Label Cover Reductions for Unconditional Approximation Hardness of Constraint Satisfaction

Total Page:16

File Type:pdf, Size:1020Kb

Label Cover Reductions for Unconditional Approximation Hardness of Constraint Satisfaction Label Cover Reductions for Unconditional Approximation Hardness of Constraint Satisfaction CENNY WENNER Doctoral Thesis Stockholm, Sweden 2014 Stockholm University, ISBN 978-91-7447-997-3 SE-10691 Stockholm Akademisk avhandling som med tillstånd av Stockholms Universitet framlägges till offentlig granskning för avläggande av Filosfiedoktorsexamen i Datalogi Tors- dagen den 21:e Oktober, 2014, Klockan 13.15 i Föreläsningssal F3, Sing Sing, Kungliga Tekniska Högskolan, Lindstedtsvägen 26, Stockholm. © Cenny Wenner, October, 2014 Tryck: Universitetsservice US AB iii Abstract Combinatorial optimization problems include such common tasks as finding the quickest route to work, scheduling a maximum number of jobs to specialists, and placing bus stops so as to minimize commuter times. We restrict our attention to problems in which one is given a collection of constraints on variables with the objective of finding an assignment satisfy- ing as many constraints as possible, also known as Constraint Satisfaction Problems (CSPs). With only a few exceptions, most CSPs are NP-hard to solve optimally and we instead consider multiplicative-factor approxima- tions. In particular, a solution is a factor-c approximation if the number of constraints satisfied by the solution is at least c times the optimal number. The contributions of this thesis consist of new results demonstrating the approximation limits of CSPs in various settings. The first paper studies the hardness of ordering CSPs. In these prob- lems, one is given constraints on how items should be ordered relative to one another with the objective of ordering the given items from first to last so as to satisfy as many constraints as possible. We give improved approximation hardness results for two classical ordering problems: it is NP-hard to approximate Maximum Acyclic Subgraph with a factor bet- 14 1 ter than 15 and Maximum Betweenness with a factor better than 2 . We show that there are ordering problems which are NP-hard to approximate with any factor that is better than the expected value of random assign- ments, and that there are ordering problems which are arbitrarily hard to approximate. The second paper investigates when collections of simultaneously-sat- isfiable constraints are hard to approximate. It is known that Gaussian elimination can efficiently find exact solutions for satisfiable collections of so-called parity constraints. We show that whenever constraints accept at least one assignment in addition to parities, then the problem is instead NP- hard to approximate noticeably better than picking random assignments. This result is an unconditional analogue of previous work relying on the d- to-1 Conjecture and we largely follow the conditional proofs with general modifications so as to eliminate parameter dependencies and ultimately the need for the conjecture. In contrast to the conditional results however, we are only able to establish the result for constraints acting on at least four variables each. The third paper considers the strong hardness property called use- lessness. This property states that if given a collection where almost all constraints are simultaneously satisfiable and one is furthermore permitted to relax the constraints to accept or reject additional assignments, then it is still NP-hard to find a solution with value significantly better than what is expected from assigning the variables randomly. Uselessness has been characterized assuming the Unique Games Conjecture while the story is less clear without it. We consider the setting where all variables appear unnegated in constraints and provide the first examples of non-trivially useless predicates assuming only P 6= NP. iv Sammanfattning Kombinatoriska optimeringsproblem inkluderar naturliga uppgifter så- som att hitta den snabbaste vägen till sitt arbetet, att schemalägga ett maximalt antal jobb bland specialister, eller att placera nya hållplatser för att minimera resenärers restid. I denna avhandling begränsar vi oss till de problem i vilket man ges en samling vilkor på variabler med målet att hitta en tilldelning av variablerna uppfyllandes så många som möjligt av vilkoren; dessa problem kallas Vilkorsuppfyllningsproblem (eng: Constraint Satisfaction Problems, CSPs). De flesta CSPs är NP- svåra att lösa optimalt och vi beaktar istället approximationer. Specifikt kallas, för 0 ≤ c ≤ 1, en lösning för en faktor-c approximation om an- talet vilkor uppfyllda av lösningen är minst c gånger det största antalet uppfyllda av någon lösning. Denna avhandling består av tre artiklar som presenterar nya resultat begränsande hurpass väl man kan approximera CSPs i diverse situationer. Den första artikeln studerar svårigheten av att approximera diverse ordningsvilkorsproblem. I dessa problem ges man en samling ordningsvil- kor som anger hur objekt skall ordnas i relation till varandra, och har som mål att ordna objekten för att uppfylla så många av ordningsvilkoren som möjligt. Vi ger förbättrade svårighetsresultat för de två mest välkända ordningsproblem – det är NP-svårt att approximera Maximum Acyklisk 14 Delgraf (eng: Maximum Acyclic Subgraph) till en faktor bättre än 15 och Maximum Mellanliggande (eng: Maximum Betweenness) bätt- 1 re än 2 . Vidare introducerar vi ett ordningsproblem som är NP-svårt att approximera till en faktor bättre än det förväntade värdet av en slump- mässig tilldelning. Slutligen bevisas det att för varje c > 0 så finns det ordningsproblem som är NP-svåra att approximera till faktor c. Artikel Två analyserar appproximerbarheten av konsistenta vilkors- mängder. För konsistenta så kallade paritetsvilkor kan man genom Gausse- limination effektivt hitta fullständiga lösningar. Vi visar att så snart vilko- ren uppfylls av åtminstonde en tilldelning utöver en paritet så är det istället NP-svårt att approximera inom en faktor märkbart bättre än slumpmässiga tilldelningar. Detta resultat var tidigare känt betingat på d-till-1 Hypote- sen och vi följer i stort det betingade beviset med allmäna modifikationer för att eliminera parameterberoende och slutligen behovet av hypotesen. Till skillnad från de betingade resultaten gäller dock vårat bevis blott för vilkor som agerar på minst fyra variabler vardera. I den tredje artikeln betraktar vi en stark svårighetsegenskap av vilkor som kallas oanvändbarhet. Denna egenskap säger att om man ges vilkor där nästan samtliga är gemensamt uppfyllbara och man tillåts förenkla vilkoren genom att gemensamt för vilkoren lägga till eller ta bort uppfyl- lande tilldelningar, så är det fortfarande NP-svårt att hitta en tilldelning med värde något bättre än slumpmässiga tilldelningar. Vi fokuserar på fal- let där variabler endast förekommer onnegerade i vilkor. Oanvändbarhet utan negationer har karakteriserats med hänsyn till Unikaspelshypotesen (eng: Unique Games Conjecture) medans i princip ingenting är känt utan hypotesen. Givet endast P 6= NP ger vi de första exemplen på vilkor som är icke-triviallt oanvändbara utan negationer. Acknowledgements As the saying goes, “You do not know what you have until it is gone” or perhaps more wisely, “Appreciate what you have before it becomes what you had”. The period of doctoral studies might be one of the most luxurious settings you can find yourself in; having lavishly ample time and intellectual freedom to ponder research puzzles of your interests, in the company of a host of like-minded indi- viduals, under the supervision of puzzle-solving sages, experiencing the benefits of both students and employees, with comparatively few responsibilities, and as a cherry on top, you travel the world to find yet more kinspeople and meet the persons behind the names which you merely read about and idealized as an undergraduate. Truly, these have been spoiled years. I count myself particularly lucky as I have had a both brilliant and support- ive advisor. From the inception of and all throughout my studies, Johan Håstad has been emphasizing the role of intuition and understanding in mathematics – non-trivial results are not found by searching blindly in the dark. As noted also by preceding students, a trip to his office always forces you to elucidate your thoughts and leave with new pointed insights. Despite his countless responsibil- ities and results, somehow Johan always makes time for his students. The approximation group has including several excellent short- or long-term researchers during my stay, all of whom have contributed with their unique in- sights and curious discussions: Ola Svensson, Mahdi Cheraghchi, Tobias Mömke, Michael Lampis, Li-Yang Tan; my fellow graduate students Lukáš Poláček and Sangxia Huang; as well as coauthors Rajsekar Manokaran and Per Austrin. Too many for me to dare name, I would also like to extend my gratitude to the members of CSC for upholding the active and delightful working environment, to the numerous friends who have imparted meaning to the fabled outside world, to my defense committee and the opponent Irit Dinur, to the Simon’s Institute for hosting unparalleled congregations in the field, and to the European Union for funding my studies and research. Select noble individuals have offered their time to comment on this work: Antonios Antoniadis, Per Austrin, Henrik Holst, Johan Håstad, Michael Minock, Ljubica Pajevic, Hannah Renner, Björn Terelius, Freddy Wenner, Henry Yuen. Though “it is not much to hang in the xmas tree”, to all the marvelous present and future inhabitants of this world. v Foreword This compilation thesis consists of two logical parts where the first part is a primer to and synopsis of the
Recommended publications
  • The Strongish Planted Clique Hypothesis and Its Consequences
    The Strongish Planted Clique Hypothesis and Its Consequences Pasin Manurangsi Google Research, Mountain View, CA, USA [email protected] Aviad Rubinstein Stanford University, CA, USA [email protected] Tselil Schramm Stanford University, CA, USA [email protected] Abstract We formulate a new hardness assumption, the Strongish Planted Clique Hypothesis (SPCH), which postulates that any algorithm for planted clique must run in time nΩ(log n) (so that the state-of-the-art running time of nO(log n) is optimal up to a constant in the exponent). We provide two sets of applications of the new hypothesis. First, we show that SPCH implies (nearly) tight inapproximability results for the following well-studied problems in terms of the parameter k: Densest k-Subgraph, Smallest k-Edge Subgraph, Densest k-Subhypergraph, Steiner k-Forest, and Directed Steiner Network with k terminal pairs. For example, we show, under SPCH, that no polynomial time algorithm achieves o(k)-approximation for Densest k-Subgraph. This inapproximability ratio improves upon the previous best ko(1) factor from (Chalermsook et al., FOCS 2017). Furthermore, our lower bounds hold even against fixed-parameter tractable algorithms with parameter k. Our second application focuses on the complexity of graph pattern detection. For both induced and non-induced graph pattern detection, we prove hardness results under SPCH, improving the running time lower bounds obtained by (Dalirrooyfard et al., STOC 2019) under the Exponential Time Hypothesis. 2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness; Theory of computation → Fixed parameter tractability Keywords and phrases Planted Clique, Densest k-Subgraph, Hardness of Approximation Digital Object Identifier 10.4230/LIPIcs.ITCS.2021.10 Related Version A full version of the paper is available at https://arxiv.org/abs/2011.05555.
    [Show full text]
  • A Geometric Approach to Betweenness
    A GEOMETRIC APPROACH TO BETWEENNESS y z BENNY CHOR AND MADHU SUDAN Abstract An input to the betweenness problem contains m constraints over n real variables p oints Each constraint consists of three p oints where one of the p oint is sp ecied to lie inside the interval dened by the other two The order of the other two p oints ie which one is the largest and which one is the smallest is not sp ecied This problem comes up in questions related to physical mapping in molecular biology In Opatrny showed that the problem of deciding whether the n p oints can b e totally ordered while satisfying the m b etweenness constraints is NPcomplete Furthermore the problem is MAX SNP complete and for every nding a total order that satises at least of the m constraints is NPhard even if all the constraints are satisable It is easy to nd an ordering of the p oints that satises of the m constraints eg by cho osing the ordering at random This pap er presents a p olynomial time algorithm that either determines that there is no feasible solution or nds a total order that satises at least of the m constraints The algorithm translates the problem into a set of quadratic inequalities and solves a semidenite relaxation of n them in R The n solution p oints are then pro jected on a random line through the origin The claimed p erformance guarantee is shown using simple geometric prop erties of the SDP solution Key words Approximation algorithm Semidenite programming NPcompleteness Compu tational biology AMS sub ject classications Q Q Intro duction An input
    [Show full text]
  • Approximating Cumulative Pebbling Cost Is Unique Games Hard
    Approximating Cumulative Pebbling Cost Is Unique Games Hard Jeremiah Blocki Department of Computer Science, Purdue University, West Lafayette, IN, USA https://www.cs.purdue.edu/homes/jblocki [email protected] Seunghoon Lee Department of Computer Science, Purdue University, West Lafayette, IN, USA https://www.cs.purdue.edu/homes/lee2856 [email protected] Samson Zhou School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA https://samsonzhou.github.io/ [email protected] Abstract P The cumulative pebbling complexity of a directed acyclic graph G is defined as cc(G) = minP i |Pi|, where the minimum is taken over all legal (parallel) black pebblings of G and |Pi| denotes the number of pebbles on the graph during round i. Intuitively, cc(G) captures the amortized Space-Time complexity of pebbling m copies of G in parallel. The cumulative pebbling complexity of a graph G is of particular interest in the field of cryptography as cc(G) is tightly related to the amortized Area-Time complexity of the Data-Independent Memory-Hard Function (iMHF) fG,H [7] defined using a constant indegree directed acyclic graph (DAG) G and a random oracle H(·). A secure iMHF should have amortized Space-Time complexity as high as possible, e.g., to deter brute-force password attacker who wants to find x such that fG,H (x) = h. Thus, to analyze the (in)security of a candidate iMHF fG,H , it is crucial to estimate the value cc(G) but currently, upper and lower bounds for leading iMHF candidates differ by several orders of magnitude. Blocki and Zhou recently showed that it is NP-Hard to compute cc(G), but their techniques do not even rule out an efficient (1 + ε)-approximation algorithm for any constant ε > 0.
    [Show full text]
  • A New Point of NP-Hardness for Unique Games
    A new point of NP-hardness for Unique Games Ryan O'Donnell∗ John Wrighty September 30, 2012 Abstract 1 3 We show that distinguishing 2 -satisfiable Unique-Games instances from ( 8 + )-satisfiable instances is NP-hard (for all > 0). A consequence is that we match or improve the best known c vs. s NP-hardness result for Unique-Games for all values of c (except for c very close to 0). For these c, ours is the first hardness result showing that it helps to take the alphabet size larger than 2. Our NP-hardness reductions are quasilinear-size and thus show nearly full exponential time is required, assuming the ETH. ∗Department of Computer Science, Carnegie Mellon University. Supported by NSF grants CCF-0747250 and CCF-0915893, and by a Sloan fellowship. Some of this research performed while the author was a von Neumann Fellow at the Institute for Advanced Study, supported by NSF grants DMS-083537 and CCF-0832797. yDepartment of Computer Science, Carnegie Mellon University. 1 Introduction Thanks largely to the groundbreaking work of H˚astad[H˚as01], we have optimal NP-hardness of approximation results for several constraint satisfaction problems (CSPs), including 3Lin(Z2) and 3Sat. But for many others | including most interesting CSPs with 2-variable constraints | we lack matching algorithmic and NP-hardness results. Take the 2Lin(Z2) problem for example, in which there are Boolean variables with constraints of the form \xi = xj" and \xi 6= xj". The largest approximation ratio known to be achievable in polynomial time is roughly :878 [GW95], whereas it 11 is only known that achieving ratios above 12 ≈ :917 is NP-hard [H˚as01, TSSW00].
    [Show full text]
  • Research Statement
    RESEARCH STATEMENT SAM HOPKINS Introduction The last decade has seen enormous improvements in the practice, prevalence, and usefulness of machine learning. Deep nets give our phones ears; matrix completion gives our televisions good taste. Data-driven articial intelligence has become capable of the dicult—driving a car on a highway—and the nearly impossible—distinguishing cat pictures without human intervention [18]. This is the stu of science ction. But we are far behind in explaining why many algorithms— even now-commonplace ones for relatively elementary tasks—work so stunningly well as they do in the wild. In general, we can prove very little about the performance of these algorithms; in many cases provable performance guarantees for them appear to be beyond attack by our best proof techniques. This means that our current-best explanations for how such algorithms can be so successful resort eventually to (intelligent) guesswork and heuristic analysis. This is not only a problem for our intellectual honesty. As machine learning shows up in more and more mission- critical applications it is essential that we understand the guarantees and limits of our approaches with the certainty aorded only by rigorous mathematical analysis. The theory-of-computing community is only beginning to equip itself with the tools to make rigorous attacks on learning problems. The sophisticated learning pipelines used in practice are built layer-by-layer from simpler fundamental statistical inference algorithms. We can address these statistical inference problems rigorously, but only by rst landing on tractable problem de- nitions. In their traditional theory-of-computing formulations, many of these inference problems have intractable worst-case instances.
    [Show full text]
  • Improving the Betweenness Centrality of a Node by Adding Links
    X Improving the Betweenness Centrality of a Node by Adding Links ELISABETTA BERGAMINI, Karlsruhe Institute of Technology, Germany PIERLUIGI CRESCENZI, University of Florence, Italy GIANLORENZO D’ANGELO, Gran Sasso Science Institute (GSSI), Italy HENNING MEYERHENKE, Institute of Computer Science, University of Cologne, Germany LORENZO SEVERINI, ISI Foundation, Italy YLLKA VELAJ, University of Chieti-Pescara, Italy Betweenness is a well-known centrality measure that ranks the nodes according to their participation in the shortest paths of a network. In several scenarios, having a high betweenness can have a positive impact on the node itself. Hence, in this paper we consider the problem of determining how much a vertex can increase its centrality by creating a limited amount of new edges incident to it. In particular, we study the problem of maximizing the betweenness score of a given node – Maximum Betweenness Improvement (MBI) – and that of maximizing the ranking of a given node – Maximum Ranking Improvement (MRI). We show 1 that MBI cannot be approximated in polynomial-time within a factor ¹1 − 2e º and that MRI does not admit any polynomial-time constant factor approximation algorithm, both unless P = NP. We then propose a simple greedy approximation algorithm for MBI with an almost tight approximation ratio and we test its performance on several real-world networks. We experimentally show that our algorithm highly increases both the betweenness score and the ranking of a given node and that it outperforms several competitive baselines. To speed up the computation of our greedy algorithm, we also propose a new dynamic algorithm for updating the betweenness of one node after an edge insertion, which might be of independent interest.
    [Show full text]
  • Limits of Approximation Algorithms: Pcps and Unique Games (DIMACS Tutorial Lecture Notes)1
    Limits of Approximation Algorithms: PCPs and Unique Games (DIMACS Tutorial Lecture Notes)1 Organisers: Prahladh Harsha & Moses Charikar arXiv:1002.3864v1 [cs.CC] 20 Feb 2010 1Jointly sponsored by the DIMACS Special Focus on Hardness of Approximation, the DIMACS Special Focus on Algorithmic Foundations of the Internet, and the Center for Computational Intractability with support from the National Security Agency and the National Science Foundation. Preface These are the lecture notes for the DIMACS Tutorial Limits of Approximation Algorithms: PCPs and Unique Games held at the DIMACS Center, CoRE Building, Rutgers University on 20-21 July, 2009. This tutorial was jointly sponsored by the DIMACS Special Focus on Hardness of Approximation, the DIMACS Special Focus on Algorithmic Foundations of the Internet, and the Center for Computational Intractability with support from the National Security Agency and the National Science Foundation. The speakers at the tutorial were Matthew Andrews, Sanjeev Arora, Moses Charikar, Prahladh Harsha, Subhash Khot, Dana Moshkovitz and Lisa Zhang. We thank the scribes { Ashkan Aazami, Dev Desai, Igor Gorodezky, Geetha Jagannathan, Alexander S. Kulikov, Darakhshan J. Mir, Alan- tha Newman, Aleksandar Nikolov, David Pritchard and Gwen Spencer for their thorough and meticulous work. Special thanks to Rebecca Wright and Tami Carpenter at DIMACS but for whose organizational support and help, this workshop would have been impossible. We thank Alantha Newman, a phone conversation with whom sparked the idea of this workshop. We thank the Imdadullah Khan and Aleksandar Nikolov for video recording the lectures. The video recordings of the lectures will be posted at the DIMACS tutorial webpage http://dimacs.rutgers.edu/Workshops/Limits/ Any comments on these notes are always appreciated.
    [Show full text]
  • How to Play Unique Games Against a Semi-Random Adversary
    How to Play Unique Games against a Semi-Random Adversary Study of Semi-Random Models of Unique Games Alexandra Kolla Konstantin Makarychev Yury Makarychev Microsoft Research IBM Research TTIC Abstract In this paper, we study the average case complexity of the Unique Games problem. We propose a natural semi-random model, in which a unique game instance is generated in several steps. First an adversary selects a completely satisfiable instance of Unique Games, then she chooses an "–fraction of all edges, and finally replaces (“corrupts”) the constraints corresponding to these edges with new constraints. If all steps are adversarial, the adversary can obtain any (1 − ") satisfiable instance, so then the problem is as hard as in the worst case. In our semi-random model, one of the steps is random, and all other steps are adversarial. We show that known algorithms for unique games (in particular, all algorithms that use the standard SDP relaxation) fail to solve semi-random instances of Unique Games. We present an algorithm that with high probability finds a solution satisfying a (1 − δ) fraction of all constraints in semi-random instances (we require that the average degree of the graph is Ω(log~ k)). To this end, we consider a new non-standard SDP program for Unique Games, which is not a relaxation for the problem, and show how to analyze it. We present a new rounding scheme that simultaneously uses SDP and LP solutions, which we believe is of independent interest. Our result holds only for " less than some absolute constant. We prove that if " ≥ 1=2, then the problem is hard in one of the models, that is, no polynomial–time algorithm can distinguish between the following two cases: (i) the instance is a (1 − ") satisfiable semi–random instance and (ii) the instance is at most δ satisfiable (for every δ > 0); the result assumes the 2–to–2 conjecture.
    [Show full text]
  • Lecture 17: the Strong Exponential Time Hypothesis 1 Introduction 2 ETH, SETH, and the Sparsification Lemma
    CS 354: Unfulfilled Algorithmic Fantasies May 29, 2019 Lecture 17: The Strong Exponential Time Hypothesis Lecturer: Joshua Brakensiek Scribe: Weiyun Ma 1 Introduction We start with a recap of where we are. One of the biggest hardness assumption in history is P 6= NP, which came around in the 1970s. This assumption is useful for a number of hardness results, but often people need to make stronger assumptions. For example, in the last few weeks of this course, we have used average-case hardness assumptions (e.g. hardness of random 3-SAT or planted clique) to obtain distributional results. Another kind of results have implications on hardness of approximation. For instance, the PCP Theorem is known to be equivalent to solving some approximate 3-SAT is hard unless P=NP. We have also seen conjectures in this category that are still open, even assuming P 6= NP, such as the Unique Games Conjecture and the 2-to-2 Conjecture. Today, we are going to focus on hardness assumptions on time complexity. For example, for 3-SAT, P 6= NP only implies that it cannot be solved in polynomial time. On the other hand, the best known algorithms run in exponential time in n (the number of variables), which motivates the hardness assumption that better algorithms do not exist. This leads to conjectures known as the Exponential Time Hypothesis (ETH) and a stronger version called the Strong Exponential Time Hypothesis (SETH). Informally, ETH says that 3-SAT cannot be solved in 2o(n) time, and SETH says that k-SAT needs roughly 2n time for large k.
    [Show full text]
  • Lecture 24: Hardness Assumptions 1 Overview 2 NP-Hardness 3 Learning Parity with Noise
    A Theorist's Toolkit (CMU 18-859T, Fall 2013) Lecture 24: Hardness Assumptions December 2, 2013 Lecturer: Ryan O'Donnell Scribe: Jeremy Karp 1 Overview This lecture is about hardness and computational problems that seem hard. Almost all of the theory of hardness is based on assumptions. We make assumptions about some problems, then we do reductions from one problem to another. Then, we want to make the minimal number of assumptions necessary to show computational hardness. In fact, all work on computational complexity and hardness is essentially in designing efficient algorithms. 2 NP-Hardness A traditional assumption to make is that 3SAT is not in P or equivalently P 6= NP . From this assumption, we also see that Maximum Independent Set, for example, is not in P through a reduction. Such a reduction takes as input a 3CNF formula '. The reduction itself is an algorithm that runs in polynomial time which outputs a graph G. For the reduction to work as we want it to, we prove that if ' is satisfiable then G has an independent set of size at least some value k and if ' is not satisfiable then the maximum independent set of G has size less than k. This reduction algorithm will be deterministic. This is the basic idea behind proofs of NP -hardness. There are a few downsides to this approach. This only give you a worst-case hardness of a problem. For cryptographic purposes, it would be much better to have average-case hardness. We can think of average-case hardness as having an efficiently sampleable distribution of instances that are hard for polynomial time algorithms.
    [Show full text]
  • Counterexamples to the Low-Degree Conjecture Justin Holmgren NTT Research, Palo Alto, CA, USA [email protected] Alexander S
    Counterexamples to the Low-Degree Conjecture Justin Holmgren NTT Research, Palo Alto, CA, USA [email protected] Alexander S. Wein Courant Institute of Mathematical Sciences, New York University, NY, USA [email protected] Abstract A conjecture of Hopkins (2018) posits that for certain high-dimensional hypothesis testing problems, no polynomial-time algorithm can outperform so-called “simple statistics”, which are low-degree polynomials in the data. This conjecture formalizes the beliefs surrounding a line of recent work that seeks to understand statistical-versus-computational tradeoffs via the low-degree likelihood ratio. In this work, we refute the conjecture of Hopkins. However, our counterexample crucially exploits the specifics of the noise operator used in the conjecture, and we point out a simple way to modify the conjecture to rule out our counterexample. We also give an example illustrating that (even after the above modification), the symmetry assumption in the conjecture is necessary. These results do not undermine the low-degree framework for computational lower bounds, but rather aim to better understand what class of problems it is applicable to. 2012 ACM Subject Classification Theory of computation → Computational complexity and crypto- graphy Keywords and phrases Low-degree likelihood ratio, error-correcting codes Digital Object Identifier 10.4230/LIPIcs.ITCS.2021.75 Funding Justin Holmgren: Most of this work was done while with the Simons Institute for the Theory of Computing. Alexander S. Wein: Partially supported by NSF grant DMS-1712730 and by the Simons Collaboration on Algorithms and Geometry. Acknowledgements We thank Sam Hopkins and Tim Kunisky for comments on an earlier draft.
    [Show full text]
  • Inapproximability of Maximum Biclique Problems, Minimum $ K $-Cut And
    Inapproximability of Maximum Biclique Problems, Minimum k-Cut and Densest At-Least-k-Subgraph from the Small Set Expansion Hypothesis∗ Pasin Manurangsi† UC Berkeley May 11, 2017 Abstract The Small Set Expansion Hypothesis is a conjecture which roughly states that it is NP-hard to distinguish between a graph with a small subset of vertices whose (edge) expansion is almost zero and one in which all small subsets of vertices have expansion almost one. In this work, we prove conditional inapproximability results for the following graph problems based on this hypothesis: • Maximum Edge Biclique: given a bipartite graph G, find a complete bipartite subgraph of G that contains maximum number of edges. We show that, assuming the Small Set Expansion Hypothesis and that NP * BPP, no polynomial time algorithm approximates Maximum Edge Biclique to within a factor of n1−ε of the optimum for every constant ε> 0. • Maximum Balanced Biclique: given a bipartite graph G, find a balanced complete bipartite subgraph of G that contains maximum number of vertices. Similar to Maximum Edge Biclique, we prove that this problem is inapproximable in polynomial time to within a factor of n1−ε of the optimum for every constant ε> 0, assuming the Small Set Expansion Hypothesis and that NP * BPP. • Minimum k-Cut: given a weighted graph G, find a set of edges with minimum total weight whose removal partitions the graph into (at least) k connected components. For this problem, we prove that it is NP-hard to approximate it to within (2 − ε) factor of the optimum for every constant ε> 0, assuming the Small Set Expansion Hypothesis.
    [Show full text]