EVAPOTRANSPIRATION in a DESERT ENVIRONMENT By

Total Page:16

File Type:pdf, Size:1020Kb

EVAPOTRANSPIRATION in a DESERT ENVIRONMENT By Evapotranspiration in a desert environment Item Type Thesis-Reproduction (electronic); text Authors Shields, Suzanne Jean. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 30/09/2021 20:46:17 Link to Item http://hdl.handle.net/10150/191771 EVAPOTRANSPIRATION IN A DESERT ENVIRONMENT by Suzanne Jean Shields A Thesis Submitted to the Faculty of the DEPARTMENT OF HYDROLOGY AND WATER RESOURCES In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE WITH A MAJOR IN HYDROLOGY In the Graduate College THE UNIVERSITY OF ARIZONA 1982 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judg- ment the proposed use of the material is in the interests of scholar- ship. In all other instances, however, permission must be obtained from the author. SIGNED: APPROVAL BY THESIS DIRECTOR This thesis has been approved on the date shown below: /0) /cP D. D. EVANS Date' Professor of Hydrology and Water Resources ACKNOWLEDGMENTS The author wishes to extend her sincere thanks to the Department of Hydrology and Water Resources for the opportunity to research and present this thesis. Special thanks are extended to Professor Daniel D. Evans for the aid in the topic selection and help in preparation of this research. Without his assistance, this work could not have been performed. TABLE OF CONTENTS Page LIST OF ILLUSTRATIONS vi LIST OF TABLES viii ABSTRACT ix 1. INTRODUCTION General Description 2 Scope 5 2. LITERATURE REVIEW 7 Background 7 Lake Evaporation 11 Evapotranspiration under Irrigated Conditions 13 Evapotranspiration under Natural Desert Environments 16 3. PROJECT DESCRIPTION 24 Objective and Scope 24 Site Description 25 Physical Setting 26 Instrumentation 28 4. METHODS 33 Equipment 33 Lysimeter 33 Thermocouple Psychrometer 35 Raingauges 36 Procedures 36 5. RESULTS 40 Previous Investigations 41 Spatial and Temporal Variations 41 Plant Growth and Water Transfer 43 Water Balance 45 iv TABLE OF CONTENTS -- Continued Page 1977-1978 Investigations 51 Direct Evapotranspiration Measurements 51 Soil-Water Potential 54 Soil Characteristics 59 6. DISCUSSION 66 7. SUMMARY AND CONCLUSIONS 70 REFERENCES 73 LIST OF ILLUSTRATIONS Figure Page 1. Evapotranspiration and precipitation for the Curlew Valley site 19 2. Evapotranspiration and precipitation for the Washtucna site 20 3. Precipitation record at the Santa Rita site 22 4. Evapotranspiration and related soil moisture data at the Santa Rita site 23 5. Location map for the Silverbell site 40 miles northwest of Tucson, Arizona 27 6. Diagram of site I showing approximate location of measurements at Silverbell site 29 7. Diagram of site II showing approximate location of measurements at Silverbell site 30 8. Lysimeter containing creosote bush 32 9. Diagram showing approximate location of raingauges and psychrometers used during the 1977-1978 study at site I, Silverbell site 37 10. Cumulative soil water content in 1973 for bursage (A), creosote ([]), and open (0) cover at Silverbell 42 11. Evapotranspiration results using water balance method at Silverbell 47 12. Total precipitation for the same period at Silverbell . 48 13. Evapotranspiration data by the lysimeter and water- at the balance methods, and precipitation for 1976 Silverbell site 50 14. Evapotranspiration data gathered with the lysimeter at the Silverbell site 52 vi vii LIST OF ILLUSTRATIONS -- Continued Figure Page 15. Precipitation record for Silverbell site in 1977 and 1978 53 16. Soil-water potential data at various depths under a creosote bush for the Silverbell site 56 17. Soil-water potential data at various depths within the lysimeter for the Silverbell site 57 18. Soil-water potential for open area at Silverbell site 58 19. Characteristic curve for Silverbell site 60 20. Comparison of evapotranspiration rates from the lysimeter to evapotranspiration rates determined using psychrometer data 64 LIST OF TABLES Table Page 1. Energy balance and diffusion resistance of the creosote bush 44 2. Evapotranspiration rates for selected periods without rainfall 49 3. Computations of a soil characteristic curve for the Silverbell site 61 4. Calculation of evapotranspiration rates using soil- water potential data and a soil characteristic curve . 62 5. Maximum evapotranspiration rates 67 viii ABSTRACT The natural evapotranspiration rate in a desert environment was studied at a site near Silverbell, Arizona, as part of the Desert Biome Program. Evapotranspiration rates were measured directly using a mono- lith weighing lysimeter. Indirect determination of evapotranspiration rates by a water-balance analysis was made using two different methods to measure soil moisture. The soil moisture data were initially gathered directly using neutron probes, but during 1977 soil-water potential data measured with thermocouple psychrometers were translated into soil moisture information using a soil characteristic curve developed for the soil. The annual evapotranspiration rate that was measured or calcu- lated was equivalent to the natural evaporation rate from bare soils. The annual precipitation was approximately equal to the water loss due to the annual evapotranspiration with little or no change in soil mois- ture storage between years. Peak evapotranspiration rates of 3-5 mm/day occurred only after rainfall events, while during dry periods the evapo- transpiration rate approached zero. ix CHAPTER 1 INTRODUCTION An investigation of desert ecosystems was undertaken to deter- mine the natural soil moisture conditions and evapotranspiration rates, and to evaluate methods of measurement in an arid environment. This study attempted to describe in quantitative and qualitative terms the existing conditions using a weighing lysimeter, neutron probes, and thermocouple psychrometers to measure the evapotranspiration rate, soil moisture, and the soil-water potential, respectively. The site for this study is located at Silverbell, Arizona, approximately 70 km northwest of Tucson, Arizona, within the Sonoran Desert. The desert vegetation studied at the Silverbell site included creosote (Larrea tridentata) and bursage (Ambrosia deltoidea). The information gathered at this site was then correlated with another warm desert site in the Santa Rita Mountains, Arizona, and with two cold desert sites located in Curlew, Utah, and Washtucna, Washington. All sites were a part of the Desert Biome Program of the International Biological Program to study plant and water relationships in the major desert environments of the Western United States. This research, which was conducted from 1972 to 1977, was funded by the National Science Foundation and administered by Utah State University. 1 2 General Description Arid regions or deserts were defined by Meigs (1953) as an area where the precipitation is not adequate for regular crop production. Most deserts lie within 15 to 35 degrees of latitude north and south of the equator. Arid and semi-arid regions are generally located on the leeward side of the prevailing winds or so far inland that they are isolated from the moisture source provided by the oceans. While hot deserts are typical, deserts at northern latitudes or high altitudes may be quite cold. Both hot and cold deserts experience extremes in daily diurnal minimum and maximum temperatures because they lack sufficient vegetation cover to prevent the loss of heat at night and sufficient cloud cover to reflect outgoing radiation back towards the earth. The precipitation that is received yearly in arid regions is nominal, yet an individual rainfall event may be quite large and of a high intensity. Total rainfall received overall is small, but the main stress placed on vegetation is the length of time between precipitation events, which may be months or years in length. This variation of long dry periods and short-duration, high-intensity storms has a marked effect on the soil, landforms, and vegetation found in deserts. Desert soils are considered "young" soils, not from their lack of age but because the soils have generally not been leached and weathered as they would be in a more humid climate where water and vege- tation are more pronounced soil-forming factors. Desert soils will, instead, have a high salt content and little organic matter. During most of the year, the soils are extremely dry with soil suction values of 50 bars or greater. The high-intensity rainfall and lack of 3 vegetation cover will sometimes result in compaction of the soil surface layer, limiting infiltration. What moisture does infiltrate may trans- port salts which form calcareous or, in some cases, siliceous layers once the soil moisture evaporates. The low range of soil moisture normal to desert soils also means that vapor movement, heat gradients, and the soil
Recommended publications
  • Evapotranspiration in the Urban Heat Island Students Will Be Able To: Explain Transpiration in Plants
    Objectives: Evapotranspiration in the Urban Heat Island Students will be able to: explain transpiration in plants. Explain evapotranspiration in the environment Background: Objectives: Living in the desert has always been a challenge for people and other living organisms. observe transpiration by collecting water vapor Students will be able to: There is too little water and, in most cases, too much heat. As Phoenix has grown, in plastic bags, which re-condenses into liquid • observe and explain tran- the natural environment has been transformed from the native desert vegetation into water as it cools. spiration. a diverse assemblage of built materials, from buildings, to parking lots, to roadways. measure and compare changes in air tempera- • explain evapotranspira- Concrete and asphalt increase mass density and heat-storage capacity. This in turn ture due to evaporation from a wet surface vs. tion in the environment means that heat collected during the day is slowly radiated back into the environment a dry one. • measure and compare at night. The average nighttime low temperature in Phoenix has increased by 8ºF over changes in air tempera- the last 30 years. For the months of May through September, the average number of understand that evapotranspiration cools the ture due to evaporation hours per day with temperatures over 100ºF has doubled since 1948. air around plants. from a wet surface vs. a Some researchers have found that the density and diversity of plants moderate tem- relate evapotranspiration to desert landscap- dry one. peratures in neighborhoods (Stabler et al., 2005). Landscaping appears to be one way ing choices in an urban heat island.
    [Show full text]
  • Reference-Evapotranspiration-Report
    BUREAU OF METEOROLOGY REFERENCE EVAPOTRANSPIRATION CALCULATIONS C.P. Webb FEBRUARY 2010 ABBREVIATIONS ADAM Australian Data Archive for Meteorology ASCE American Society of Civil Engineers AWS Automatic Weather Station BoM Bureau of Meteorology CAHMDA Catchment-scale Hydrological Modelling and Data Assimilation CRCIF Cooperative Research Centre for Irrigation Futures FAO56-PM equation United Nations Food and Agriculture Organisation’s adapted Penman-Monteith equation recommended in Irrigation and Drainage Paper No. 56 (Allen et al. 1998) ETo Reference Evapotranspiration QLDCSC Queensland Climate Services Centre of the BoM SACSC South Australian Climate Services Centre of the BoM VICCSC Victorian Climate Services Centre of the BoM ii CONTENTS Page Abbreviations ii Contents iii Tables iv Abstract 1 Introduction 1 The FAO56-PM equation 2 Input Data 6 Missing Data 10 Pan Evaporation Data 10 References 14 Glossary 16 iii TABLES I. Accuracies of BoM weather station sensors. II. Input data required to compute parameters of the FAO56-PM equation. III. Correlation between daily evaporation data and daily ETo data. iv BUREAU OF METEOROLOGY REFERENCE EVAPOTRANSPIRATION CALCULATIONS C. P. Webb Climate Services Centre, Queensland Regional Office, Bureau of Meteorology ABSTRACT Reference evapotranspiration (ETo) data is valuable for a range of users, including farmers, hydrologists, agronomists, meteorologists, irrigation engineers, project managers, consultants and students. Daily ETo data for 399 locations in Australia will become publicly available on the Bureau of Meteorology’s (BoM’s) website (www.bom.gov.au) in 2010. A computer program developed in the South Australian Climate Services Centre of the BoM (SACSC) is used to calculate these figures daily. Calculations are made using the adapted Penman-Monteith equation recommended by the United Nations Food and Agriculture Organisation (FAO56-PM equation).
    [Show full text]
  • Transpiration Evaporation Evapotranspiration
    FAO WaPOR SUB-NATIONAL LEVEL MAPS (30M) ASSESSING THE WATER CONSUMPTION OF CROPS BEKAA, LEBANON 30M 1000 m This map shows the amount of water consumed through evapotranspiration, or the amount of Legend (water consumed, mm/day) Here, land cover classification is used to identify the spatial distribution of various crops. Legend (crop type) water released back into the air through soil evaporation and plant transpiration, per day, in Wetland Tree cover (dense) Irrigated & rainfed wheat millimetres. Timely information on water consumption represents a critical tool for improving 0.1 mm This map shows the land cover classification of the same area as the one represented in water management in agriculture and irrigation. For example, it provides an objective and the evapotranspiration map on the left. This allows for the identification of the most Grassland Orchard (dense) Other crop common information base for discussing consumption-related water quotas, or for monitoring 2.5 mm common crops grown in any area. Bare Other perennial Grapes the impact of irrigation on water resources. All data are made publicly accessible, thereby Artificial Irrigated maize Irrigated orchard (sparse) allowing for participatory planning. Further distinction between evaporation and transpiration, 5.0 mm If information from both maps, land cover and evapotranspiration, are combined, it can Fallow Irrigated potatoes as allowed by WaPOR, provides key information for reducing non-beneficial water help with setting policies to target specific problem areas, and providing farmers with Irrigated other crops 7.5 mm consumption. recommendations on which agronomic practices best suit their cropping patterns. Maize Irrigated vegetables Irrigated other perennial Potato 10 mm Irrigated orchard (dense) Orchard (sparse) Vegetables Irrigated grapes Evapotranspiration is a key component of the water cycle in agriculture and is a combination of evaporation and plant transpiration.
    [Show full text]
  • Interannual Variations of Evapotranspiration and Water Use Efficiency Over an Oasis Cropland in Arid Regions of North-Western China
    water Article Interannual Variations of Evapotranspiration and Water Use Efficiency over an Oasis Cropland in Arid Regions of North-Western China Haibo Wang 1 , Xin Li 2,3,* and Junlei Tan 1 1 Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; [email protected] (H.W.); [email protected] (J.T.) 2 National Tibetan Plateau Data Center, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China 3 CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China * Correspondence: [email protected]; Tel.: +86-931-4967-972 Received: 15 March 2020; Accepted: 22 April 2020; Published: 26 April 2020 Abstract: The efficient use of limited water resources and improving the water use efficiency (WUE) of arid agricultural systems is becoming one of the greatest challenges in agriculture production and global food security because of the shortage of water resources and increasing demand for food in the world. In this study, we attempted to investigate the interannual trends of evapotranspiration and WUE and the responses of biophysical factors and water utilization strategies over a main cropland ecosystem (i.e., seeded maize, Zea mays L.) in arid regions of North-Western China based on continuous eddy-covariance measurements. This paper showed that ecosystem WUE and canopy WUE of the maize ecosystem were 1.90 0.17 g C kg 1 H O and 2.44 0.21 g C kg 1 H O over ± − 2 ± − 2 the observation period, respectively, with a clear variation due to a change of irrigation practice.
    [Show full text]
  • Evapotranspiration and Irrigation Automatic Weather Stations and Soil Water Measurement Systems
    SOLUTION Evapotranspiration and Irrigation Automatic weather stations and soil water measurement systems RELIABLE Campbell Scientific offers preconfigured and custom evapotrans- variety of ways that help plant managers (golf course super- piration (ETo) measurement and control systems to calculate intendents, commercial farmers, horticulturists, turf specialists, water loss due to evaporation and transpiration. These measure- homeowners) determine and apply irrigation efficiently and on a ments and calculations can be distributed and displayed in a schedule that encourages plant health. MAJOR SYSTEMS Measurements Datalogger Power Communications ET107 air temperature, relative humid- telephone, cell phone ity, wind direction, wind speed, rechargeable voice-synthesized Evapotranspiration precipitation, solar radiation, soil CR1000 battery with ac or solar phone, radio short haul, Monitoring Station temperature*, soil water content* source satellite, Ethernet wind speed, wind direction, MetPRO air temperature, precipitation, BP12 12 Vdc, 12 Ah Research-Grade Meteorologi- relative humidity, barometric CR6 battery recharged with Wi-FI, radio cal Station pressure, solar radiation, soil 20 W solar panel water content Custom Station telephone, cell phone, user voice-synthesized phone Fully customized measure- user specified specified user specified radio, short haul, satellite, ment and control system Ethernet HS2 HydroSense II Handheld soil water content - AA batteries Bluetooth Soil Water Sensor HS2P HydroSense II Display soil water content - AA batteries Bluetooth with Insertion Pole *optional More info: 435.227.9120 www.campbellsci.com/eto System Features Evapotranspiration Software Our ET stations provide continuous monitoring of temperature, Our PC-based support software simplifies the entire weather moni- solar radiation, rainfall, relative humidity, and wind speed and direc- toring process, from programming to data retrieval to data display tion.
    [Show full text]
  • A Review of Surface Energy Balance Models for Estimating Actual Evapotranspiration with Remote Sensing at High Spatiotemporal Resolution Over Large Extents
    Prepared in cooperation with the International Joint Commission A Review of Surface Energy Balance Models for Estimating Actual Evapotranspiration with Remote Sensing at High Spatiotemporal Resolution over Large Extents Scientific Investigations Report 2017–5087 U.S. Department of the Interior U.S. Geological Survey Cover. Aerial imagery of an irrigation district in southern California along the Colorado River with actual evapotranspiration modeled using Landsat data https://earthexplorer.usgs.gov; https://doi.org/10.5066/F7DF6PDR. A Review of Surface Energy Balance Models for Estimating Actual Evapotranspiration with Remote Sensing at High Spatiotemporal Resolution over Large Extents By Ryan R. McShane, Katelyn P. Driscoll, and Roy Sando Prepared in cooperation with the International Joint Commission Scientific Investigations Report 2017–5087 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior RYAN K. ZINKE, Secretary U.S. Geological Survey William H. Werkheiser, Acting Director U.S. Geological Survey, Reston, Virginia: 2017 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.
    [Show full text]
  • Asce Standardized Reference Evapotranspiration Equation
    THE ASCE STANDARDIZED REFERENCE EVAPOTRANSPIRATION EQUATION Task Committee on Standardization of Reference Evapotranspiration Environmental and Water Resources Institute of the American Society of Civil Engineers January, 2005 Final Report ASCE Standardized Reference Evapotranspiration Equation Page i THE ASCE STANDARDIZED REFERENCE EVAPOTRANSPIRATION EQUATION PREPARED BY Task Committee on Standardization of Reference Evapotranspiration of the Environmental and Water Resources Institute TASK COMMITTEE MEMBERS Ivan A. Walter (chair), Richard G. Allen (vice-chair), Ronald Elliott, Daniel Itenfisu, Paul Brown, Marvin E. Jensen, Brent Mecham, Terry A. Howell, Richard Snyder, Simon Eching, Thomas Spofford, Mary Hattendorf, Derrell Martin, Richard H. Cuenca, and James L. Wright PRINCIPAL EDITORS Richard G. Allen, Ivan A. Walter, Ronald Elliott, Terry Howell, Daniel Itenfisu, Marvin Jensen ENDORSEMENTS Irrigation Association, 2004 ASCE-EWRI Task Committee Report, January, 2005 ASCE Standardized Reference Evapotranspiration Equation Page ii ABSTRACT This report describes the standardization of calculation of reference evapotranspiration (ET) as recommended by the Task Committee on Standardization of Reference Evapotranspiration of the Environmental and Water Resources Institute of the American Society of Civil Engineers. The purpose of the standardized reference ET equation and calculation procedures is to bring commonality to the calculation of reference ET and to provide a standardized basis for determining or transferring crop coefficients for agricultural and landscape use. The basis of the standardized reference ET equation is the ASCE Penman-Monteith (ASCE-PM) method of ASCE Manual 70. For the standardization, the ASCE-PM method is applied for two types of reference surfaces representing clipped grass (a short, smooth crop) and alfalfa (a taller, rougher agricultural crop), and the equation is simplified to a reduced form of the ASCE–PM.
    [Show full text]
  • Lecture 10: Transpiration and Evapotranspiration
    Lecture 10: Transpiration and Evapotranspiration Key Questions 1. What are stomata? 2. What controls the ascent of sap? 3. What controls transpiration? 4. What factors constitute evapotranspiration? 5. How does evapotranspiration control soil water storage? 6. How does logging affect streamflow? VegetationVegetation influences influences the the timing timing and and magnitude magnitude ofof streamflow streamflow in in a awatershed watershed Vegetation intercepts and stores precipitation (review Lecture 6) interception/storage The magnitude of interception and storage is determined by 1. Type and growth stage of the vegetation The magnitude of interception and storage is determined by 1. Type and growth stage of the vegetation 2. Precipitation characteristics (intensity and duration) heavy rain light rain intermittent light rain How do trees (plants) get their mass? light 6CO2 + 6H2O → C6H12O6 + 6O2 plant matter stomata range from 20 nm to 50 μm ( 20 x 10-9 to 50 x 10-6 m) plants draw CO2 in through small openings called stomata 1 square centimeter on a leaf or needle has 1000 to 100,000 stomata CO2 dissolves in a water bath in the stomata There is a continuum of water that goes all the way from the roots, through the vascular system (xylem) of the plant to the stomata. Because of the polar nature of water, it adheres to the xylem cell walls and the hydrogen bonds keep the molecules held together (cohesion) in a continuum. Because stomata are open to the atmosphere, they evaporate water. evaporation stomata As molecules leave the stomata … Flow can be on the order of 70 centimeters per minute.
    [Show full text]
  • Estimation of Evapotranspiration Across the Conterminous United States Using a Regression with Climate and Land-Cover Data1
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION Vol. 49, No. 1 AMERICAN WATER RESOURCES ASSOCIATION February 2013 ESTIMATION OF EVAPOTRANSPIRATION ACROSS THE CONTERMINOUS UNITED STATES USING A REGRESSION WITH CLIMATE AND LAND-COVER DATA1 Ward E. Sanford and David L. Selnick2 ABSTRACT: Evapotranspiration (ET) is an important quantity for water resource managers to know because it often represents the largest sink for precipitation (P) arriving at the land surface. In order to estimate actual ET across the conterminous United States (U.S.) in this study, a water-balance method was combined with a climate and land-cover regression equation. Precipitation and streamflow records were compiled for 838 watersheds for 1971-2000 across the U.S. to obtain long-term estimates of actual ET. A regression equation was developed that related the ratio ET ⁄ P to climate and land-cover variables within those watersheds. Precipitation and temperatures were used from the PRISM climate dataset, and land-cover data were used from the USGS National Land Cover Dataset. Results indicate that ET can be predicted relatively well at a watershed or county scale with readily available climate variables alone, and that land-cover data can also improve those predictions. Using the climate and land-cover data at an 800-m scale and then averaging to the county scale, maps were pro- duced showing estimates of ET and ET ⁄ P for the entire conterminous U.S. Using the regression equation, such maps could also be made for more detailed state coverages, or for other areas of the world where climate and land-cover data are plentiful.
    [Show full text]
  • Validation and Use of Satellite Remote Sensing Derived Evapotranspiration Estimates in Semi‐Arid Regions of South Africa
    VALIDATION AND USE OF SATELLITE REMOTE SENSING DERIVED EVAPOTRANSPIRATION ESTIMATES IN SEMI‐ARID REGIONS OF SOUTH AFRICA Nobuhle Patience Majozi VALIDATION AND USE OF SATELLITE REMOTE SENSING DERIVED EVAPOTRANSPIRATION ESTIMATES IN SEMI‐ ARID REGIONS OF SOUTH AFRICA DISSERTATION to obtain the degree of doctor at the University of Twente, on the authority of the rector magnificus, prof.dr. T.T.M. Palstra on account of the decision of the Doctorate Board, to be publicly defended on Friday 20 March 2020 at 14.45 hrs by Nobuhle Patience Majozi born on 29 March 1981 in Mount Frere, South Africa This dissertation has been approved by: Supervisors Prof.dr.ing. W. Verhoef A/Prof.dr.ir. C.M.M. Mannaerts Dissertation number 380 ISBN 978‐90‐365‐4984‐4 DOI 10.3990/1.9789036549844 Cover designed by Nobuhle Patience Majozi Printed by ITC printing department Copyright 2020 by Nobuhle Patience Majozi Graduation committee Chair Prof.dr.ir. A. Veldkamp Supervisors Prof.dr.ing. W. Verhoef A/Prof.dr.ir. C.M.M. Mannaerts Members Prof.dr. A.D. Nelson University of Twente Dr.ir. C. van der Tol University of Twente Prof.dr.ir. P. van der Zaag UN‐IHE & TU Delft Prof.dr.ir. Z. Bargaoui ENIT ‐ Universite El Manar, Tunis Dr. A.S. Ramoelo SanParks, Pretoria, SA Dr. R. Mathieu IRRI, Philippines In loving memory of my dearest mum, Agnes Mamase Hiyashe Summary Evapotranspiration is a key component of the hydrological cycle and has been identified as an Essential Climate Variable (ECV). It plays a critical role in the carbon‐energy‐water nexus, with latent heat flux being the largest heat sink in the atmosphere.
    [Show full text]
  • The Dynamics of Transpiration to Evapotranspiration Ratio Under Wet and Dry Canopy Conditions in a Humid Boreal Forest
    Article The Dynamics of Transpiration to Evapotranspiration Ratio under Wet and Dry Canopy Conditions in a Humid Boreal Forest Bram Hadiwijaya 1 , Steeve Pepin 2, Pierre-Erik Isabelle 1,3 and and Daniel F. Nadeau 1,* 1 CentrEau—Water Research Center, Department of Water and Civil Engineering, Université Laval, 1065 avenue de la Médecine, Québec, QC G1V 0A6, Canada; [email protected] (B.H.); [email protected] (P.-E.I.) 2 Centre de Recherche et d’Innovation sur les Végétaux, Department of Soil and Agri-Food Engineering, Université Laval, 2480 boulevard Hochelaga, Québec, QC G1V 0A6, Canada; [email protected] 3 Premier Tech, 1 avenue Premier, Rivière-du-Loup, QC G5R 6C1, Canada * Correspondence: [email protected] Received: 31 January 2020; Accepted: 19 February 2020; Published: 21 February 2020 Abstract: Humid boreal forests are unique environments characterized by a cold climate, abundant precipitation, and high evapotranspiration. Transpiration (ET), as a component of evapotranspiration (E), behaves differently under wet and dry canopy conditions, yet very few studies have focused on the dynamics of transpiration to evapotranspiration ratio (ET/E) under transient canopy wetness states. This study presents field measurements of ET/E at the Montmorency Forest, Québec, Canada: a balsam fir boreal forest that receives ∼ 1600 mm of precipitation annually (continental subarctic climate; Köppen classification subtype Dfc). Half-hourly observations of E and ET were obtained over two growing seasons using eddy-covariance and sap flow (Granier’s constant thermal dissipation) methods, respectively, under wet and dry canopy conditions. A series of calibration experiments were performed for sap flow, resulting in species-specific calibration coefficients that increased estimates of sap flux density by 34% ± 8%, compared to Granier’s original coefficients.
    [Show full text]
  • The Role of DEM Resolution and Evapotranspiration Assessment in Modeling Groundwater Resources Estimation: a Case Study in Sicily
    water Article The Role of DEM Resolution and Evapotranspiration Assessment in Modeling Groundwater Resources Estimation: A Case Study in Sicily Iolanda Borzì * , Brunella Bonaccorso and Giuseppe Tito Aronica Department of Engineering, University of Messina, Villaggio S. Agata, 98166 Messina, Italy; [email protected] (B.B.); [email protected] (G.T.A.) * Correspondence: [email protected] Received: 15 July 2020; Accepted: 20 October 2020; Published: 23 October 2020 Abstract: The reliability of hydrological response simulated by distributed hydrological models in river basins with complex topographies strictly relies on the adopted digital elevation model (DEM) resolution. Furthermore, when the objective is to investigate hydrologic processes over a longer period, including both wet and dry conditions, the choice of a proper model for estimating actual evapotranspiration can play a key role in water resources assessment. When dealing with groundwater-fed catchment, these aspects directly reflect on water balance simulations and consequentially on groundwater resource quantification, which is fundamental for effective water resources planning and management at the river basin scale. In the present study, a DEM-based inverse hydrogeological balance method is applied to estimate the active mean annual recharge of the northern Etna groundwater system within the upstream part of the Alcantara river basin in Sicily region (Italy). Despite this area representing a biodiversity hot-spot, as well as the main water source for a population of about 35,000 inhabitants, so far little attention has been paid to groundwater estimation, mainly due to lack of data. In this context, this work aims to improve knowledge on groundwater recharge at the annual scale in this case-study area.
    [Show full text]