31112 De Teelt En Broei Van Zantedeschia Binnenwerk.Indd

Total Page:16

File Type:pdf, Size:1020Kb

31112 De Teelt En Broei Van Zantedeschia Binnenwerk.Indd De teelt en broei van Zantedeschia Peter Knippels Colofon Auteur Peter Knippels Redactie Kristal Tekst- en communicatiebureau, Marga Winnubst Ontwerp en opmaak Buro Gom, Jeroen Reith Fotoverantwoording Stan van Oers: omslag, 1.15, 2.1 / Peter Knippels: 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11, 1.12, 1.13, 4.1, 4.4 / IBC: 1.14, 1.16, 3.2b, 3.5, 5.1, 7.8, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.9, 10.1, 10.2, 10.3, 10.4 / Kapiteyn BV: 3.2a, 3.2c, 3.3b, 9.7 / Huijg Breezand BV: 3.3a, 3.4, 7.7 / KAVB: 4.5, 8.6 / Machteld van der Meulen: 4.2, 6.1, 6.3, 6.4, 7.4 / Rick van Zelst: 4.3 / Theo de Geus: 4.6 / Teeuwen en Zonen B.V.: 4.8, 4.9 / Ontwikkelcentrum 5.2, 6.1 / Wageningen University & Research (WUR): 5.3, 7.1, 7.2, 7.3, 8.3 / GMN B.V.: 5.4 / Sercom: 7.5, 7.6 / Vermaire Breezand: 8.2 / onbekend: 8.4, 8.5, 8.7 / Vreugdenhil bulbs & plants: 10.5. Copyright 2019. Niets uit deze uitgave mag worden verveelvoudigd, opgeslagen in een geautomatiseerd gegevensbestand of openbaar gemaakt worden in enige vorm of op enige wijze, hetzij elektronisch, mechanisch of door fotokopieën, opname, of op enige andere manier, zonder voorafgaande schriftelijke toestemming van Stichting Bollenacademie. Voorwoord Het gewas Zantedeschia is een relatieve nieuwkomer in de Nederlandse bloembol- lensector. Tulpen, narcissen en hyacinten worden al sinds de 19e eeuw commercieel geteeld en lelies vanaf de jaren 30 van de 20e eeuw. Het gewas Zantedeschia, in de volksmond ook nog wel calla genoemd, heeft in de jaren 80 van de 20e eeuw zijn intrede gedaan. Dankzij de enorme inzet van de bedrijven in de keten is Zantedeschia uitgegroeid tot een volwassen onderdeel van de sector. In een periode van nog geen 30 jaar is veel kennis ontwikkeld op alle gebieden, van veredeling tot en met broeierij van snijbloemen of potplanten. En de kennisontwikkeling staat niet stil. Er zijn op dit moment slechts enkele tientallen personen die de teelt van Zantedeschia echt in de vingers hebben. Het is topsport om uitgangsmateriaal op te kweken tot een kant-en-klaar product, of dat nu een knol voor opplant in de tuin is, een snijbloem of een bloeiende potplant. De ondernemers leren iedere dag weer over hun producten en staan steeds weer voor nieuwe uitdagingen. De kennis over Zantedeschia was tot nu niet terug te vinden in boeken, maar zat alleen in de hoofden van de mensen die iedere dag bezig zijn met dit mooie product. Daarom is het nu tijd om de bestaande kennis vast te leggen. Stichting Bollenacademie is in 2016 gestart met het project Studiebol met financie- ring van Colland Arbeidsmarkt. In dit project wordt kennis vastgelegd en verspreid, gericht op zowel werkenden als studenten. De teelt en broei van Zantedeschia, het boek dat u nu in handen heeft, is daarvan een resultaat. Dit boek is geschreven op basis van de kennis en inzichten van vandaag de dag. Het boek past geheel in de lijn van de eerder uitgeven boeken De teelt van tulpen, De broei van tulpen, De teelt van lelies, De broei van lelies, De teelt en broei van hyacinten en De teelt en broei van narcis- sen. In het boek Ziekten en plagen bij bloembollen, eveneens verschenen als onderdeel van het project Studiebol, is ook een hoofdstuk over Zantedeschia opgenomen. Veel mensen uit het vak hebben aan dit boek meegewerkt. Zonder anderen tekort te willen doen, wil ik de volgende personen in het bijzonder bedanken: Sam van Egmond, Tim Kapiteijn, John Kapiteijn, Jeroen Onderwater en Edwin Smit voor hun bijdragen aan de inhoud van het boek; Marga Winnubst voor de redactie; Stan van Oers voor de begeleiding vanuit het project Studiebol; en natuurlijk auteur Peter Knippels voor zijn kennis en inzet om van dit boek een succes te maken. André Hoogendijk, voorzitter Stichting Bollenacademie Hillegom, december 2018 3 4 Stichting Bollenacademie Stichting Bollenacademie is een samenwerkingsverband van bedrijfsleven, onder- wijs, onderzoek en teeltadvies met als doelen een goed scholingsaanbod te realiseren voor studenten en werkenden, het reguliere bloembollenonderwijs verder te ontwik- kelen en de instroom in het onderwijs en de deelname aan scholing voor werkenden in de sector te vergroten. In het bestuur van Stichting Bollenacademie zijn de volgende partijen vertegenwoor- digd: Koninklijke Algemeene Vereeniging voor Bloembollencultuur, Anthos, Clusius College, Wellantcollege en Wageningen University & Research. In de adviesraad van Stichting Bollenacademie zijn naast deze vijf partijen ook de volgende organisaties vertegenwoordigd: Aeres, CITAVERDE College, CNV Vakmensen, Delphy, FNV, HAS Hogeschool, Hogeschool Inholland, Hogeschool Van Hall Larenstein, LTO Nederland en Nordwin College. Stichting Bollenacademie beheert een website met kennis en informatie over de bloembollensector, zie www.bollenacademie.nl. Op de website zijn ook de digitale cursussen en de boeken te vinden die in opdracht van Stichting Bollenacademie zijn ontwikkeld. 5 Inhoud Voorwoord 3 4.3 Bemesting 39 4.3.1 Inleiding 39 1 Algemeen 8 4.3.2 Stikstofbemesting 40 1.1 Inleiding 9 4.3.3 Fosfaatbemesting 41 1.2 Genencentrum en familie 9 4.3.4 Kalibemesting 43 1.3 Introductie van het geslacht 4.3.5 Kalk 44 Zantedeschia 13 4.3.6 Magnesiumbemesting 45 1.4 Bouw van de plant 15 4.4 Planten 45 1.5 Geschiedenis van de zantede- 4.4.1 Plantgoedbehandeling 45 schiateelt 15 4.4.2 Bollen ontsmetten 45 1.6 Teeltcyclus en jaargangen 16 4.4.3 Plantdichtheid en -diepte 46 1.7 Schets van de sector: arealen, 4.5 Plantmachines 48 teeltbedrijven en teeltgebieden 17 1.8 Het sortiment 18 5 T eeltmaatregelen tijdens het 1.9 Markt en afzet 19 groeiseizoen 50 1.10 Sortimentskeuze 21 5.1 Inleiding 50 5.2 Groeiomstandigheden 50 2 Regelgeving en betrokken 5.3 Bemesten tijdens de teelt 52 instanties 23 5.4 Onkruidbestrijding 53 2.1 Inleiding 23 5.5 Selecteren 55 2.2 Registratie van cultivars 23 5.6 Ziekten, plagen en afwijkingen 2.3 Kwaliteit en fytosanitair 24 tijdens de teelt 56 2.4 Mestwetgeving 25 6 De oogstwerkzaamheden 58 3 Meerjarige teelt en veredeling 26 6.1 Inleiding 58 3.1 Inleiding 26 6.2 Planning van de oogst en 3.2 Meerjarenteelt en jaargangen 26 oogsttijdstip bepalen 58 3.3 Werkknollen en vermeerdering 28 6.3 Rooien 59 3.4 Aftelen tot leverbare knollen 31 6.4 Transport van het land 62 3.5 Veredeling 31 6.4.1 Inleiding 62 6.4.2 Transport in klein fust 62 4 Teelthandelingen 34 6.4.3 Transport in groot fust 62 4.1 Inleiding 34 6.5 Verplaatsen en stapelen van 4.2 Bodem 34 kisten 63 4.2.1 Grond 34 6.6 Legen en vullen van kisten 63 4.2.2 De bodemstructuur en het bodemleven 35 7 Drogen en bewaren 64 4.2.3 Grondbemonstering en 7.1 Inleiding 64 organische stof 37 7.2 Kwaliteit van de knollen 64 4.2.4 Onkruidbestrijding voor 7.2.1 De uitwendige kwaliteit 66 het planten 37 7.2.2 De inwendige kwaliteit 67 4.2.5 De grondbewerking 38 7.3 Fust 67 7.3.1 Klein fust 68 7.3.2 Groot fust 68 6 7.4 Drogen en bewaren 69 10 Broeierij van zantedeschia als 99 7.5 Klaarmaken voor de verkoop 72 bloeiende potplant 7.5.1 Schonen 72 10.1 Inleiding 99 7.5.2 Sorteren 72 10.2 Markt en afzet 99 7.5.3 Controleren op gezondheid, 10.3 Resultaat bepalende factoren 100 tellen en afleveren 73 10.4 Preparatie 100 10.5 Grond en bemesting 101 8 Teeltmaatregelen met effect op lange 10.6 Potmaat, knolgrootte en plant- termijn 75 diepte 101 8.1 Inleiding 75 10.7 Kasklimaat 102 8.2 Alternatieve behandelingen tegen 10.8 Watergeven 103 ziekten 75 10.9 Ziekten in de bloeiende potplan- 8.3 Bodem 75 tenbroeierij 104 8.3.1 Grondbemonstering 75 10.10 Oogsten van de potten 104 8.3.2 CEC-waarde 76 8.3.3 Organische stof in de grond 76 Verwijzingen naar websites voor meer 8.3.4 Compost 79 informatie 105 8.3.5 Groenbemesters 80 8.3.6 Bodemverbeteraars 82 8.4 Afvalstromen 83 8.5 Composteren op het eigen bedrijf 84 8.5.1 Opzetten van een compost- hoop 84 8.5.2 Composteringsproces 85 8.6 Inunderen 86 8.7 Duurzaamheid 88 8.8 Biologische teelt 89 8.8.1 Bodembiologie en niet- kerende grondbewerking 89 8.8.2 Bloeiende akkerranden en natuurinclusieve knollen- teelt 89 9 Broeierij van snijzantedeschia’s 90 9.1 Inleiding 90 9.2 Markt en afzet 91 9.3 Resultaatbepalende factoren 92 9.4 Preparatie en knolmaat 92 9.5 Grond en bemesting 93 9.6 Plantdichtheid en -diepte 94 9.7 Kasklimaat 94 9.8 Watergeven 95 9.9 Ziekten in de snijbroeierij 95 9.10 Oogsten van bloemen 97 7 1 Algemeen 1.1 Inleiding De bollenvelden en tentoonstellingen als de Lentetuin in Breezand en de Keukenhof trekken jaarlijks meer dan 1 miljoen bezoekers uit binnen- en buitenland. Een van de blikvangers op deze tentoonstellingen is zonder meer het gewas Zantedeschia. Het is een relatief jong gewas in de Nederlandse bloembollensector. De knollen worden pas vanaf de jaren 80 van de 20e eeuw op grote schaal geteeld en gebroeid in Nederland. Het gebruik van zantedeschia’s groeit wereldwijd en het is een populaire snijbloem en bol op pot. Hoewel de knollen pas recent op grote schaal geteeld en gebroeid worden, is het gewas al lang in Nederland bekend.
Recommended publications
  • Well-Known Plants in Each Angiosperm Order
    Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales
    [Show full text]
  • Ex Situ Conservation of Amorphophallus Titanum in Bogor Botanic Gardens, Indonesia
    PROS SEM NAS MASY BIODIV INDON Volume 2, Nomor 2, Desember 2016 ISSN: 2407-8050 Halaman: 219-225 DOI: 10.13057/psnmbi/m020217 Ex situ conservation of Amorphophallus titanum in Bogor Botanic Gardens, Indonesia Konservasi ex situ Amorphophallus titanum di Kebun Raya Bogor, Indonesia DWI MURTI PUSPITANINGTYAS♥, SITI ROOSITA ARIATI Centre for Plant Conservation Botanic Gardens (Bogor Botanic Gardens), Indonesian Institute of Sciences. Jl. Ir. H. Juanda No. 13 Bogor 16122, Jawa Barat. Tel./Fax. 0251-8322-187, ♥email: [email protected] Manuscript received: 3 November 2016. Revision accepted: 17 December 2016. Abstract. Puspitaningtyas DM, Ariati SR. 2016. Ex situ conservation of Amorphophallus titanum in Bogor Botanic Gardens, Indonesia. Pros Sem Nas Masy Biodiv Indon 2: 219-225. Titan Arum (Amorphophallus titanum (Becc.) Becc.) merupakan tanaman asli dan endemik Sumatera. Tumbuhan ini pertama kali ditemukan pada tahun 1878 oleh ahli botani Florentine (Italia) yang bernama Odoardo Beccari. Perbungaannya yang berukuran raksasa dianggap menarik, sehingga Kebun Raya Bogor menjadikan tumbuhan ini sebagai jenis unggulan. Titan Arum secara alami tumbuh di hutan hujan atau perkebunan/pekarangan penduduk lokal. Di alam liar, habitat alami Titan Arum telah rusak akibat tekanan jumlah penduduk yang terus meningkat, atau banyak dibabat oleh penduduk karena dianggap sebagai gulma. Selain itu, degradasi hutan akibat pembalakan liar oleh penduduk juga menjadi ancaman lain bagi habitat tumbuhan tersebut. Kebun Raya Bogor telah memainkan peranan yang penting dalam konservasi A. titanum secara ex situ. Tumbuhan ini telah dikembangkan sejak tahun 1954 sebagai upaya konservasi ex situ. Kajian ini menampilkan data sekunder A. titanum yang berasal dari database koleksi tumbuhan Kebun Raya Bogor.
    [Show full text]
  • Karyotype and Nucleic Acid Content in Zantedeschia Aethiopica Spr. and Zantedeschia Elliottiana Engl
    African Journal of Biotechnology Vol. 11(53), pp. 11604-11609, 3 July, 2012 Available online at http://www.academicjournals.org/AJB DOI:10.5897//AJB12.061 ISSN 1684–5315 ©2012 Academic Journals Full Length Research Paper Karyotype and nucleic acid content in Zantedeschia aethiopica Spr. and Zantedeschia elliottiana Engl. Bimal Kumar Ghimire1, Chang Yeon Yu2, Ha Jung Kim3 and Ill Min Chung3* 1Department of Ethnobotany and Social Medicine, Sikkim University, Gangtok- 737 102, Sikkim, India. 2Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-701, South Korea. 3Department of Applied Life Science, Konkuk University, Seoul 143-701, South Korea. Accepted 6 June, 2012 Analysis of karyotype, nucleic deoxyribonucleic acid (DNA) content and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) were performed in Zantedeschia aethiopica and Zantedeschia elliottiana. Mitotic metaphase in both species showed 2n=32. The chromosomes of both species were quite similar with medium length ranging from 1.55 ± 0.04 to 3.85 ± 0.12 µM in Z. aethiopica and 2.15 ± 0.04 to 3.90 ± 0.12 µM in Z. elliottiana. However, some differences were found in morphology and centromeric position among the chromosomes. Identification of individual chromosomes was carried out using chromosomes length, and centromeric positions. The karyotype of Z. aethiopica was determined to be 2n = 32 = 14 m + 18 sm and of Z. elliottiana to be 2n = 32 = 10 m + 22 sm. The 2C nuclear DNA content was found to be 3.72 ± 0.10 picograms (equivalent to 3638.16 mega base pairs) for Z. aethiopica and 1144.26 ± 0.05 picograms (equivalent to 1144.26 mega base pairs) for Z.
    [Show full text]
  • Amorphophallus Titanum (Titan Arum) Frequently Asked Questions
    Amorphophallus titanum (titan arum) Frequently asked questions When was the plant first introduced to Europe? The plant was first introduced to the western world by Italian botanist Odoardo Beccari who found it on an expedition in 1878 and sent seeds & corms back to Italy, which were then shared with other Botanic Gardens. Where is Titan Arum found naturally? The Titan Arum is native to the rainforests of Sumatra, one of the largest islands of Indonesia. When did it first flower in cultivation? Plants were grown at selected gardens from the first seeds collected by Odoardo Beccari, and RBGE Kew successfully grew theirs to produce the first flower in cultivation in 1889. Does it have a common name? Amorphophallus is a scientific name, derived from Ancient Greek and means ‘misshapen penis’. The plant has different common names, including ‘titan arum’ and ‘corpse flower’. How old is this plant? The seed was sown at Hortus Botanicus Leiden (in the Netherlands) in 2002 and the resultant corm (a type of tuber) was gifted to RBGE in 2003, at the size of a small orange. That makes New Reekie around 17 years old! Is it edible? This species is not known to be edible, but corms of other Amorphophallus species are used as a food source. A.konjac is known for its soluble fibre flour used to make low calorie ‘skinny noodles’. What is it related to in the plant kingdom? It is a monocot (the same as grasses), and is closely related to Monstera deliciosa (the Swiss cheese plant), Zantedeschia aethiopica (calla lily), and Spathiphyllum spp.
    [Show full text]
  • Corpse Flower Amorphophallus Titanum
    Corpse Flower Amorphophallus titanum What makes the corpse flower so special? The corpse flower is huge—it has the largest unbranched inflorescence in the world. An inflorescence is a cluster of multiple flowers that sometimes looks like a single flower. The flowers are located at the base of the spadix inside the spathe. There are hundreds of flowers in one inflorescence. How does it grow? The corpse flower stores energy in a huge underground stem called a “corm.” Each spadix year, the corm will produce either a leaf to increase the energy stores through photosynthesis or an inflorescence to produce seeds for reproduction. Since inflorescence such a large bloom requires lots of energy, it can take several years to several decades to store enough energy to bloom. The dramatic blooming process begins with the unfurling of the spathe and spathe revealing of the spadix. Once the bloom is fully open, it emits a rotting meat odor. It may remain in bloom for 24 to 48 hours, and then it will collapse quickly. What’s that smell? The corpse flower gets its name from the putrid scent it emits while in bloom. Some describe it as a combination of garlic, fish, diapers, and rotting meat. The stench serves to attract pollinators, such as carrion beetles and flies. Where in the world does the corpse flower come from? This plant is native to the tropical rainforests of Sumatra, Indonesia, and was first known to science in 1878. In their natural habitat, corpse flower plants can grow up to 12 feet tall. Can I grow one at home? Amorphophallus titanum requires very special conditions, which most home owners cannot achieve, including warm day and night temperatures, high humidity, and lots of space.
    [Show full text]
  • Titan Arum Amorphophallus Titanum
    Titan Arum Amorphophallus titanum Amorphophallus titanum (Titan arum, corpse plant) is native to the rainforests of Sumatra, Indonesia, where i ts habitat is threatened by deforestation. It has the largest unbranched flowering structure (inflorescence) of any plant. In cultivation, it generally takes 7-10 years for the first bloom. What looks like a giant flower, green on the outside and deep red- purple on the inside, is actually a modified leaf, called a spathe. The column-like structure in the middle of the plant is the spadix. Groups of small male and female flowers are located at the base Cornell’s Titan Arum Story of the spadix, hidden by the spathe surrounding it. It takes about In 2012 one of Cornell’s two mature Titan arums – named ‘Wee six weeks from the time the inflorescence first emerges until full Stinky’ by popular vote – famously bloomed for the first time. flowering. Titan arum flowerings were relatively rare at that time of that first What’s that smell? flowering, which attracted more than 10,000 visitors who stood in line for an hour or more to catch a glimpse – and get a whiff. But When the flowers are ready for pollination, the spadix emits a since then, the species has become popular in conservatories powerful odor which smells like rotting flesh. Simultaneously the around the world. Titan arum generates heat, which helps to diffuse the od or, moving it upward and advertising the bloom to pollinators far and During that first flowering, Wee Stinky was pollinated by hand wide, such as carrion flies and beetles.
    [Show full text]
  • The Genus Amorphophallus
    The Genus Amorphophallus (Titan Arums) Origin, Habit and General Information The genus Amorphophallus is well known for the famous Amorphophallus titanum , commonly known as "Titan Arum". The Titan Arum holds the plant world record for an unbranched single inflorescence. The infloresence eventually may reach up to three meters and more in height. Besides this oustanding species more than 200 Amorphophallus species have been described - and each year some more new findings are published. A more or less complete list of all validly described Amorphophallus species and many photos are available from the website of the International Aroid Society (http://www.aroid.org) . If you are interested in this fascinating genus, think about becoming a member of the International Aroid Society! The International Aroid Society is the worldwide leading society in aroids and offers a membership at a very low price and with many benefits! A different website for those interested in Amorphophallus hybrids is: www.amorphophallus-network.org This page features some awe-inspiring new hybrids, e.g. Amorphophallus 'John Tan' - an unique and first time ever cross between Amorphophallus variabilis X Amorphophallus titanum ! The majority of Amorphophallus species is native to subtropical and tropical lowlands of forest margins and open, disturbed spots in woods throughout Asia. Few species are found in Africa (e.g. Amorphophallus abyssinicus , from West to East Africa), Australia (represented by a single species only, namely Amorphophallus galbra , occuring in Queensland, North Australia and Papua New Guinea), and Polynesia respectively. Few species, such as Amorphophallus paeoniifolius (Madagascar to Polynesia), serve as a food source throughout the Asian region.
    [Show full text]
  • History and Current Status of Systematic Research with Araceae
    HISTORY AND CURRENT STATUS OF SYSTEMATIC RESEARCH WITH ARACEAE Thomas B. Croat Missouri Botanical Garden P. O. Box 299 St. Louis, MO 63166 U.S.A. Note: This paper, originally published in Aroideana Vol. 21, pp. 26–145 in 1998, is periodically updated onto the IAS web page with current additions. Any mistakes, proposed changes, or new publications that deal with the systematics of Araceae should be brought to my attention. Mail to me at the address listed above, or e-mail me at [email protected]. Last revised November 2004 INTRODUCTION The history of systematic work with Araceae has been previously covered by Nicolson (1987b), and was the subject of a chapter in the Genera of Araceae by Mayo, Bogner & Boyce (1997) and in Curtis's Botanical Magazine new series (Mayo et al., 1995). In addition to covering many of the principal players in the field of aroid research, Nicolson's paper dealt with the evolution of family concepts and gave a comparison of the then current modern systems of classification. The papers by Mayo, Bogner and Boyce were more comprehensive in scope than that of Nicolson, but still did not cover in great detail many of the participants in Araceae research. In contrast, this paper will cover all systematic and floristic work that deals with Araceae, which is known to me. It will not, in general, deal with agronomic papers on Araceae such as the rich literature on taro and its cultivation, nor will it deal with smaller papers of a technical nature or those dealing with pollination biology.
    [Show full text]
  • (Amorphophallus Paeoniifolius (Dennst.) Nicolson
    BIODIVERSITAS ISSN: 1412-033X Volume 21, Number 12, December 2020 E-ISSN: 2085-4722 Pages: 5835-5844 DOI: 10.13057/biodiv/d211247 Inflorescence morphology and development of suweg (Amorphophallus paeoniifolius (Dennst.) Nicolson TRI HANDAYANI♥, YUZAMMI, JULISASI TRI HADIAH Research Center for Plant Conservation and Botanic Gardens, Indonesian Institute of Sciences. Jl. Ir. H. Juanda 13, Bogor 16122, West Java, Indonesia. Tel./fax.: +62-251-8322187, email: [email protected] Manuscript received: 7 November 2020. Revision accepted: 27 November 2020. Abstract. Hanfayani T, Yuzammi, Hadiah JT. 2020. Inflorescence morphology and development of suweg (Amorphophallus paeoniifolius (Dennst.) Nicolson. Biodiversitas 21: 5835-5844. Inflorescence of Amorphophallus paeoniifolius (Dennst.) Nicolson consists of two main parts: spathe and spadix. Detailed information on its development, however, is not yet available. This study aimed to investigate the development and morphology of suweg’s inflorescence, to reveal the anthesis of male and female flowers, and to observe its insect visitors. The study observed 46 inflorescences, ten of which were measured for detailed developments. Inflorescences were observed from bud emergence to withering during one flowering cycle. The results showed that the flowering process included six phases which altogether required 22 to 36 days, namely the developments of inflorescence bud, cataphyll, spathe and spadix, appendix, fully bloomed inflorescence, and flowers anthesis. The inflorescence height including peduncle was 48–75 cm, spathe 19–50 cm long, spathe circle 65–176 cm, appendix 13–33 cm long, and appendix circle 45–80 cm. Three appendix forms were observed: ovate (43.48%), triangular conic (41.30%), and rounded (15.22%). Female flower anthesis occurred one day prior to male flower anthesis.
    [Show full text]
  • Titan Arum, Also Known As the Corpse Plant, Is One of the Largest Flowering Structures of Its Titan Arum Kind in the World
    The Titan Arum, also known as the Corpse Plant, is one of the largest flowering structures of its Titan Arum kind in the world. It can grow 12 ft tall and its tuber (storage root) can weigh up to 200 lbs. Amorphophallus titanum Amorphophallus titanum is native to the rainforests of Su- matra, Indonesia, where it can be found on slopes and hillsides along the edges of the forest. Not only is it uncommon in nature, but it flowers only rarely. In cultivation, it generally takes 7-10 years to bloom, and may die or flower only rarely thereafter. For example, one specimen at Kew Botanic Garden in England flowered in 1889 and did not flower again until 1926! What looks like an individual flower is actually a group of flow- ers called an inflorescence. The bell-shaped structure is a modi- fied leaf (spathe) that is green on the outside, but deep red-purple on the inside. The column-like structure (spadix) is mostly sterile tissue that is used to diffuse the scent throughout the forest to attract pollinators. The actual flowers are very small and located at the base of this column, hidden by the modified leaf. There are about 450 female flowers in a ring at the base, and 500-1,000 male flowers above them. University of Wisconsin University of What’s that smell? The inflorescence generates heat in order to help dis- When the flowers are ready for pollination, the spadix emits a perse its odor. It’s about the same temperature inside nauseating scent meant to attract carrion flies, which are attract- as we are: 98.6°F.
    [Show full text]
  • Pest Risk Assessment: Cut Flowers
    United States Department of Risk Assessment: Exemption of Agriculture Anigozanthos flavidus, Anthurium Animal and Plant Health andraeanum, Echeveria sp., Eucalyptus Inspection Service pulverulenta, Freesia alba, Gerbera Plant Protection and Quarantine jamesonii, Narcissus sp. and September 2015 Zantedeschia aethiopica from Regulated Status in the Light Brown Apple Moth Federal Quarantine Order Based on Production Practices Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine 1730 Varsity Drive, Ste. 300 Raleigh, NC 27606 LBAM Federal Quarantine Order Exemptions 1. Background From the time light brown apple moth, Epiphyas postvittana, was discovered in California in 2006, APHIS and the California Department of Food and Agriculture (CDFA) have taken steps to prevent its spread by implementing the E. postvittana Federal Domestic Quarantine Order (APHIS, 2007). This Federal Order defines quarantine areas and restricts the movement of numerous agricultural commodities. For some of the regulated commodities, the likelihood of spreading E. postvittana may be sufficiently low to justify exempting these commodities from the quarantine, based on host status and specific industry practices. Previous Plant Protection and Quarantine (PPQ) documents (PPQ, 2012a, 2012b, 2013) have led to the exemption of several commodities from the Light Brown Apple Moth (LBAM) program requirements.
    [Show full text]
  • Transcriptome Analysis of Colored Calla Lily (Zantedeschia Rehmannii Engl.) by Illumina Sequencing: De Novo Assembly, Annotation and EST-SSR Marker Development
    Transcriptome analysis of colored calla lily (Zantedeschia rehmannii Engl.) by Illumina sequencing: de novo assembly, annotation and EST-SSR marker development Zunzheng Wei1,2,*, Zhenzhen Sun3,*, Binbin Cui4, Qixiang Zhang1, Min Xiong2, Xian Wang2 and Di Zhou2 1 Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape Architecture, Beijing Forestry Univer- sity, Beijing, China 2 Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China 3 Beijing Key Laboratory of Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, China 4 Department of Biology and Chemistry, Baoding University, Baoding, Hebei, China * These authors contributed equally to this work. ABSTRACT Colored calla lily is the short name for the species or hybrids in section Aestivae of genus Zantedeschia. It is currently one of the most popular flower plants in the world due to its beautiful flower spathe and long postharvest life. However, little genomic information and few molecular markers are available for its genetic improvement. Here, de novo transcriptome sequencing was performed to produce large transcript sequences for Z. rehmannii cv. `Rehmannii' using an Illumina HiSeq 2000 instrument. More than 59.9 million cDNA sequence reads were obtained and assembled into 39,298 unigenes with an average length of 1,038 bp. Among these, 21,077 unigenes showed significant similarity to protein sequences in the non-redundant protein Submitted 23 April 2016 Accepted 29 July 2016 database (Nr) and in the Swiss-Prot, Gene Ontology (GO), Cluster of Orthologous Published 1 September 2016 Group (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases.
    [Show full text]