Study of Ohmic Contact Formation on Algan/Gan Heterostructures

Total Page:16

File Type:pdf, Size:1020Kb

Study of Ohmic Contact Formation on Algan/Gan Heterostructures DEGREE PROJECT IN INFORMATION AND COMMUNICATION TECHNOLOGY, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2019 Study of ohmic contact formation on AlGaN/GaN heterostructures KAI-HSIN WEN KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE DF KTH Royal Institute of Technology Study of ohmic contact formation on Al- GaN/GaN heterostructures Master’s thesis in Nanotechnology Kai-hsin Wen Information and Communication Technology KTH ROYAL INSTITUTE OF TECHNOLOGY Stockholm, Sweden 2019 Master’s thesis 2019 Study of ohmic contact formation on AlGaN/GaN heterostructures Kai-hsin Wen Information and Communication Technology KTH Royal Institute of Technology Stockholm, Sweden 2019 Study of ohmic contact formation on AlGaN/GaN heterostructures Kai-hsin Wen © Kai-hsin Wen, 2019. Supervisors: Niklas Rorsman, Chalmers University of Technology Ding-yuan Chen, Chalmers University of Technology Examiner: Mattias Hammar, KTH Royal Institute of Technology Master’s Thesis 2019 Information and Communication Technology KTH Royal Institute of Technology SE-100 44 Stockholm Telephone +46 8 790 60 00 Cover: The contour plot of the obtained Rc from the laser focus/dose matrix. Typeset in LATEX, template by David Frisk Printed by KTH Stockholm, Sweden 2019 iv Study of ohmic contacts formation on AlGaN/GaN heterostructures Kai-hsin Wen Information and Communication Technology KTH Royal Institute of Technology SE-100 44 Stockholm Abstract It is challenging to achieve low-resistive ohmic contacts to III-nitride semiconductors due to their wide bandgap. A common way to reduce the contact resistance is to recess the ohmic area prior to metallization. In the minimization of the contact resistance, parameters like the recess depth, anneal temperature and design of the metal stack are commonly optimized. In this work, three other approaches have been evaluated. All experiments were performed on AlGaN/GaN heterostructures. The fabricated ohmic contacts were recess etched, metallized with a Ta/Al/Ta stack, and annealed at 550-575◦C. Firstly, it is shown that the laser writer intensity, transmittance and focus offset during optical lithography affect the contact resistance. The reason is believed to be the variation in the resist profile, which has an impact on the metal coverage. At the optimum intensity/transmittance/focus condition, which generates a relatively medium undercut, a contact resistance of 0.23 Ωmm was obtained. In the second approach, the metal layer of annealed contacts was removed by wet etching, followed by the re-deposition of a metal stack and annealing. The purpose was to increase the amount of N vacancies in the AlGaN, which are responsible for the contact formation. A minimum contact resistance of 0.41 Ωmm was achieved with this method, compared to 0.28 Ωmm with the regular method (without re- metallization). In the last approach, the bottom Ta layer was sputtered, whereas evaporation was used in all other cases. The minimum contact resistance was found to be 0.6 Ωmm, which was higher than for the evaporated contacts. The reason was assumed that the thickness of sputtered Ta should be thinner than the evaporated Ta due to its higher density. Moreover, the obtained lower sheet resistance is assumed to caused by the atomic scale damage due to the high energy ions during sputtering. Keywords: ohmic contacts, wide bandgap, Ta-based, recess etch, N-vacancies v Sammanfattning En utmaning med III-nitrid-halvledare är att uppnå låg-resistivitetskontakter, på grund av deras breda bandgap. Ett konventionellt tillvägagångsätt för att reducera kontaktresistansen är att fördjupa ohmska ytan före metallisering. I strävandet av att minska den ohmska resistansen sker vanligtvis en optimering av följande parame- trar, recessddjup, anlöpningstemperatur och metallagersdesign. I detta arbete så har samtliga tre parametrar evaluerats. Alla experiment utfördes på AlGaN/GaN- heterostrukturer. De tillverkade ohmska kontakterna var recesssetsade, metalliser- ade med ett Ta/Al/Ta lager och anlöpt vid 550-575◦C. Den primära undersökningen, visar att laserritar-intensitet, -transmission och - fokusförskjutning under optisk litografi inverkar på kontaktresistansen. Anledningen antas vara variation i resistprofilen, vilket påverkar metallbeläggningen. Vid opti- mal intensitet/transmission/fokus-förhållanden, (som genererar en underskärning), blev den resulterande kontaktresistansen 0.23 Ωmm uppmätt. I en sekundär undersökning, avlägsnas ohmska kontaktens metallager genom våtet- sning, följt av en återdeponering av ett nytt metallager, samt anlöpning. Syftet var att öka mängden N-vakanser i AlGaN-lagret, som formar ohmska kontakten. Min- sta kontaktresistansen uppmätt var 0.41Wmm, att jämföras med 0.28 Ωmm, som uppnåddes genom den konventionella metoden (utan återmetallisering). Den sista undersökningen jämförde sputtrade med evaporerade bottenlager av Ta, (evaporation användes som standardmetod i de tidigare undersökningarna). Med sputtrning blev den minsta kontakresistansen 0.6 Ωmm, (högre än de evaporerade kontakterna). En hypotetisk förklarning kan vara att det sputtrade Ta-lagret är tunnare än det evaporerade Ta-lagret, på grund av en dess högre densitet. Därutöver, den uppmätta lägre skiktresistansen antas bero på den skada i atomskala som sker vid de höga energi-kollisioner som joner skapar vid sputtrning. vi Acknowledgements This thesis work is pursued at the Department of Microtechnology and Nanoscience - MC2, Microwave Electronics Laboratory. It is a great experience for me to work here and during this period I have gained so much knowledge. I would like to sincerely thank my supervisor Niklas Rorsman for giving me the chance to come to Chalmers and work with him. Despite his tight schedule, his door is always open for discussion whenever I have any question. Furthermore I would like to express my deepest gratitude to my daily supervisor Ding-yuan Chen for his patience and guidance. Thank you for teaching me the processing techniques in the cleanroom and all the measurements used in this thesis. I would also like to thank Hans Hjelmgren for helping me build a simulation model and teaching me to use TCAD simulation. Also, I would like to appreciate all the people in Microwave Electronics Laboratory for creating such a fantastic working environments. Finally, I am deeply grateful to my family and all my friends for always being supportive encouraging me to push on. Kai-hsin Wen, Gothenburg, June 2019 viii x Contents List of Figures xiii List of Tables xv 1 Introduction1 1.1 Thesis objectives and summarized results................2 1.2 Thesis outline...............................3 2 Ohmic contact technology5 2.1 Metal-semiconductor contact.......................5 2.1.1 Current transport mechanisms..................6 2.2 Ohmic contact mechanism........................8 2.3 Ohmic contact types...........................9 2.3.1 Planar contacts..........................9 2.3.2 Recessed contacts......................... 10 2.3.3 n+-GaN regrowth contacts.................... 12 2.4 Physical modelling............................ 13 3 Fabrication Process 17 3.1 Standard Cleaning............................ 17 3.2 LPCVD.................................. 18 3.3 Mesa.................................... 18 3.3.1 Photolithography......................... 19 3.3.2 Plasma Ashing.......................... 20 3.3.3 Plasma Etching.......................... 21 3.4 Ohmic Contact.............................. 21 3.4.1 Metal Deposition......................... 21 3.4.2 Re-metalization.......................... 22 3.4.3 Sputtered Ta........................... 23 4 Characterization 25 4.1 Scanning electron microscopy...................... 25 4.2 Transmission line method........................ 26 4.2.1 TLM structure.......................... 26 4.2.2 Epi-layer sheet resistance Rsh .................. 27 4.2.3 Contact resistance Rc and specific contact resistivity ρc .... 27 xi Contents 5 Results 31 5.1 Laser writer focus/intensity test..................... 31 5.2 Ohmic contact re-metallization..................... 33 5.3 Sputtered Ta............................... 36 6 Conclusion and future work 39 Bibliography 41 xii List of Figures 1.1 Schematic of GaN HEMT structure....................1 2.1 Band diagram of metal-semiconductor in equilibrium [18].......5 2.2 Schematic of three different carrier transport mechanism for different Nd.[24]..................................7 2.3 E00 plotted as a function of doping concentration for GaN at T= 300K.8 2.4 Illustration of three different recess depth cases. (a)the barrier is still present (b)the barrier is still present but it is too thin to retain 2DEG under it (c)the barrier is completely removed in etching process.... 11 2.5 The simulation model structure(a)model from software (b)schematic of the model................................ 13 2.6 Schematic of the simulation model structure and the obtained results of various doping depth, concentration and the temperature...... 15 3.1 Schematic of the ohmic structure in this work.............. 17 3.2 The schematic of the position of photoresist and the laser beam.... 19 3.3 The etchant versus etching target material (X: The target material can not be etched by the etchant, : The target material can be etched by the etchant, –: Not found from the literature)........ 23 4.1 (a)Schematic TLM strcture (b)Microscope image of the TLM structure 26 4.2 (a)A schematics shows the different components of Rtot. (b) Total resistance Rtot plotted as a function of isolation distance
Recommended publications
  • Plasma Enhanced Chemical Vapor Deposition of Organic Polymers
    processes Review Plasma Enhanced Chemical Vapor Deposition of Organic Polymers Gerhard Franz Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences (MUAS), 34 Lothstrasse, Munich, D-80335 Bavaria, Germany; [email protected] Abstract: Chemical Vapor Deposition (CVD) with its plasma-enhanced variation (PECVD) is a mighty instrument in the toolbox of surface refinement to cover it with a layer with very even thickness. Remarkable the lateral and vertical conformity which is second to none. Originating from the evaporation of elements, this was soon applied to deposit compound layers by simultaneous evaporation of two or three elemental sources and today, CVD is rather applied for vaporous reactants, whereas the evaporation of solid sources has almost completely shifted to epitaxial processes with even lower deposition rates but growth which is adapted to the crystalline substrate. CVD means first breaking of chemical bonds which is followed by an atomic reorientation. As result, a new compound has been generated. Breaking of bonds requires energy, i.e., heat. Therefore, it was a giant step forward to use plasmas for this rate-limiting step. In most cases, the maximum temperature could be significantly reduced, and eventually, also organic compounds moved into the preparative focus. Even molecules with saturated bonds (CH4) were subjected to plasmas—and the result was diamond! In this article, some of these strategies are portrayed. One issue is the variety of reaction paths which can happen in a low-pressure plasma. It can act as a source for deposition and etching which turn out to be two sides of the same medal.
    [Show full text]
  • Lecture06-Thin Film Deposition
    EE143 – Fall 2016 Microfabrication Technologies Lecture 6: Thin Film Deposition Reading: Jaeger Chapter 6 Prof. Ming C. Wu [email protected] 511 Sutardja Dai Hall (SDH) 1 Vacuum Basics • Units – 1 atmosphere = 760 torr = 1.013x105 Pa – 1 bar = 105 Pa = 750 torr – 1 torr = 1 mm Hg – 1 mtorr = 1 micron Hg – 1 Pa = 7.5 mtorr = 1 newton/m2 – 1 torr = 133.3 Pa • Ideal Gas Law: PV = NkT – k = 1.38E-23 Joules/K = 1.37E-22 atm cm3/K – N = # of molecules (note the typo in your book) – T = absolute temperature in K 2 1 Dalton’s Law of Partial Pressure • For mixture of non-reactive gases in a common vessel, each gas exerts its pressure independent of others • ������ = �� + �� + ⋯ . +�� – Total pressure = Sum of partial pressures • ������ = �� + �� + ⋯ . +�� – Total number of molecules = sum of individual molecules • Ideal gas law observed by each gas, as well as all gases – ��� = ���� – ��� = ���� – ��� = ���� 3 Average Molecular Velocity • Assumes Maxwell- Boltzman Velocity Distribution 7 ��� �3 = �� • where m = molecular weight of gas molecule 4 2 Mean Free Path between collisions �� � = 7 ����� • where – K = Boltzmann constant – T = temperature in Kelvin – d = molecular diameter – P = pressure • For air at 300K �. � �. �� �(�� ��) = = � (�� ��) � (�� ����) 5 Impingement Rate • � = number of molecules striking a surface per unit area per unit time [1/cm2-sec] � � = �. �×���� 7 �� • where – P = pressure in torr – M = molecular weight 6 3 Question • How long does it take to form a monolayer of gas on the surface of a substrate? 7 Vacuum Basics
    [Show full text]
  • Manipulation of Electrical Resistivity and Optical Properties of Zinc Oxide Thin Films Grown by Pulsed Laser Deposition and the Sol-Gel Method
    MANIPULATION OF ELECTRICAL RESISTIVITY AND OPTICAL PROPERTIES OF ZINC OXIDE THIN FILMS GROWN BY PULSED LASER DEPOSITION AND THE SOL-GEL METHOD by Ryan W. Crisp A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Applied Phsyics). Golden, Colorado Date Signed: Ryan W. Crisp Signed: Dr. Reuben T. Collins Thesis Advisor Golden, Colorado Date Signed: Dr. Thomas E. Furtak Professor and Head Department of Physics ii ABSTRACT Adjusting and optimizing the electrical resistivity and optical transparency of transparent conducting oxides (TCOs) is critically important to the quality of many solid state devices. In this work, the electrical and optical properties of zinc oxide thin films grown by the sol- gel method and by pulsed laser deposition are studied. A minimum electrical resistivity of 5.7×10−4 Ω·cm at an oxygen partial pressure of 0.01 mbar for room temperature (RT) growth by pulsed laser deposition (PLD) was achieved. This optimal film had a calculated transparency >90% in the visible region. The measurement techniques used and a full ex- ploration of the various growth parameters (growth temperature, ambient gas type, ambient gas pressure, and annealing treatments) are discussed. The optimized growth parameters were applied to create a TCO top contact to nanorod structures that are potentially useful as solar cell devices. The application of this optimized film offers future work possibilities to perfect a promising up and coming device. iii TABLE OF CONTENTS ABSTRACT . iii LIST OF FIGURES .
    [Show full text]
  • Bulk Foil Pt-Rh Micro-Relays for High Power Rf and Other Applications
    BULK FOIL PT-RH MICRO-RELAYS FOR HIGH POWER RF AND OTHER APPLICATIONS by Fatih Mert Ozkeskin A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering) in The University of Michigan 2011 Doctoral Committee: Professor Yogesh B. Gianchandani, Chair Professor Kamal Sarabandi Associate Professor Katsuo Kurabayashi Assistant Professor Mina Rais-Zadeh © Fatih Mert Ozkeskin 2011 To father, Tayfur Ozkeskin ii ACKNOWLEDGEMENTS First of all, I would like to thank and express my deepest gratitude to my research advisor Professor Yogesh B. Gianchandani for his endless support, mentoring and encouragement throughout my doctoral study. Second of all, I would like to thank Professor Kamal Sarabandi for his invaluable guidance. I would also like to thank Professor Katsuo Kurabayashi and Professor Mina Rais-Zadeh for being in my dissertation committee. I would like to thank Dr. Tao Li and Dr. Mark Richardson for being great mentors and for training me on the µEDM which I have used extensively. I would also like to thank to Sangjo Choi, for spending a great deal of effort and countless of hours for RF design and testing. I would like to thank to Dr. Adip Nashashibi for helping with RF testing equipment. I am also indebted to all the WIMS and SSEL staff especially to Trasa Bukhardt and Fran Doman for taking care of all my administrative work and research purchases. I would like to thank my research group members Tao, Naveen, Karthik, Christine, Scott Wright, Scott Green, Allan, Heidi, Erwin, Jun, Ravish, Seungdo and Xin. It has been a wonderful experience working with them all along.
    [Show full text]
  • Deposition Lecture Day 2 Deposition
    Deposition Lecture Day 2 Deposition PVD - Physical Vapor Deposition E-beam Evaporation Thermal Evaporation (wire feed vs boat) Sputtering CVD - Chemical Vapor Deposition PECVD LPCVD MVD ALD MBE Plating Parylene Coating Vacuum Systems, pumps and support equipment Differences, Pros and Cons for depositing various materials Physical vs. Chemical Deposition Metallization - depositing metal layers or thin films - E-beam & Thermal Evaporation, Sputtering, Plating - Contact layer, mask/protection layer, interface layers Dielectric Deposition - depositing dielectric layers or thin films -CVD, e-beam, sputtering - insulating/capacitor layer, mask/protecting layer, interface layers *Dielectric = an electrical insulator that can be polarized by an applied electric field. ~energy storing capacity → capacitor Environment of the Deposition *Cleanroom is not enough! Must also be in vacuum! Purity of the deposited film depends on the quality of the vacuum, and on the purity of the source material. Cryo pumps Evaporation is a common method of thin-film deposition. The source material is evaporated in a vacuum. The vacuum allows vapor particles to travel directly to the target object (substrate), where they condense back to a solid state. Evaporation is used in microfabrication, and to make macro-scale products such as metallized plastic film. Any evaporation system includes a vacuum pump. It also includes an energy source that evaporates the material to be deposited. Many different energy sources exist: ● In the thermal method, metal material (in the form of wire, pellets, shot) is fed onto heated semimetal (ceramic) evaporators known as "boats" due to their shape. A pool of melted metal forms in the boat cavity and evaporates into a cloud above the source.
    [Show full text]
  • MOCVD Regrown Ohmic Contacts to Algan/Gan Heterostructures
    MOCVD Regrown Ohmic Contacts to AlGaN/GaN Heterostructures Savannah Benbrook ([email protected]) ​ ​ Yanni Dahmani ([email protected]) ​ ​ Mentor: Dr. Xiaqing Xu Spring 2018 Abstract: AlGaN/GaN transfer length method (TLM) and Hall devices were fabricated with ​ n+ doped GaN recessed Ohmic contact regions by metal-organic chemical vapor deposition (MOCVD) regrowth technology. The impact of MOCVD regrowth temperature and precursor flow rates on the quality and growth rate of n+ GaN were qualitatively evaluated through scanning electron microscopy (SEM). Ti/Al/Pt/Au metallized regrown n+ GaN Ohmic contacts -3 2 exhibited a minimum specific contact resistivity of 1.3 x 10 Ω​ cm and sheet resistance of 150 ​ ​ ​ Ω/sq. It is hypothesized that carbon traces remaining on the AlGaN/GaN samples prior to re-entering the MOCVD chamber for regrowth is the cause of abnormal porous regions and defect density in the n+GaN film and the subsequently high specific contact resistivities. I. Introduction & Motivation Gallium Nitride (GaN)-based heterostructures are frequently employed in high-frequency, high-power, and optoelectronic devices due to their wide bandgap, high breakdown voltage, high electron saturation velocity, and high thermal conductivity [1]. Furthermore, GaN heterostructured devices have demonstrated thermal stability up to 1000C in vacuum, making GaN-based devices of great interest to the high-temperature device community and enabling their use in extreme environment applications where traditional semiconductor materials like Silicon cannot survive, such as Venus exploration [2]. However, current GaN-based device reliability is dominated not by the robust heterostructured material itself, but by the accompanying contact metallization schemes.
    [Show full text]
  • Evaporation Sources
    MATERIALS EVAPORATION I SOURCES • Evaporation Source Selection Guide ................... .I 02 • Tungsten Filaments for Vacuum Metalizing.......... .I 04 I • Tungsten Rod Source ..................................... .I 07 • Point Source Loop Filaments............................. .I 08 • Heater Filaments ............................................ I 10 • Baskets ........................................................ .I 11 • Crucibles ...................................................... .I 14 • Heat Shielded Crucible Heaters ......................... .I 16 • Boat Sources ................................................. .I 18 • Folded Boats ................................................. .I 29 • Alumina Coated Evaporation Sources.................. .I 31 • Special Tantalum Boats.................................... I 37 • Folded Baffled Box Sources .............................. .I 41 • Baffled Box Sources for SiO, ZnS ....................... .I 43 • Microelectronic Sources Tungsten – Tantalum – Molybdenum .................................. .I 48 • Chrome Plated Tungsten Rods .......................... .I 53 • Tungsten Screens .......................................... .I 54 I 01 MATERIALS EvaporatioN SOUrces ManufacturingEvaporation Source Processes Selection Guide Evaporation Source Selection Guide This source selection guide is provided to help you determine which evaporation source type might fit your needs. How to use the Guide: 1. Determine how much current your power supply is capable of safely producing. 2. Establish the vapor
    [Show full text]
  • Technical Paper
    TECHNICAL PAPER Materials & Deposition Technology for Coating Optical Surfaces Understanding the Components of the Process Author: Samuel Pellicori Materion Coating Materials News The materials and deposition processes employed to make coatings that are intended for use at wavelength regions between UV and far IR are described in this overview of the technology. Coatings composed of special materials are deposited as nano- and micro- meter thicknesses by specific techniques to control the optical, mechanical, chemical and electrical properties of optical surfaces. Design & Engineering Considerations for Coating Optical Components The components of the deposition process, starting with the performance specifications and continuing through the finished coated surface, are diagrammed in Figure 1. It is evident from the number and descriptions of the process components that material science and deposition technology play complex interdependent roles in the overall process of producing optical coatings. It is important for the system designer to understand the individual components of the process and their interactions. When presented with the spectral and environmental requirements and the substrate material to be coated, the coating engineer has the responsibility of selecting the appropriate coating materials and deposition process. A thin-film design is then generated that includes the wavelength dependencies of the optical constants, refractive index and extinction coefficient - quantities that need to be pre-determined for specific materials and their deposition process parameters. From this theoretical layer-by-layer design, the performance is predicted and evaluated with respect to spectral coverage, incidence angle, surface shape, substrate temperature constraints, mechanical durability and verification measurement. The technology of preparing the coating material is equally complex and includes consideration of such factors as chemical composition, form, and deposition technique.
    [Show full text]
  • Microstructure and Properties of Aluminum Contacts Formed on Gaas(100) by Low Pressure Chemical Vapor Deposition with Dimethylethylamine Alane Source
    Microstructure and Properties of Aluminum Contacts Formed on GaAs(100) by Low Pressure Chemical Vapor Deposition with Dimethylethylamine Alane Source V. SHASHKIN1, S. RUSHWORTH2 V. DANIL'TSEV1, A. MUREL1, Yu. DROZDOV1, S. GUSEV1, O. KHRYKIN1, and N. VOSTOKOV1 1.- Institute for Physics of Microstructures RAS, 603600, Nizhny Novgorod, Russia 2.- Epichem company, Bromborough, Wirral, UK We report on a low pressure chemical vapor deposition of metallic thin aluminum films on GaAs (001) with a dimethylethylamine alane (DMEAA) source and H2 as a carrier gas. The deposition temperatures varied in the range 130÷360°C. Integrated volumes for Al (111), (100), (110)R and (110) grains were estimated by the x-ray diffraction technique and the growth temperature values preferred for every type of grains were observed. The experimentally observed dominance of Al(110)R over Al(110), irrespective of the substrate miscut direction, supports the GaAs(100) inner anisotropy effect on the Al grain orientation. Electrical resistivity was 5 µΩ·cm for best Al films. The Schottky barrier heights were near an 0.7 eV level and the ideality factor n= 1.1. Nonalloyed ohmic contacts were fabricated on an n- type GaAs epitaxial layer with an additional set of Si δ-layers near the Al/GaAs interface. Specific 2 contact resistance ρc = 7 µΩ см was measured. Best contacts were obtained at a deposition temperature lower than 250°C. Key words: Aluminum films on GaAs, Schottky barrier, nonalloyed ohmic contact 2 INTRODUCTION Chemical vapor deposition of metallic aluminum layers using a dimethylethylamine alane (DMEAA) precursor as a metalorganic source has been actively investigated in the last few years.1-5 High purity Al films with electrical resistivity close to the bulk value,3 and selective growth of Al 4 into µm-size holes of SiO2 mask have been successfully demonstrated as a method of multilevel metallization in modern integrated circuit technology.
    [Show full text]
  • Formation Process and Properties of Ohmic Contacts Containing Molybdenum to Algan/Gan Heterostructures
    APPLIED PHYSICS VOLUME: 14 j NUMBER: 1 j 2016 j MARCH Formation Process and Properties of Ohmic Contacts Containing Molybdenum to AlGaN/GaN Heterostructures Wojciech MACHERZYNSKI, Jacek GRYGLEWICZ, Andrzej STAFINIAK, Joanna PRAZMOWSKA, Regina PASZKIEWICZ Department of Microelectronics and Nanotechnology, Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-370 Wroclaw, Poland [email protected], [email protected], andrzej.stafi[email protected], [email protected], [email protected] DOI: 10.15598/aeee.v14i1.1587 Abstract. Properties of wide bandgap semiconductors 1. Introduction as chemical inertness to harsh conditions and possibil- ity of working at high temperature ensure possible appli- cations in the field as military, aerospace, automotive, The ohmic contacts in AlGaN/GaN semiconductor de- engine monitoring, flame detection and solar UV detec- vices have crucial influence on device performance [1], tion. Requirements for ohmic contacts in semiconduc- [2], and [3]. At the high electron mobility transis- tor devices are determined by the proposed application. tor (HEMT) ohmic contacts govern transconductance These contacts to AlGaN/GaN heterostructure for ap- and saturation current. The AlGaN/GaN HEMTs plication as high temperature, high frequency and high are capable of handling higher current densities than power devices have to exhibit good surface morphology other III-V high electron mobility transistors due to and low contact resistance. The latter is a crucial fac- higher two-dimensional electron gas (2DEG) density tor in limiting the development of high performance (1013 cm−2 or higher) accumulated on the AlGaN/GaN AlGaN/GaN devices.
    [Show full text]
  • Evaluation of Metal/Indium-Tin-Oxide for Transparent Low-Resistance Contacts to P-Type Gan
    Evaluation of metal/indium-tin-oxide for transparent low-resistance contacts to p-type GaN Wenting Hou, Christoph Stark, Shi You, Liang Zhao, Theeradetch Detchprohm, and Christian Wetzel* Future Chips Constellation and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, USA *Corresponding author: [email protected] Received 12 March 2012; revised 27 June 2012; accepted 8 July 2012; posted 16 July 2012 (Doc. ID 164558); published 2 August 2012 In search of a better transparent contact to p-GaN, we analyze various metal/indium-tin-oxide (ITO) (Ag/ITO, AgCu/ITO, Ni/ITO, and NiZn/ITO) contact schemes and compare to Ni/Au, NiZn/Ag, and ITO. The metal layer boosts conductivity while the ITO thickness can be adjusted to constructive trans- mission interference on GaN that exceeds extraction from bare GaN. We find a best compromise for an Ag/ITO (3 nm ∕ 67 nm) ohmic contact with a relative transmittance of 97% of the bare GaN near 530 nm and a specific contact resistance of 0.03 Ω ·cm2. The contact proves suitable for green light-emitting diodes in epi-up geometry. © 2012 Optical Society of America OCIS codes: 230.3670, 310.7005. 1. Introduction While contact resistance and current spreading Our society’s drive for energy efficiency places high are known to improve with increasing thickness of relevance on the identification of low-resistance the metal stack, the transmittance decreases. For ohmic contacts to wide bandgap group-III nitrides p-type GaN, semitransparent Ni/Au contacts are most commonly used. Reported specific contact for use in light-emitting diodes [1,2] (LEDs) and −3 third-generation solar cells [3].
    [Show full text]
  • Physical Vapor Deposition
    EE-527: MicroFabrication Physical Vapor Deposition R. B. Darling / EE-527 / Winter 2013 Physical Vapor Deposition (PVD) Gas Phase Gas Phase Transport Evaporation Condensation Condensed Phase Condensed Phase (solid or liquid) (usually solid) R. B. Darling / EE-527 / Winter 2013 Equilibrium Vapor Pressure • P* is the partial pressure of a gas in equilibrium with its condensed phase at a given temperature T. – There is no net transfer of material from one state to the other. • For a given material, P* is only a function of T. – But the dependence of P* on T is rather complicated. R. B. Darling / EE-527 / Winter 2013 Evaporation Rates - 1 • P* is the equilibrium vapor pressure of the evaporant at T. • P is the ambient hydrostatic pressure acting upon the evaporant in the condensed phase. • Heinrich Hertz found experimentally that the evaporation rate was proportional to (P* - P). – This is consistent with kinetic theory in which the impingement rates are proportional to pressure. – Hertz also found that the evaporation rate could not be increased by supplying more heat unless the equilibrium vapor pressure was also increased by this action. – Thus, there is a maximum evaporation rate set by P*, and this is only achieved in a vacuum, where P = 0. R. B. Darling / EE-527 / Winter 2013 Evaporation Rates - 2 • This can be viewed as two opposing fluxes: The net evaporation flux is the difference between the impingement rates for the evaporant vapor two fluxes: rate goes as P dNe 1/ 2 * 2mkBT P P Aedt rate goes as P* condensed evaporant R. B.
    [Show full text]