Consecutive Adrenal Cushing's Syndrome and Cushing's
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ectopic Adrenocortical Adenoma in the Renal Hilum
Liu et al. Diagnostic Pathology (2016) 11:40 DOI 10.1186/s13000-016-0490-6 CASE REPORT Open Access Ectopic adrenocortical adenoma in the renal hilum: a case report and literature review Yang Liu1,2*, Yue-Feng Jiang1,2, Ye-Lin Wang1,2, Hong-Yi Cao1,2, Liang Wang1,2, Hong-Tao Xu1,2, Qing-Chang Li1,2, Xue-shan Qiu1,2 and En-Hua Wang1,2 Abstract Background: Ectopic (accessory) adrenocortical tissue, also known as adrenal rests, is a developmental abnormality of the adrenal gland. The most common ectopic site is in close proximity to the adrenal glands and along the path of descent or migration of the gonads because of the close spatial relationship between the adrenocortical primordium and gonadal blastema during embryogenesis. Ectopic rests may undergo marked hyperplasia, and occasionally induce ectopic adrenocortical adenomas or carcinomas. Case presentation: A 27-year-old Chinese female patient who presented with amenorrhea of 3 months duration underwent computed tomography urography after ultrasound revealed a solitary mass in the left renal hilum. Histologically, the prominent eosinophilic tumor cells formed an alveolar- or acinar-like configuration. The immunohistochemical profile (alpha-inhibin+, Melan-A+, synaptophysin+) indicated the adrenocortical origin of the tumor, diagnosed as ectopic adrenocortical adenoma. The patient was alive with no tumor recurrence or metastasis at the 3-month follow-up examination. Conclusions: The unusual histological appearance of ectopic adrenocortical adenoma may result in its misdiagnosis as oncocytoma or clear cell renal cell carcinoma, especially if the specimen is limited. This case provides a reminder to pathologists to be aware of atypical cases of this benign tumor. -
Adrenal Neuroblastoma Mimicking Pheochromocytoma in an Adult With
Khalayleh et al. Int Arch Endocrinol Clin Res 2017, 3:008 Volume 3 | Issue 1 International Archives of Endocrinology Clinical Research Case Report : Open Access Adrenal Neuroblastoma Mimicking Pheochromocytoma in an Adult with Neurofibromatosis Type 1 Harbi Khalayleh1, Hilla Knobler2, Vitaly Medvedovsky2, Edit Feldberg3, Judith Diment3, Lena Pinkas4, Guennadi Kouniavsky1 and Taiba Zornitzki2* 1Department of Surgery, Hebrew University Medical School of Jerusalem, Israel 2Endocrinology, Diabetes and Metabolism Institute, Kaplan Medical Center, Hebrew University Medical School of Jerusalem, Israel 3Pathology Institute, Kaplan Medical Center, Israel 4Nuclear Medicine Institute, Kaplan Medical Center, Israel *Corresponding author: Taiba Zornitzki, MD, Endocrinology, Diabetes and Metabolism Institute, Kaplan Medical Center, Hebrew University Medical School of Jerusalem, Bilu 1, 76100 Rehovot, Israel, Tel: +972-894- 41315, Fax: +972-8 944-1912, E-mail: [email protected] Context 2. This is the first reported case of an adrenal neuroblastoma occurring in an adult patient with NF1 presenting as a large Neurofibromatosis type 1 (NF1) is a genetic disorder asso- adrenal mass with increased catecholamine levels mimicking ciated with an increased risk of malignant disorders. Adrenal a pheochromocytoma. neuroblastoma is considered an extremely rare tumor in adults and was not previously described in association with NF1. 3. This case demonstrates the clinical overlap between pheo- Case description: A 42-year-old normotensive woman with chromocytoma and neuroblastoma. typical signs of NF1 underwent evaluation for abdominal pain, Keywords and a large 14 × 10 × 16 cm left adrenal mass displacing the Adrenal neuroblastoma, Neurofibromatosis type 1, Pheo- spleen, pancreas and colon was found. An initial diagnosis of chromocytoma, Neural crest-derived tumors pheochromocytoma was done based on the known strong association between pheochromocytoma, NF1 and increased catecholamine levels. -
17 Endocrine Disorders T Hat Cause Diabetes
1 7 Endocrine Disorders t hat Cause Diabetes Neil A. Hanley Endocrine Sciences Research Group, University of Manchester, Manchester, UK Keypoints • Endocrine causes of diabetes are mainly a result of an excess of • Glucagonoma and somatostatinoma are rare islet cell tumors that hormones that are counter - regulatory to insulin, and act by inhibiting produce hormones that inhibit the secretion and action of insulin. insulin secretion and/or action. • Thyrotoxicosis commonly causes mild glucose intolerance, but overt • Acromegaly is almost always secondary to growth hormone - secreting diabetes only occurs in a tiny minority. adenomas of the anterior pituitary somatotrophs and disturbs glucose • Other endocrinopathies such as primary aldosteronism and primary homeostasis in up to approximately 50% of patients. hyperparathyroidism can disturb glucose homeostasis. • Cushing syndrome is caused by excessive levels of glucocorticoids and • Polycystic ovarian syndrome occurs in 5 – 10% of women of disturbs glucose homeostasis to some degree in over 50% of cases. reproductive age and associates with some degree of glucose • Pheochromocytoma is a tumor of the chromaffi n cells, which in 90% of intolerance or diabetes resulting from insulin resistance in cases is located in the adrenal medulla and causes hyperglycemia in approximately 50% of cases. approximately 50% of cases. or a carcinoid tumor of the lung or pancreas [1] . A small percent- Introduction age of acromegaly occurs within the wider endocrine syndrome of multiple endocrine neoplasia type 1 (MEN1) caused by muta- The primary focus of this chapter is on those endocrine disorders tions in the tumor suppressor gene, MENIN [3] . MEN1 can also that cause hyperglycemia and where effective treatment of the include glucagonomas and somatostatinomas, both of which are endocrinopathy can be expected to normalize the blood glucose separately capable of causing secondary diabetes. -
Synchronous Morphologically Distinct Craniopharyngioma and Pituitary
orders & is T D h e n r Bhatoe et al., Brain Disord Ther 2016, 5:1 i a a p r y B Brain Disorders & Therapy DOI: 10.4172/2168-975X.1000207 ISSN: 2168-975X Case Report Open Access Synchronous Morphologically Distinct Craniopharyngioma and Pituitary Adenoma: A Rare Collision Entity Harjinder S Bhatoe*, Prabal Deb and Sudip Kumar Sengupta Institute of Neuroscience, Max Super Speciality Hospital, New Delhi, India Abstract While pituitary tumors and craniopharyngiomas share a common lineage, their simultaneous occurrence is distinctly rare. We present one such patient, an adult male with two distinct tumors, that were excised by two different approaches. Relevant literature is briefly reviewed. Keywords: Brain tumor; Collision tumor; Craniopharyngioma; Pituitary tumor Introduction Simultaneous occurrence of morphological distinct, discreet intracranial tumors sharing the same cell lineage is a rarity. Pituitary tumors and craniopharyngiomas share a common lineage. Simultaneous occurrence of these two tumors in the same patient is rare and has been reported only nine times so far (Table 1). While pituitary tumours are centred in the sella, craniopharyngiomas may occur anywhere from the pituitary gland to the third ventricle. Association of intra-third ventricular craniopharyngioma and growth hormone- Figure 1: Contrast MRI (T1-weighted sagittal) showing intra-third-ventricular secreting pituitary macroadenoma as two distinct, unconnected tumors craniopharyngioma and pituitary adenoma. occurring synchronously has not been reported so far. Case Report A 35-year-old male was admitted with six-month-history of generalized headache, gradual loss of vision and intermittent generalized tonic clonic seizures. Clinically, he had acromegaly and optic atrophy with no perception of light. -
AACE Annual Meeting 2021 Abstracts Editorial Board
June 2021 Volume 27, Number 6S AACE Annual Meeting 2021 Abstracts Editorial board Editor-in-Chief Pauline M. Camacho, MD, FACE Suleiman Mustafa-Kutana, BSC, MB, CHB, MSC Maywood, Illinois, United States Boston, Massachusetts, United States Vin Tangpricha, MD, PhD, FACE Atlanta, Georgia, United States Andrea Coviello, MD, MSE, MMCi Karel Pacak, MD, PhD, DSc Durham, North Carolina, United States Bethesda, Maryland, United States Associate Editors Natalie E. Cusano, MD, MS Amanda Powell, MD Maria Papaleontiou, MD New York, New York, United States Boston, Massachusetts, United States Ann Arbor, Michigan, United States Tobias Else, MD Gregory Randolph, MD Melissa Putman, MD Ann Arbor, Michigan, United States Boston, Massachusetts, United States Boston, Massachusetts, United States Vahab Fatourechi, MD Daniel J. Rubin, MD, MSc Harold Rosen, MD Rochester, Minnesota, United States Philadelphia, Pennsylvania, United States Boston, Massachusetts, United States Ruth Freeman, MD Joshua D. Safer, MD Nicholas Tritos, MD, DS, FACP, FACE New York, New York, United States New York, New York, United States Boston, Massachusetts, United States Rajesh K. Garg, MD Pankaj Shah, MD Boston, Massachusetts, United States Staff Rochester, Minnesota, United States Eliza B. Geer, MD Joseph L. Shaker, MD Paul A. Markowski New York, New York, United States Milwaukee, Wisconsin, United States CEO Roma Gianchandani, MD Lance Sloan, MD, MS Elizabeth Lepkowski Ann Arbor, Michigan, United States Lufkin, Texas, United States Chief Learning Officer Martin M. Grajower, MD, FACP, FACE Takara L. Stanley, MD Lori Clawges The Bronx, New York, United States Boston, Massachusetts, United States Senior Managing Editor Allen S. Ho, MD Devin Steenkamp, MD Corrie Williams Los Angeles, California, United States Boston, Massachusetts, United States Peer Review Manager Michael F. -
Incidental Pituitary Adenomas
Neurosurg Focus 31 (6):E18, 2011 Incidental pituitary adenomas WALAVAN SIVAKUMAR, M.D.,1 ROUKOZ CHAMOUN, M.D.,1 VINH NGUYEN, M.D.,2 AND WILLIAM T. COULdwELL, M.D., PH.D.1 Departments of 1Neurosurgery and 2Radiology, University of Utah, Salt Lake City, Utah Object. Pituitary incidentalomas are a common finding with a poorly understood natural history. Over the last few decades, numerous studies have sought to decipher the optimal evaluation and treatment of these lesions. This paper aims to elucidate the current evidence regarding their prevalence, natural history, evaluation, and management. Methods. A search of articles on PubMed (National Library of Medicine) and reference lists of all relevant ar- ticles was conducted to identify all studies pertaining to the incidence, natural history, workup, treatment, and follow- up of incidental pituitary and sellar lesions, nonfunctioning pituitary adenomas, and incidentalomas. Results. The reported prevalence of pituitary incidentalomas has increased significantly in recent years. A com- plete history, physical, and endocrinological workup with formal visual field testing in the event of optic apparatus involvement constitutes the basics of the initial evaluation. Although data regarding the natural history of pituitary incidentalomas remain sparse, they seem to suggest that progression to pituitary apoplexy (0.6/100 patient-years), visual field deficits (0.6/100 patient-years), and endocrine dysfunction (0.8/100 patient-years) remains low. In larger lesions, apoplexy risk may be higher. Conclusions. While the majority of pituitary incidentalomas can be managed conservatively, involvement of the optic apparatus, endocrine dysfunction, ophthalmological symptoms, and progressive increase in size represent the main indications for surgery. -
Pancreatic Insulinomas in Multiple Endocrine Neoplasia, Type I Knockout Mice Can Develop in the Absence of Chromosome Instability Or Microsatellite Instability
[CANCER RESEARCH 64, 7039–7044, October 1, 2004] Pancreatic Insulinomas in Multiple Endocrine Neoplasia, Type I Knockout Mice Can Develop in the Absence of Chromosome Instability or Microsatellite Instability Peter C. Scacheri,1 Alyssa L. Kennedy,1 Koei Chin,4 Meghan T. Miller,1 J. Graeme Hodgson,4 Joe W. Gray,4 Stephen J. Marx,2 Allen M. Spiegel,3 and Francis S. Collins1 1National Human Genome Research Institute, 2National Institute of Diabetes and Digestive and Kidney Diseases, and 3National Institute of Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland; and 4Cancer Genetics and Breast Oncology, University of California San Francisco Comprehensive Cancer Center, San Francisco, California ABSTRACT excision repair instability. The fact that the vast majority of tumors show one of these three modes of instability, but usually not more than Multiple endocrine neoplasia, type I (MEN1) is an inherited cancer one, suggests that genetic instability may be essential for a neoplasia syndrome characterized by tumors arising primarily in endocrine tissues. to develop, although this hypothesis has been the subject of continued The responsible gene acts as a tumor suppressor, and tumors in affected heterozygous individuals occur after inactivation of the wild-type allele. debate. Previous studies have shown that Men1 knockout mice develop multiple Multiple endocrine neoplasia, type I (MEN1), is an inherited cancer pancreatic insulinomas, but this occurs many months after loss of both syndrome characterized by multiple tumors, most striking for hor- copies of the Men1 gene. These studies imply that loss of Men1 is not alone mone secretion from the parathyroid gland, pancreatic islets, and sufficient for tumor formation and that additional somatic genetic changes pituitary gland. -
Multiple Endocrine Neoplasia Type 1 (MEN1)
Lab Management Guidelines v2.0.2019 Multiple Endocrine Neoplasia Type 1 (MEN1) MOL.TS.285.A v2.0.2019 Introduction Multiple Endocrine Neoplasia Type 1 (MEN1) is addressed by this guideline. Procedures addressed The inclusion of any procedure code in this table does not imply that the code is under management or requires prior authorization. Refer to the specific Health Plan's procedure code list for management requirements. Procedures addressed by this Procedure codes guideline MEN1 Known Familial Mutation Analysis 81403 MEN1 Deletion/Duplication Analysis 81404 MEN1 Full Gene Sequencing 81405 What is Multiple Endocrine Neoplasia Type 1 Definition Multiple Endocrine Neoplasia Type 1 (MEN1) is an inherited form of tumor predisposition characterized by multiple tumors of the endocrine system. Incidence or Prevalence MEN1 has a prevalence of 1/10,000 to 1/100,000 individuals.1 Symptoms The presenting symptom in 90% of individuals with MEN1 is primary hyperparathyroidism (PHPT). Parathyroid tumors cause overproduction of parathyroid hormone which leads to hypercalcemia. The average age of onset is 20-25 years. Parathyroid carcinomas are rare in individuals with MEN1.2,3,4 Pituitary tumors are seen in 30-40% of individuals and are the first clinical manifestation in 10% of familial cases and 25% of simplex cases. Tumors are typically solitary and there is no increased prevalence of pituitary carcinoma in individuals with MEN1.2,5 © eviCore healthcare. All Rights Reserved. 1 of 9 400 Buckwalter Place Boulevard, Bluffton, SC 29910 (800) 918-8924 www.eviCore.com Lab Management Guidelines v2.0.2019 Prolactinomas are the most commonly seen pituitary subtype and account for 60% of pituitary adenomas. -
Findings of Brain Magnetic Resonance Imaging in Girls with Central Precocious Puberty Compared with Girls with Chronic Or Recurrent Headache
Journal of Clinical Medicine Article Findings of Brain Magnetic Resonance Imaging in Girls with Central Precocious Puberty Compared with Girls with Chronic or Recurrent Headache Shin-Hee Kim 1, Moon Bae Ahn 2 , Won Kyoung Cho 2 , Kyoung Soon Cho 2, Min Ho Jung 3,* and Byung-Kyu Suh 2 1 Department of Pediatrics, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Korea; [email protected] 2 Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; [email protected] (M.B.A.); [email protected] (W.K.C.); [email protected] (K.S.C.); [email protected] (B.K.S.) 3 Department of Pediatrics, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 07345, Korea * Correspondence: [email protected] Abstract: In the present study, the results of brain magnetic resonance imaging (MRI) in girls with central precocious puberty (CPP) were compared those in with girls evaluated for headaches. A total of 295 girls with CPP who underwent sellar MRI were enrolled. A total of 205 age-matched girls with chronic or recurrent headaches without neurological abnormality who had brain MRI were included as controls. The positive MRI findings were categorized as incidental non-hypothalamic–pituitary (H–P), incidental H–P, or pathological. Positive MRI findings were observed in 39 girls (13.2%) with Citation: Kim, S.-H.; Ahn, M.B.; Cho, CPP; 8 (2.7%) were classified as incidental non-H–P lesions, 30 (10.2%) as incidental H–P lesions, and 1 W.K.; Cho, K.S.; Jung, M.H.; Suh, B.-K. -
An Endocrine Society Clinical Practice Guideline
SPECIAL FEATURE Clinical Practice Guideline Pheochromocytoma and Paraganglioma: An Endocrine Society Clinical Practice Guideline Jacques W. M. Lenders, Quan-Yang Duh, Graeme Eisenhofer, Anne-Paule Gimenez-Roqueplo, Stefan K. G. Grebe, Mohammad Hassan Murad, Mitsuhide Naruse, Karel Pacak, and William F. Young, Jr Radboud University Medical Center (J.W.M.L.), 6500 HB Nijmegen, The Netherlands; VA Medical Center and University of California, San Francisco (Q.-Y.D.), San Francisco, California 94121; University Hospital Dresden (G.E.), 01307 Dresden, Germany; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, (A.-P.G.-R.), F-75015 Paris, France; Université Paris Descartes (A.-P.G.-R.), F-75006 Paris, France; Mayo Clinic (S.K.G.G., M.H.M.), Rochester, Minnesota 55905; National Hospital Organisation Kyoto Medical Center (M.N.), Kyoto 612-8555; Japan; Eunice Kennedy Shriver National Institute of Child Health & Human Development (K.P.), Bethesda, Maryland 20892; and Mayo Clinic (W.F.Y.), Rochester, Minnesota 55905 Objective: The aim was to formulate clinical practice guidelines for pheochromocytoma and para- ganglioma (PPGL). Participants: The Task Force included a chair selected by the Endocrine Society Clinical Guidelines Subcommittee (CGS), seven experts in the field, and a methodologist. The authors received no corporate funding or remuneration. Evidence: This evidence-based guideline was developed using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) system to describe both the strength of rec- ommendations and the quality of evidence. The Task Force reviewed primary evidence and com- missioned two additional systematic reviews. Consensus Process: One group meeting, several conference calls, and e-mail communications enabled consensus. -
Pancreatic Gangliocytic Paraganglioma Harboring Lymph
Nonaka et al. Diagnostic Pathology (2017) 12:57 DOI 10.1186/s13000-017-0648-x CASEREPORT Open Access Pancreatic gangliocytic paraganglioma harboring lymph node metastasis: a case report and literature review Keisuke Nonaka1,2, Yoko Matsuda1, Akira Okaniwa3, Atsuko Kasajima2, Hironobu Sasano2 and Tomio Arai1* Abstract Background: Gangliocytic paraganglioma (GP) is a rare neuroendocrine neoplasm, which occurs mostly in the periampullary portion of the duodenum; the majority of the reported cases of duodenal GP has been of benign nature with a low incidence of regional lymph node metastasis. GP arising from the pancreas is extremely rare. To date, only three cases have been reported and its clinical characteristics are largely unknown. Case presentation: A nodule located in the pancreatic head was incidentally detected in an asymptomatic 68-year-old woman. Computed tomography revealed 18-, 8-, and 12-mm masses in the pancreatic head, the pancreatic tail, and the left adrenal gland, respectively. Subsequent genetic examination revealed an absence of mutations in the MEN1 and VHL genes. Macroscopically, the tumor located in the pancreatic head was 22 mm in size and displayed an ill-circumscribed margin along with yellowish-white color. Microscopically, it was composed of three cell components: epithelioid cells, ganglion-like cells, and spindle cells, which led to the diagnosis of GP. The tumor was accompanied by a peripancreatic lymph node metastasis. The tumor in the pancreatic tail was histologically classified as a neuroendocrine tumor (NET) G1 (grade 1, WHO 2010), whereas the tumor in the left adrenal gland was identified as an adrenocortical adenoma. The patient was disease-free at the 12-month follow-up examination. -
Primary Sellar Neuroblastoma in an Elderly Patient: Case Report
NMC Case Report Journal 2015; 2: 57–60 DOI: 10.2176/nmccrj.2014-0091 Case Report Primary Sellar Neuroblastoma in an Elderly Patient: Case Report Shun Yamamuro, Takao Fukushima, Atsuo Yoshino, Kazunari Yachi, Akiyoshi Ogino, and Yoichi Katayama A 71-year-old male presented with an isolated well- Case Report enhanced sellar lesion accompanied by hypopituitarism, A 71-year-old male was admitted to another hospital com- diagnosed preoperatively as a pituitary adenoma, plaining of general fatigue. Laboratory evaluations demon- meningioma, or metastatic brain tumor. However, histo- strated hyponatremia. A computed tomography (CT) scan logical examinations yielded a diagnosis of neuroblas- disclosed a sellar mass lesion. Under a diagnosis of pituitary toma. Primary sellar neuroblastoma in the elderly is very rare. We therefore describe this case of primary sellar tumor, the patient was referred to our hospital. His conscious- neuroblastoma, mimicking common pituitary tumor, ness level was clear and neurological examinations revealed and review the literature. There have so far been only no abnormalities except for bitemporal hemianopsia and right nine reported cases of primary sellar neuroblastoma in oculomotor nerve palsy. Magnetic resonance (MR) imaging the English literature. All reports like the present case, demonstrated a sellar mass with suprasellar extension and demonstrated similar neuroimaging of a “dumbbell- bilateral cavernous sinus invasion. The lesion was isointense shaped extension in the sellar region.” Moreover, the on T1-weighted and T2-weighted MR images; slightly hetero- tumors may exhibit characteristic features, such as rapid geneous enhancement was evident after contrast medium tumor growth, hypopituitarism, or oculomotor nerve administration (Fig. 1). Laboratory and endocrinological palsy, and these findings may represent helpful signs for evaluations revealed hyponatremia and panhypopituitarism the diagnosis of primary sellar neuroblastoma.