolate Unit 1, corresponding to Chapter 1 of CCS, and reconstruct the original very helpful unit specific index associated with this unit. Theorems, figures, examples, etc., are numbered sequentially: EXERCISE 1.38 and FIGURE 1.62 refer to numbered items 38 and 62 of Unit 1 (or Chap- ter 1 in CCS), etc. CCS contains an extensive bibliography for work prior to 1985. For further references and ongoing research, search the Web, particularly Wikipedia and the mathematics arXiv (arXiv.org). These notes focus on the visualization of algorithms through the use of graph- ical and pictorial methods. This approach is both fun and powerful, preparing you to invent your own algorithms for a wide range of problems. S. Gill Williamson, 2012 http : nwww:cse:ucsd:edun ∼ gill iii iv Table of Contents for Unit 1 Descriptive tools from set theory..............................................................3 relations, equivalence relations, set partitions, image, coimage surjection, injection, bijection, covering relations, Hasse diagrams, exercises and ex- amples. -
Every Linear Order Isomorphic to Its Cube Is Isomorphic to Its Square
EVERY LINEAR ORDER ISOMORPHIC TO ITS CUBE IS ISOMORPHIC TO ITS SQUARE GARRETT ERVIN Abstract. In 1958, Sierpi´nskiasked whether there exists a linear order X that is isomorphic to its lexicographically ordered cube but is not isomorphic to its square. The main result of this paper is that the answer is negative. More generally, if X is isomorphic to any one of its finite powers Xn, n > 1, it is isomorphic to all of them. 1. Introduction Suppose that (C; ×) is a class of structures equipped with a product. In many cases it is possible to find an infinite structure X 2 C that is isomorphic to its own square. If X2 =∼ X, then by multiplying again we have X3 =∼ X. Determining whether the converse holds for a given class C, that is, whether X3 =∼ X implies X2 =∼ X for all X 2 C, is called the cube problem for C. If the cube problem for C has a positive answer, then C is said to have the cube property. The cube problem is related to three other basic problems concerning the mul- tiplication of structures in a given class (C; ×). 1. Does A × Y =∼ X and B × X =∼ Y imply X =∼ Y for all A; B; X; Y 2 C? Equivalently, does A × B × X =∼ X imply B × X =∼ X for all A; B; X 2 C? 2. Does X2 =∼ Y 2 imply X =∼ Y for all X; Y 2 C? 3. Does A × Y =∼ X and A × X =∼ Y imply X =∼ Y for all A; X; Y 2 C? Equivalently, does A2 × X =∼ X imply A × X =∼ X for all A; X 2 C? The first question is called the Schroeder-Bernstein problem for C, and if it has a positive answer, then C is said to have the Schroeder-Bernstein property. -
Decomposition of an Order Isomorphism Between Matrix-Ordered Hilbert Spaces
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 132, Number 7, Pages 1973{1977 S 0002-9939(04)07454-4 Article electronically published on February 6, 2004 DECOMPOSITION OF AN ORDER ISOMORPHISM BETWEEN MATRIX-ORDERED HILBERT SPACES YASUHIDE MIURA (Communicated by David R. Larson) Abstract. The purpose of this note is to show that any order isomorphism between noncommutative L2-spaces associated with von Neumann algebras is decomposed into a sum of a completely positive map and a completely co- positive map. The result is an L2 version of a theorem of Kadison for a Jordan isomorphism on operator algebras. 1. Introduction In the theory of operator algebras, a notion of self-dual cones was studied by A. Connes [1], and he characterized a standard Hilbert space. In [9] L. M. Schmitt and G. Wittstock introduced a matrix-ordered Hilbert space to handle a non- commutative order and characterized it using the face property of the family of self-dual cones. From the point of view of the complete positivity of the maps, we shall consider a decomposition theorem of an order isomorphism on matrix-ordered Hilbert spaces. Let H be a Hilbert space over a complex number field C,andletH+ be a self- dual cone in H.Asetofalln × n matrices is denoted by Mn.PutHn = H⊗Mn(= H 2 N H H+ 2 N H~ H~ 2 N Mn( )) for n . Suppose that ( , n ;n )and( , n, n )arematrix- ordered Hilbert spaces. A linear map A of H into H~ is said to be n-positive (resp. ⊗ H+ ⊂ H~+ n-co-positive) when the multiplicity map An(= A idn)satisfiesAn n n t H+ ⊂ H~+ t · (resp. -
Order-Convergence in Partially Ordered Vector Spaces
H. van Imhoff Order-convergence in partially ordered vector spaces Bachelorscriptie, July 8, 2012 Scriptiebegeleider: Dr. O.W. van Gaans Mathematisch Instituut, Universiteit Leiden 1 Abstract In this bachelor thesis we will be looking at two different definitions of convergent nets in partially ordered vector spaces. We will investigate these different convergences and compare them. In particular, we are interested in the closed sets induced by these definitions of convergence. We will see that the complements of these closed set form a topology on our vector space. Moreover, the topologies induced by the two definitions of convergence coincide. After that we characterize the open sets this topology in the case that the ordered vector spaces are Archimedean. Futhermore, we how that every set containg 0, which is open for the topology of order convergence, contains a neighbourhood of 0 that is full. Contents 1 Introduction 3 2 Elementary Observations 4 3 Topologies induced by order convergence 6 4 Characterization of order-open sets 8 5 Full Neighbourhoods 11 Conclusion 12 Refrences 13 2 1 Introduction In ordered vector spaces there are several natural ways to define convergence using only the ordering. We will refer to them as 'order-convergence'. Order-convergence of nets is widely used. In for example, the study of normed vector lattices, it is used for order continuous norms [1, 3]. It is also used in theory on operators between vector lattices to define order continuous operators which are operators that are continuous with respect to order-convergence [3]. The commonly used definition of order-convergence for nets [3] originates from the definition for sequences. -
C*-Segal Algebras with Order Unit Are Faithful Principal Ideals of C*-Algebras
C*-Segal algebras with order unit Jukka Kauppi Department of Mathematical Sciences, P.O. Box 3000, SF 90014, University of Oulu, Finland; e-mail: [email protected] Martin Mathieu∗ Pure Mathematics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland; e-mail: [email protected] Abstract We introduce the notion of a (noncommutative) C*-Segal algebra as a Banach algebra (A, k·kA) which is a dense ideal in a C*-algebra (C, k·kC ), where k·kA is strictly stronger than k·kC on A. Several basic properties are investigated and, with the aid of the theory of multiplier modules, the structure of C*-Segal algebras with order unit is determined. Keywords: Segal algebra, multiplier module, C*-Segal algebra, order unitization, σ-unital C*-algebra 1. Introduction The concept of a Segal algebra originated in the work of Reiter, cf. [18], on subalgebras of the L1-algebra of a locally compact group. It was generalized to arbitrary Banach algebras by Burnham in [8]. A C*-Segal algebra is a Banach algebra A which is continuously embedded as a dense, not necessarily self-adjoint ideal in a C*-algebra. Despite many important examples in analysis, such as the Schatten classes for example, the general structure and properties of C*- arXiv:1204.4931v2 [math.OA] 22 Sep 2012 Segal algebras is not well understood. The multiplier algebra and the bidual of self-adjoint C*-Segal algebras were described in [1, 13] and, in the presence of an approximate identity, the form of the closed ideals of C*-Segal algebras was given in [6]. -
Spectral Theory for Ordered Spaces
SPECTRAL THEORY FOR ORDERED SPACES A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science by G. PRIYANGA to the School of Mathematical Sciences National Institute of Science Education and Research Bhubaneswar 16-05-2017 DECLARATION I hereby declare that I am the sole author of this thesis, submitted in par- tial fulfillment of the requirements for a postgraduate degree from the National Institute of Science Education and Research (NISER), Bhubaneswar. I authorize NISER to lend this thesis to other institutions or individuals for the purpose of scholarly research. Signature of the Student Date: 16th May, 2017 The thesis work reported in the thesis entitled Spectral Theory for Ordered Spaces was carried out under my supervision, in the school of Mathematical Sciences at NISER, Bhubaneswar, India. Signature of the thesis supervisor School: Mathematical Sciences Date: 16th May, 2017 ii ACKNOWLEDGEMENTS I would like to express my deepest gratitude to my thesis supervisor Dr. Anil Karn for his invaluable support, guidance and patience during the two year project period. I am particularly thankful to him for nurturing my interest in functional analysis and operator algebras. Without this project and his excellent courses, I might have never appreciated analysis so much. I express my warm gratitude to my teachers at NISER and summer project supervisors, for teaching me all the mathematics that I used in this thesis work. Ahugethankstomyparentsfortheircontinuoussupportandencouragement.I am also indebted to my classmates who request the authorities and extend the deadline for report submission, each time! iii ABSTRACT This thesis presents an order theoretic study of spectral theory, developed by Alfsen and Shultz, extending the commutative spectral theorem to its non- commutative version.