Microservices Point of View Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Devops and Testers White Paper
White Paper DevOps and Testers DevOps is part of an overall approach that organizations use to deliver software frequently and with high quality. The most obvious outcome of successful DevOps implementations is the reduction in the time it takes for software changes to transition from an idea to production. What Does DevOps Mean If you are an experienced DevOps Automated tools and processes practitioner, we hope that you are used in system configuration, for Testers might still find the article useful. If the build process, testing, the Background you are not a tester, we hope that deployment to test, staging and The DevOps movement (for want you will at least see the tester’s production environments, post- of a better label) is progressing perspective. deployment monitoring, evaluation, rapidly. Like many other and operations. movements in the industry, the What Is DevOps? speed of adoption accelerates Is DevOps Just About faster than the definition of the Simplistically, DevOps is a label movement itself. DevOps is still to describe an ecosystem in Tools? not well defined and the nuances which development teams and At one level, the goal of DevOps of culture, the emergent capability systems operations teams work is to eliminate bottlenecks in of new technologies, and range of more closely together. In the the delivery pipeline through (mostly successful) case studies so-called delivery pipeline, from automation. But the automation means that the issues at hand are committing source code to putting of staged processes still still widely debated.1 code into production, developers requires governance. Most accommodate and automate some automated processes are not Depending on who you talk to, of operations activities. -
IBM Developer for Z/OS Enterprise Edition
Solution Brief IBM Developer for z/OS Enterprise Edition A comprehensive, robust toolset for developing z/OS applications using DevOps software delivery practices Companies must be agile to respond to market demands. The digital transformation is a continuous process, embracing hybrid cloud and the Application Program Interface (API) economy. To capitalize on opportunities, businesses must modernize existing applications and build new cloud native applications without disrupting services. This transformation is led by software delivery teams employing DevOps practices that include continuous integration and continuous delivery to a shared pipeline. For z/OS Developers, this transformation starts with modern tools that empower them to deliver more, faster, with better quality and agility. IBM Developer for z/OS Enterprise Edition is a modern, robust solution that offers the program analysis, edit, user build, debug, and test capabilities z/OS developers need, plus easy integration with the shared pipeline. The challenge IBM z/OS application development and software delivery teams have unique challenges with applications, tools, and skills. Adoption of agile practices Application modernization “DevOps and agile • Mainframe applications • Applications require development on the platform require frequent updates access to digital services have jumped from the early adopter stage in 2016 to • Development teams must with controlled APIs becoming common among adopt DevOps practices to • The journey to cloud mainframe businesses”1 improve their -
1. Domain Modeling
Software design pattern seminar sse, ustc Topic 8 Observer, Mediator, Facade Group K 1. The observer pattern (Behavioral pattern, chapter 16 and 17) 1) the observer is an interface or abstract class defining the operations to be used to update itself 2) a solution to these problems A. Decouple change and related responses so that such dependencies can be added or removed freely and dynamically 3) solution A. Observable defines the operations for attaching, de-attaching and notifying observers B. Observer defines the operations to update itself 4) liabilities A. Unwanted concurrent update to a concrete observable may occur Figure 1 Sample Observer Pattern 2. The mediator pattern (Behavioral pattern, chapter 16 and 17) 1) the mediator encapsulates how a set of objects interact and keeps objects from referring to each other explicitly 2) a solution to these problems A. a set of objects communicate in well-defined but complex ways. The resulting interdependencies are unstructured and difficult to understand B. reusing an object is difficult because it refers to and communicates with many other objects C. a behavior that's distributed between several classes should be customizable without a lot of subclassing 3) solution A. Mediator defines an interface for communicating with Colleague objects, knows the colleague classes and keep a reference to the colleague objects, and implements the communication and transfer the messages between the colleague classes 1 Software design pattern seminar sse, ustc B. Colleague classes keep a reference to its Mediator object, and communicates with the Mediator whenever it would have otherwise communicated with another Colleague 4) liabilities A. -
Software Architecture: Past, Present, Future
Software Architecture: Past, Present, Future Wilhelm Hasselbring 1 Introduction For large, complex software systems, the design of the overall system structure (the software architecture) is an essential challenge. The architecture of a software system defines that system in terms of components and connections among those components [55, 58]. It is not the design of that system which is more detailed. The architecture shows the correspondence between the requirements and the constructed system, thereby providing some rationale for the design decisions. This level of design has been addressed in a number of ways including informal diagrams and descriptive terms, module interconnection languages, and frameworks for systems that serve the needs of specific application domains. An architecture embodies decisions about quality properties. It represents the earliest opportunity for evaluating those decisions. Furthermore, reusability of components and services depends on how strongly coupled they are with other components in the system architecture. Performance, for instance, depends largely upon the complexity of the required coordination, in particular when the components are distributed via some network. The architecture is usually the first artifact to be examined when a programmer (particularly a maintenance programmer) unfamiliar with the system begins to work on it. Software architecture is often the first design artifact that represents decisions on how requirements of all types are to be achieved. As the manifestation of early design decisions, it represents design decisions that are hardest to change and hence most deserving of careful consideration. W. Hasselbring () Kiel University, Kiel, Germany e-mail: [email protected] © The Author(s) 2018 169 V. -
An Experimental Study on Microservices Based Edge Computing Platforms Qian Qu, Ronghua Xu, Seyed Yahya Nikouei, Yu Chen Dept
1 An Experimental Study on Microservices based Edge Computing Platforms Qian Qu, Ronghua Xu, Seyed Yahya Nikouei, Yu Chen Dept. of Electrical & Computer Engineering, Binghamton University, SUNY, Binghamton, NY 13902, USA fqqu2, rxu22, snikoue1, [email protected] Abstract—The rapid technological advances in the Internet of development and easy deployment among multiple service Things (IoT) allows the blueprint of Smart Cities to become providers. feasible by integrating heterogeneous cloud/fog/edge computing Because of many attractive features, such as good scalabil- paradigms to collaboratively provide variant smart services in our cities and communities. Thanks to attractive features like fine ity, fine granularity, loose coupling, continuous development, granularity and loose coupling, the microservices architecture and low maintenance cost, the microservices architecture has has been proposed to provide scalable and extensible services in emerged and gained a lot of interests both in industry and large scale distributed IoT systems. Recent studies have evaluated academic community [17], [21]. Compared to traditional SOAs and analyzed the performance interference between microser- in which the system is a monolithic unit, the microservices vices based on scenarios on the cloud computing environment. However, they are not holistic for IoT applications given the architecture divides an monolithic application into multiple restriction of the edge device like computation consumption and atomic microservices that run independently on distributed network capacity. This paper investigates multiple microservice computing platforms. Each microservice performs one specific deployment policies on edge computing platform. The microser- sub-task or service, which requires less computation resource vices are developed as docker containers, and comprehensive ex- and reduces the communication overhead. -
Designing Software Architecture to Support Continuous Delivery and Devops: a Systematic Literature Review
Designing Software Architecture to Support Continuous Delivery and DevOps: A Systematic Literature Review Robin Bolscher and Maya Daneva University of Twente, Drienerlolaan 5, Enschede, The Netherlands [email protected], [email protected] Keywords: Software Architecture, Continuous Delivery, Continuous Integration, DevOps, Deployability, Systematic Literature Review, Micro-services. Abstract: This paper presents a systematic literature review of software architecture approaches that support the implementation of Continuous Delivery (CD) and DevOps. Its goal is to provide an understanding of the state- of-the-art on the topic, which is informative for both researchers and practitioners. We found 17 characteristics of a software architecture that are beneficial for CD and DevOps adoption and identified ten potential software architecture obstacles in adopting CD and DevOps in the case of an existing software system. Moreover, our review indicated that micro-services are a dominant architectural style in this context. Our literature review has some implications: for researchers, it provides a map of the recent research efforts on software architecture in the CD and DevOps domain. For practitioners, it describes a set of software architecture principles that possibly can guide the process of creating or adapting software systems to fit in the CD and DevOps context. 1 INTRODUCTION designing new software architectures tailored for CD and DevOps practices. The practice of releasing software early and often has For clarity, before elaborating on the subject of been increasingly more adopted by software this SLR, we present the definitions of the concepts organizations (Fox et al., 2014) in order to stay that we will address: Software architecture of a competitive in the software market. -
Comparing Service- Based Architectures
Comparing Service- based Architectures @neal4d nealford.com 1 agenda Micro Service-oriented Service-based 2 Service-oriented Architecture 3 origins: hubs System B System A System C 4 origins: hubs System B System A System C System D (ftp only) 5 origins: hubs System E (http only) System B System A System C System D (ftp only) 6 origins: hubs System E (http only) System B System A System C System D (ftp only) 7 origins: hubs System E (http only) System B Integration System A Hub System C System D (ftp only) 8 origins: hubs System E (http only) System B Integration System A Hub System C System D (ftp only) 9 origins: hubs System E (http only) System B Integration System A Hub System C System D (ftp only) 10 origins: hubs looks great, but what about single point of failure and performance bottleneck considerations? 11 orchestration hub intelligent hub service oriented architecture / enterprise service bus pattern 12 service-oriented architecture abstraction service taxonomy shared resources middleware interoperability 13 service-oriented architecture business services BS BS BS BS BS BS message bus process choreographer service orchestrator enterprise services ES ES ES ES ES ES application services AS infrastructure services IS 14 service-oriented architecture business services BS BS BS BS BS BS messageabstract bus enterprise-level coarse-grained process choreographer owned and defined by business users data represented as WSDL, BPEL, XML, etc. service orchestrator no implementation - only name, input, and output enterpriseAre we services -
Devops Point of View an Enterprise Architecture Perspective
DevOps Point of View An Enterprise Architecture perspective Amsterdam, 2020 Management summary “It is not the strongest of the species that survive, nor the most intelligent, but the one most responsive to change.”1 Setting the scene Goal of this Point of View In the current world of IT and the development of This point of view aims to create awareness around the IT-related products or services, companies from transformation towards the DevOps way of working, to enterprise level to smaller sizes are starting to help gain understanding what DevOps is, why you need it use the DevOps processes and methods as a part and what is needed to implement DevOps. of their day-to-day organization process. The goal is to reduce the time involved in all the An Enterprise Architecture perspective software development phases, to achieve greater Even though it is DevOps from an Enterprise Architecture application stability and faster development service line perspective, this material has been gathered cycles. from our experiences with customers, combined with However not only on the technical side of the knowledge from subject matter experts and theory from organization is DevOps changing the playing within and outside Deloitte. field, also an organizational change that involves merging development and operations teams is Targeted audience required with an hint of cultural changes. And last but not least the skillset of all people It is specifically for the people within Deloitte that want to involved is changing. use this as an accelerator for conversations and proposals & to get in contact with the people who have performed these type of projects. -
Case Study on Building Data- Centric Microservices
Case Study on Building Data- Centric Microservices Part I - Getting Started May 26, 2020 | Version 1.0 Copyright © 2020, Oracle and/or its affiliates Public DISCLAIMER This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle software license and service agreement, which has been executed and with which you agree to comply. This document and information contained herein may not be disclosed, copied, reproduced or distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates. This document is for informational purposes only and is intended solely to assist you in planning for the implementation and upgrade of the product features described. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described in this document remains at the sole discretion of Oracle. Due to the nature of the product architecture, it may not be possible to safely include all features described in this document without risking significant destabilization of the code. TABLE OF CONTENTS DISCLAIMER INTRODUCTION ARCHITECTURE OVERVIEW Before You Begin Our Canonical Application -
Designpatternsphp Documentation Release 1.0
DesignPatternsPHP Documentation Release 1.0 Dominik Liebler and contributors Jul 18, 2021 Contents 1 Patterns 3 1.1 Creational................................................3 1.1.1 Abstract Factory........................................3 1.1.2 Builder.............................................8 1.1.3 Factory Method......................................... 13 1.1.4 Pool............................................... 18 1.1.5 Prototype............................................ 21 1.1.6 Simple Factory......................................... 24 1.1.7 Singleton............................................ 26 1.1.8 Static Factory.......................................... 28 1.2 Structural................................................. 30 1.2.1 Adapter / Wrapper....................................... 31 1.2.2 Bridge.............................................. 35 1.2.3 Composite............................................ 39 1.2.4 Data Mapper.......................................... 42 1.2.5 Decorator............................................ 46 1.2.6 Dependency Injection...................................... 50 1.2.7 Facade.............................................. 53 1.2.8 Fluent Interface......................................... 56 1.2.9 Flyweight............................................ 59 1.2.10 Proxy.............................................. 62 1.2.11 Registry............................................. 66 1.3 Behavioral................................................ 69 1.3.1 Chain Of Responsibilities................................... -
Continuous Testing for Devops Evolving Beyond Simple Automation
Technical Whitepaper 1 Continuous Testing for DevOps Evolving Beyond Simple Automation INTRODUCTION DevOps represents a cultural shift that stresses collaboration be- on acceleration. Moreover, adopting a bona fide Continuous Testing tween the business, developers, and IT professionals. Software test process (more than just automated tests running regularly) helps automation can enhance these connections and help organizations promote all of the core pillars of DevOps: Culture, Automation, Lean, achieve desired SDLC acceleration, but it’s important to recognize Metrics, and Sharing. that automation is just one piece of the DevOps puzzle. In this paper, we’ll explore why and how Continuous Testing’s real- Since testing is often one of the greatest constraints in the SDLC, time objective assessment of an application’s business risks is a optimizing quality processes to allow testing to begin earlier, as well critical component of DevOps. as shrink the amount of testing required, can have a marked impact DEVOPS PRINCIPLES There are several key pieces to understanding DevOps revolutions and they are often brought about by a compelling event at an organization, such as a shift to agile. As organizations start to move into an agile development methodology, they start to uncover other processes that can be accelerated, such as delivery by DevOps and testing by Continuous Testing. The acceleration that is set in motion via agile makes it necessary to accelerate the release schedule. In order to ensure a successful release, an organization must adopt continuous testing to make sure the conveyer belt does not break down. The modernization maturity model has these three distinct phases: AGILE Agile software development is a different way of thinking about approaching the challenge of development time. -
Design Patterns in Ocaml
Design Patterns in OCaml Antonio Vicente [email protected] Earl Wagner [email protected] Abstract The GOF Design Patterns book is an important piece of any professional programmer's library. These patterns are generally considered to be an indication of good design and development practices. By giving an implementation of these patterns in OCaml we expected to better understand the importance of OCaml's advanced language features and provide other developers with an implementation of these familiar concepts in order to reduce the effort required to learn this language. As in the case of Smalltalk and Scheme+GLOS, OCaml's higher order features allows for simple elegant implementation of some of the patterns while others were much harder due to the OCaml's restrictive type system. 1 Contents 1 Background and Motivation 3 2 Results and Evaluation 3 3 Lessons Learned and Conclusions 4 4 Creational Patterns 5 4.1 Abstract Factory . 5 4.2 Builder . 6 4.3 Factory Method . 6 4.4 Prototype . 7 4.5 Singleton . 8 5 Structural Patterns 8 5.1 Adapter . 8 5.2 Bridge . 8 5.3 Composite . 8 5.4 Decorator . 9 5.5 Facade . 10 5.6 Flyweight . 10 5.7 Proxy . 10 6 Behavior Patterns 11 6.1 Chain of Responsibility . 11 6.2 Command . 12 6.3 Interpreter . 13 6.4 Iterator . 13 6.5 Mediator . 13 6.6 Memento . 13 6.7 Observer . 13 6.8 State . 14 6.9 Strategy . 15 6.10 Template Method . 15 6.11 Visitor . 15 7 References 18 2 1 Background and Motivation Throughout this course we have seen many examples of methodologies and tools that can be used to reduce the burden of working in a software project.