2 Aug 2020 Asymptotic Trace Formula for the Hecke Operators

Total Page:16

File Type:pdf, Size:1020Kb

2 Aug 2020 Asymptotic Trace Formula for the Hecke Operators View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by MPG.PuRe Asymptotic trace formula for the Hecke operators Junehyuk Jung Naser T. Sardari (With an appendix by Simon Marshall) Abstract Given integers m, n and k, we give an explicit formula with an optimal error term (with square root cancelation) for the Petersson trace formula involving the mth and nth Fourier coefficients of an orthonormal basis of Sk (N)∗ (the weight k newforms 1 with fixed square-free level N) provided that 4π√mn k = o k 3 . Moreover, | − | we establish an explicit formula with a power saving error term for the trace of the Hecke operator on S (N)∗ averaged over k in a short interval. By bounding the Tn∗ k second moment of the trace of n over a larger interval, we show that the trace of n T 1 T is unusually large in the range 4π√n k = o n 6 . As an application, for any fixed | − | prime p coprime to N, we show that there exists a sequence kn of weights such { } that the error term of Weyl’s law for is unusually large and violates the prediction Tp of arithmetic quantum chaos. In particular, this generalizes the result of Gamburd, Jakobson and Sarnak [GJS99, Theorem 1.4] with an improved exponent. Acknowledgments. J.J. thanks S.M. and Department of Mathematics of UW-Madison for invitation and sup- port. J.J. also thanks Sug Woo Shin, Peter Jaehyun Cho, and Matthew Young for many helpful comments. J.J. was supported by NSF grant DMS-1900993, and by Sloan Research Fellowship. S.M. was supported arXiv:1808.04015v3 [math.NT] 2 Aug 2020 by NSF grant DMS-1902173. N.T.S. was supported by NSF grant DMS-2015305 and is grateful to Max Planck Institute for Mathematics in Bonn and Institute For Advanced Study for their hospitalities and finan- cial supports. N.T.S. thanks his Ph.D. advisor Peter Sarnak for several insightful and inspiring conversations regarding the error term of the Weyl law while he was a graduate student at Princeton University. 1 Introduction In this paper, we give bounds for the error term of Weyl’s law for the Hecke eigenvalues of the family of classical holomorphic modular forms with a fixed level. We briefly describe J. Jung: Department of Mathematics, Brown University, Providence, RI 02912 USA; e-mail: june- [email protected] N. T. Sardari: The Institute For Advanced Study, Princeton, NJ 08540 USA; e-mail: [email protected] S. Marshall: Department of Mathematics, UW-Madison, Madison, WI 53706 USA; e-mail: mar- [email protected] ) Mathematics Subject Classification (2010): Primary 11F25; Secondary 11F72 1 2 Junehyuk Jung, Naser T. Sardari, (With an appendix by Simon Marshall) this family, its Weyl’s law, and known bounds and predictions on its error term. Next, we explain our results and compare them with the previous results and predictions. Let a b Γ (N) := SL (Z): c 0 (mod N) 0 c d ∈ 2 ≡ be the Hecke congruence subgroup of level N. Let Sk (N) be the space of even weight k Z modular forms of level N. It is the space of the holomorphic functions f such that ∈ az + b f =(cz + d)k f (z) cz + d a b for every Γ (N), and f converges to zero as it approaches each cusp (we have c d ∈ 0 finitely many cusps for Γ0 (N) that are associated to the orbits of Γ0 (N) acting by Möbius 1 transformations on P (Q)) [Sar90]. It is well-known that Sk (N) is a finite dimensional vector space over C, and is equipped with the Petersson inner product k dxdy f,g := f (z) g (z)y 2 . h i Γ0(N) H y Z \ Assume that n is fixed and is coprime to N. Then the nth (normalized) Hecke operator acting on S (N) is given by Tn k k 1 − k az + b (f)(z) := n 2 d− f . (1.1) Tn d adX=n b (modX d) The Hecke operators form a commuting family of self-adjoint operators with respect to the Petersson inner product, and therefore Sk (N) admits an orthonormal basis Bk,N con- sisting only of joint eigenfunctions of the Hecke operators. Any form f belonging to Bk,N is referred as a (Petersson normalized) holomorphic Hecke cusp form. Let ∞ k 1 − f (z)= ρf (n)n 2 e (nz) n=1 X be the Fourier expansion of f B at the cusp . For gcd(n, N)=1, we denote by ∈ k,N ∞ λf (n) the nth (normalized) Hecke eigenvalue of f, i.e., f = λ (n)f, Tn f and we have ρf (n)= ρf (1)λf (n) [Iwa97, p. 107]. By the celebrated result due to Deligne [Del74], we have λ (n) σ(n), (1.2) | f | ≤ for all n, where σ is the divisor function. 3 3 t We use the divisor function parameterized by t, defined by σt (n)= d|n d . When t =0, we drop 0, and use σ instead of σ0. P Asymptotic trace formula 3 Under Langlands’ philosophy, the Hecke operator is the p-adic analogue of the Tp Laplace operator, in the following sense. The eigenvalues of determine the Satake pa- Tp rameters of the associated local representation πp of GL2 (Qp) just as the Laplace eigen- value of the Maass form determines the associated local representation π of GL2 (R). ∞ Now fix a rational prime p that is coprime to N, and let 1 µk,N := δλf (p) dim (Sk (N)) f B ∈Xk,N be the spectral probability measure associated to acting on S (N). Using the Eichler– Tp k Selberg trace formula, Serre [Ser97] proved that µ converges weakly to µ as k +N k,N p → with gcd(N,p)=1, where µ is the Plancherel measure of GL (Q ) given by ∞ p 2 p 1 2 2 1 x p +1 − 4 µp (x) := dx. 1 1 2 π 2 p 2 + p− 2 x − Moreover, if we let Γ(k 1) ν := − ρ (1) 2δ , k,N (4π)k 1 | f | λf (p) − f B ∈Xk,N then it follows from the Petersson trace formula (see Section 2) that νk,N converges weakly to the semi-circle law 1 x2 µ (x) := 1 dx, ∞ π r − 4 as k + N with gcd(N,p)=1. →∞ 1.1 Quantitative rate of convergence Given two probability measures µ1 and µ2 on R, we denote the discrepancy between them by D (µ1,µ2) , where D (µ ,µ ) := sup µ (I) µ (I) : I = [a, b] R . 1 2 {| 1 − 2 | ⊂ } In [GJS99], Gamburd, Jakobson and Sarnak studied the spectrum of the elements in the group ring of SU (2), and proved 1 D (µ ,µ )= O . (1.3) k,2 p log k Moreover, [GJS99, Theorem 1.4] is equivalent to the existence of a sequence of integers kn such that →∞ 1 D (µkn,2,µp) 1 . (1.4) ≫ 2 2 kn (log kn) This is a corollary of their lower bound for the variance of the trace of the Hecke operators by varying the weight k (Theorem 1.6). 4 Junehyuk Jung, Naser T. Sardari, (With an appendix by Simon Marshall) 1.2 Bounds for the error term of Weyl’s law We now present some details regarding the philosophical analogy between Weyl’s law and µ µ . To this end, we first review Weyl’s law. Let X Rd be a bounded domain k,N → p ⊂ with smooth boundary. Let T be a positive real number, and let N (T ) be the number of Dirichlet Laplacian eigenvalues of X less than T 2 (counted with multiplicity). It was conjectured independently by Sommerfeld and Lorentz, based on the work of Rayleigh on the theory of sound, and proved by Weyl [Wey11] shortly after, that N (T )= c vol (X) T d (1 + o (1)) as λ , d →∞ d where cd is a constant depending only on d and vol (X) is the volume of X in R . This gives the distribution of the eigenvalues of the Laplace–Beltrami operator as T . As →∞ in Langlands’ philosophy, this is analogous to the convergence of µ µ giving the k,N → p distribution of the Hecke eigenvalues as k . →∞ More generally, let M d,g be a compact smooth Riemannian manifold of dimension d. Let N(T ) be the number of eigenvalues of the Laplace–Beltrami operator ∆ less − g than T 2, counted with multiplicity. Then Hörmander [Hör68] proved that d N (T )= cdvol (M) T + RM (T ) , d 1 where RM (T ) = O T − . In fact, this general estimate is sharp for the round sphere d. However, given a manifold the question of finding the optimal bound for the M = S M error term R (T ) is a very difficult problem. An analogue of R (T ) for µ µ is M m k,N → p the discrepancy D(µk,N ,µp). Remark. If M is a symmetric space, then Weyl’s law is formulated and expected to hold in great generality for families of automorphic forms [SST16, Conjecture 1]. We now restrict to the case d =2, and discuss the relation between the size of RM (T ) and the geodesic flow on the unit cotangent bundle S∗M, predicted by the correspondence principle. The two extreme behaviors that the geodesic flow can have are being chaotic or completely integrable, and in these two cases the correspondence principle predicts the distribution of eigenvalues to be modeled by a large random matrix, and a Poisson process, respectively [Ber85, Ber86].
Recommended publications
  • An Introduction to the Trace Formula
    Clay Mathematics Proceedings Volume 4, 2005 An Introduction to the Trace Formula James Arthur Contents Foreword 3 Part I. The Unrefined Trace Formula 7 1. The Selberg trace formula for compact quotient 7 2. Algebraic groups and adeles 11 3. Simple examples 15 4. Noncompact quotient and parabolic subgroups 20 5. Roots and weights 24 6. Statement and discussion of a theorem 29 7. Eisenstein series 31 8. On the proof of the theorem 37 9. Qualitative behaviour of J T (f) 46 10. The coarse geometric expansion 53 11. Weighted orbital integrals 56 12. Cuspidal automorphic data 64 13. A truncation operator 68 14. The coarse spectral expansion 74 15. Weighted characters 81 Part II. Refinements and Applications 89 16. The first problem of refinement 89 17. (G, M)-families 93 18. Localbehaviourofweightedorbitalintegrals 102 19. The fine geometric expansion 109 20. Application of a Paley-Wiener theorem 116 21. The fine spectral expansion 126 22. The problem of invariance 139 23. The invariant trace formula 145 24. AclosedformulaforthetracesofHeckeoperators 157 25. Inner forms of GL(n) 166 Supported in part by NSERC Discovery Grant A3483. c 2005 Clay Mathematics Institute 1 2 JAMES ARTHUR 26. Functoriality and base change for GL(n) 180 27. The problem of stability 192 28. Localspectraltransferandnormalization 204 29. The stable trace formula 216 30. Representationsofclassicalgroups 234 Afterword: beyond endoscopy 251 References 258 Foreword These notes are an attempt to provide an entry into a subject that has not been very accessible. The problems of exposition are twofold. It is important to present motivation and background for the kind of problems that the trace formula is designed to solve.
    [Show full text]
  • Applications of the Trace Formula
    Proceedings of Symposia in Pure Mathematics Volume 61 (1997), pp. 413–431 Applications of the Trace Formula A. W. Knapp and J. D. Rogawski This paper is an introduction to some ways that the trace formula can be applied to proving global functoriality. We rely heavily on the ideas and techniques in [Kn1], [Kn2], and [Ro4] in this volume. To address functoriality with the help of the trace formula, one compares the trace formulas for two different groups. In particular the trace formula for a single group will not be enough, and immediately the analysis has to be done in an adelic setting. The idea is to show that the trace formulas for two different groups are equal when applied respectively to suitably matched functions. The actual matching is a problem in local harmonic analysis, often quite difficult and as yet not solved in general. The equality of the trace formulas and some global analysis allow one to prove cases of functoriality of automorphic representations. We discuss three examples in the first three sections—the Jacquet-Langlands correspondence, existence of automorphic induction in a special case, and aspects of base change. A feature of this kind of application is that it is often some variant of the trace formula that has to be used. In our applications we use the actual trace formula in the first example, a trace formula that incorporates an additional operator in the second example, and a “twisted trace formula” in the third example. The paper [Ja] in this volume describes a “relative trace formula” in this context, and [Ar2] describes the need for a “stable trace formula” and a consideration of “endoscopy.” See [Ar-Cl], [Bl-Ro], [Lgl-Ra], [Ra], and [Ro2] for some advanced applications.
    [Show full text]
  • Remarks on Codes from Modular Curves: MAGMA Applications
    Remarks on codes from modular curves: MAGMA applications∗ David Joyner and Salahoddin Shokranian 3-30-2004 Contents 1 Introduction 2 2 Shimura curves 3 2.1 Arithmeticsubgroups....................... 3 2.2 Riemannsurfacesasalgebraiccurves . 4 2.3 An adelic view of arithmetic quotients . 5 2.4 Hecke operators and arithmetic on X0(N) ........... 8 2.5 Eichler-Selbergtraceformula. 10 2.6 The curves X0(N)ofgenus1 .................. 12 3 Codes 14 3.1 Basicsonlinearcodes....................... 14 3.2 SomebasicsonAGcodes. 16 arXiv:math/0403548v1 [math.NT] 31 Mar 2004 3.3 SomeestimatesonAGcodes. 17 4 Examples 19 4.1 Weight enumerators of some elliptic codes . 20 4.2 Thegeneratormatrix(apr´esdesGoppa) . 22 5 Concluding comments 24 ∗This paper is a modification of the paper [JS]. Here we use [MAGMA], version 2.10, instead of MAPLE. Some examples have been changed and minor corrections made. MSC 2000: 14H37, 94B27,20C20,11T71,14G50,05E20,14Q05 1 1 INTRODUCTION 2 1 Introduction Suppose that V is a smooth projective variety over a finite field k. An important problem in arithmetical algebraic geometry is the calculation of the number of k-rational points of V , V (k) . The work of Goppa [G] and others have shown its importance in geometric| | coding theory as well. We refer to this problem as the counting problem. In most cases it is very hard to find an explicit formula for the number of points of a variety over a finite field. When the variety is a “Shimura variety” defined by certain group theoret- ical conditions (see 2 below), methods from non-abelian harmonic analysis on groups can be used§ to find an explicit solution for the counting problem.
    [Show full text]
  • Scientific Report for 2013
    Scientific Report for 2013 Impressum: Eigent¨umer,Verleger, Herausgeber: The Erwin Schr¨odingerInternational Institute for Mathematical Physics - U of Vienna (DVR 0065528), Boltzmanngasse 9, A-1090 Vienna. Redaktion: Goulnara Arzhantseva, Joachim Schwermer. Supported by the Austrian Federal Min- istry of Science and Research (BMWF) through the U of Vienna. Contents Preface 3 The Institute and its Mission in 2013 . 3 Scientific activities in 2013 . 4 The ESI in 2013 . 6 Scientific Reports 7 Main Research Programmes . 7 Teichm¨ullerTheory . 7 The Geometry of Topological D-branes, Categories, and Applications . 11 Jets and Quantum Fields for LHC and Future Colliders . 18 GEOQUANT 2013 . 25 Forcing, Large Cardinals and Descriptive Set Theory . 28 Heights in Diophantine Geometry, Group Theory and Additive Combinatorics . 31 Workshops organized independently of the Main Programmes . 36 ESI Anniversary - Two Decades at the Interface of Mathematics and Physics The [Un]reasonable Effectiveness of Mathematics in the Natural Sciences . 36 Word maps and stability of representations . 38 Complexity and dimension theory of skew products systems . 42 Advances in the theory of automorphic forms and their L-functions . 44 Research in Teams . 51 Marcella Hanzer and Goran Muic: Eisenstein Series . 51 Vladimir N. Remeslennikov et al: On the first-order theories of free pro-p groups, group extensions and free product groups . 53 Raimar Wulkenhaar et al: Exactly solvable quantum field theory in four dimensions . 57 Jan Spakula et al: Nuclear dimension and coarse geometry . 60 Alan Carey et al: Non-commutative geometry and spectral invariants . 62 Senior Research Fellows Programme . 64 Vladimir Korepin: The Algebraic Bethe Ansatz . 64 Simon Scott: Logarithmic TQFT, torsion, and trace invariants .
    [Show full text]
  • Langlands Program, Trace Formulas, and Their Geometrization
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 50, Number 1, January 2013, Pages 1–55 S 0273-0979(2012)01387-3 Article electronically published on October 12, 2012 LANGLANDS PROGRAM, TRACE FORMULAS, AND THEIR GEOMETRIZATION EDWARD FRENKEL Notes for the AMS Colloquium Lectures at the Joint Mathematics Meetings in Boston, January 4–6, 2012 Abstract. The Langlands Program relates Galois representations and auto- morphic representations of reductive algebraic groups. The trace formula is a powerful tool in the study of this connection and the Langlands Functorial- ity Conjecture. After giving an introduction to the Langlands Program and its geometric version, which applies to curves over finite fields and over the complex field, I give a survey of my recent joint work with Robert Langlands and NgˆoBaoChˆau on a new approach to proving the Functoriality Conjecture using the trace formulas, and on the geometrization of the trace formulas. In particular, I discuss the connection of the latter to the categorification of the Langlands correspondence. Contents 1. Introduction 2 2. The classical Langlands Program 6 2.1. The case of GLn 6 2.2. Examples 7 2.3. Function fields 8 2.4. The Langlands correspondence 9 2.5. Langlands dual group 10 3. The geometric Langlands correspondence 12 3.1. LG-bundles with flat connection 12 3.2. Sheaves on BunG 13 3.3. Hecke functors: examples 15 3.4. Hecke functors: general definition 16 3.5. Hecke eigensheaves 18 3.6. Geometric Langlands correspondence 18 3.7. Categorical version 19 4. Langlands functoriality and trace formula 20 4.1.
    [Show full text]
  • The Trace Formula and Its Applications: an Introduction to the Work of James Arthur
    Canad. Math. Bull. Vol. 44 (2), 2001 pp. 160–209 The Trace Formula and Its Applications: An Introduction to the Work of James Arthur Robert P. Langlands I balanced all, brought all to mind, An Irish airman foresees his death W. B. Yeats In May, 1999 James Greig Arthur, University Professor at the University of Toronto was awarded the Canada Gold Medal by the National Science and Engineering Re- search Council. This is a high honour for a Canadian scientist, instituted in 1991 and awarded annually, but not previously to a mathematician, and the choice of Arthur, although certainly a recognition of his great merits, is also a recognition of the vigour of contemporary Canadian mathematics. Although Arthur’s name is familiar to most mathematicians, especially to those with Canadian connections, the nature of his contributions undoubtedly remains obscure to many, for they are all tied in one way or another to the grand project of developing the trace formula as an effective tool for the study, both analytic and arithmetic, of automorphic forms. From the time of its introduction by Selberg, the importance of the trace formula was generally accepted, but it was perhaps not until Wiles used results obtained with the aid of the trace formula in the demonstration of Fermat’s theorem that it had any claims on the attention of mathematicians—or even number theorists—at large. Now it does, and now most mathematicians are willing to accept it in the context in which it has been developed by Arthur, namely as part of representation theory.
    [Show full text]
  • The Role of the Ramanujan Conjecture in Analytic Number Theory
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 50, Number 2, April 2013, Pages 267–320 S 0273-0979(2013)01404-6 Article electronically published on January 14, 2013 THE ROLE OF THE RAMANUJAN CONJECTURE IN ANALYTIC NUMBER THEORY VALENTIN BLOMER AND FARRELL BRUMLEY Dedicated to the 125th birthday of Srinivasa Ramanujan Abstract. We discuss progress towards the Ramanujan conjecture for the group GLn and its relation to various other topics in analytic number theory. Contents 1. Introduction 267 2. Background on Maaß forms 270 3. The Ramanujan conjecture for Maaß forms 276 4. The Ramanujan conjecture for GLn 283 5. Numerical improvements towards the Ramanujan conjecture and applications 290 6. L-functions 294 7. Techniques over Q 298 8. Techniques over number fields 302 9. Perspectives 305 J.-P. Serre’s 1981 letter to J.-M. Deshouillers 307 Acknowledgments 313 About the authors 313 References 313 1. Introduction In a remarkable article [111], published in 1916, Ramanujan considered the func- tion ∞ ∞ Δ(z)=(2π)12e2πiz (1 − e2πinz)24 =(2π)12 τ(n)e2πinz, n=1 n=1 where z ∈ H = {z ∈ C |z>0} is in the upper half-plane. The right hand side is understood as a definition for the arithmetic function τ(n) that nowadays bears Received by the editors June 8, 2012. 2010 Mathematics Subject Classification. Primary 11F70. Key words and phrases. Ramanujan conjecture, L-functions, number fields, non-vanishing, functoriality. The first author was supported by the Volkswagen Foundation and a Starting Grant of the European Research Council. The second author is partially supported by the ANR grant ArShiFo ANR-BLANC-114-2010 and by the Advanced Research Grant 228304 from the European Research Council.
    [Show full text]
  • Kuznetsov Trace Formula and the Distribution of Fourier Coefficients
    A GL(3) Kuznetsov Trace Formula and the Distribution of Fourier Coefficients of Maass Forms Jo~ao Leit~aoGuerreiro Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 c 2016 Jo~aoLeit~aoGuerreiro All Rights Reserved ABSTRACT A GL(3) Kuznetsov Trace Formula and the Distribution of Fourier Coefficients of Maass Forms Jo~ao Leit~aoGuerreiro We study the problem of the distribution of certain GL(3) Maass forms, namely, we obtain a Weyl's law type result that characterizes the distribution of their eigenvalues, and an orthogonality relation for the Fourier coefficients of these Maass forms. The approach relies on a Kuznetsov trace formula on GL(3) and on the inversion formula for the Lebedev-Whittaker transform. The family of Maass forms being studied has zero density in the set of all GL(3) Maass forms and contains all self-dual forms. The self-dual forms on GL(3) can also be realised as symmetric square lifts of GL(2) Maass forms by the work of Gelbart-Jacquet. Furthermore, we also establish an explicit inversion formula for the Lebedev-Whittaker transform, in the nonarchimedean case, with a view to applications. Table of Contents 1 Introduction 1 2 Preliminaries 6 2.1 Maass Forms for SL(2; Z) ................................. 6 2.2 Maass Forms for SL(3; Z) ................................. 8 2.3 Fourier-Whittaker Expansion . 11 2.4 Hecke-Maass Forms and L-functions . 15 2.5 Eisenstein Series and Spectral Decomposition . 18 2.6 Kloosterman Sums .
    [Show full text]
  • Selberg's Trace Formula: an Introduction
    Selberg’s Trace Formula: An Introduction Jens Marklof School of Mathematics, University of Bristol, Bristol BS8 1TW, U.K. [email protected] The aim of this short lecture course is to develop Selberg’s trace formula for a compact hyperbolic surface , and discuss some of its applications. The main motivation for our studiesM is quantum chaos: the Laplace-Beltrami oper- ator ∆ on the surface represents the quantum Hamiltonian of a particle, whose− classical dynamicsM is governed by the (strongly chaotic) geodesic flow on the unit tangent bundle of . The trace formula is currently the only avail- able tool to analyze the fineM structure of the spectrum of ∆; no individual formulas for its eigenvalues are known. In the case of more− general quan- tum systems, the role of Selberg’s formula is taken over by the semiclassical Gutzwiller trace formula [11], [7]. We begin by reviewing the trace formulas for the simplest compact man- ifolds, the circle S1 (Section 1) and the sphere S2 (Section 2). In both cases, the corresponding geodesic flow is integrable, and the trace formula is a con- sequence of the Poisson summation formula. In the remaining sections we shall discuss the following topics: the Laplacian on the hyperbolic plane and isometries (Section 3); Green’s functions (Section 4); Selberg’s point pair in- variants (Section 5); The ghost of the sphere (Section 6); Linear operators on hyperbolic surfaces (Section 7); A trace formula for hyperbolic cylinders and poles of the scattering matrix (Section 8); Back to general hyperbolic surfaces (Section 9); The spectrum of a compact surface, Selberg’s pre-trace and trace formulas (Section 10); Heat kernel and Weyl’s law (Section 11); Density of closed geodesics (Section 12); Trace of the resolvent (Section 13); Selberg’s zeta function (Section 14); Suggestions for exercises and further reading (Sec- tion 15).
    [Show full text]
  • Beyond Endoscopy for the Relative Trace Formula II: Global Theory
    BEYOND ENDOSCOPY FOR THE RELATIVE TRACE FORMULA II: GLOBAL THEORY YIANNIS SAKELLARIDIS Abstract. For the group G = PGL2 we perform a comparison between two relative trace formulas: on one hand, the relative trace formula of Jacquet for the quotient T \G/T , where T is a non-trivial torus, and on the other the Kuznetsov trace formula (involving Whittaker periods), applied to non-standard test functions. This gives a new proof of the celebrated result of Waldspurger on toric periods, and suggests a new way of comparing trace formulas, with some analogies to Langlands’ “Beyond Endoscopy” program. Contents 1. Introduction. 1 Part 1. Poisson summation 18 2. Generalities and the baby case. 18 3. Direct proof in the baby case 31 4. Poisson summation for the relative trace formula 41 Part 2. Spectral analysis. 54 5. Main theorems of spectral decomposition 54 6. Completion of proofs 67 7. The formula of Waldspurger 85 Appendix A. Families of locally multiplicative functions 96 Appendix B. F-representations 104 arXiv:1402.3524v3 [math.NT] 9 Mar 2017 References 107 1. Introduction. 1.1. The result of Waldspurger. The celebrated result of Waldspurger [Wal85], relating periods of cusp forms on GL2 over a nonsplit torus (against a character of the torus, but here we will restrict ourselves to the trivial character) with the central special value of the corresponding quadratic base 2010 Mathematics Subject Classification. 11F70. Key words and phrases. relative trace formula, beyond endoscopy, periods, L-functions, Waldspurger’s formula. 1 2 YIANNIS SAKELLARIDIS change L-function, was reproven by Jacquet [Jac86] using the relative trace formula.
    [Show full text]
  • 18.785 Notes
    Contents 1 Introduction 4 1.1 What is an automorphic form? . 4 1.2 A rough definition of automorphic forms on Lie groups . 5 1.3 Specializing to G = SL(2; R)....................... 5 1.4 Goals for the course . 7 1.5 Recommended Reading . 7 2 Automorphic forms from elliptic functions 8 2.1 Elliptic Functions . 8 2.2 Constructing elliptic functions . 9 2.3 Examples of Automorphic Forms: Eisenstein Series . 14 2.4 The Fourier expansion of G2k ...................... 17 2.5 The j-function and elliptic curves . 19 3 The geometry of the upper half plane 19 3.1 The topological space ΓnH ........................ 20 3.2 Discrete subgroups of SL(2; R) ..................... 22 3.3 Arithmetic subgroups of SL(2; Q).................... 23 3.4 Linear fractional transformations . 24 3.5 Example: the structure of SL(2; Z)................... 27 3.6 Fundamental domains . 28 3.7 ΓnH∗ as a topological space . 31 3.8 ΓnH∗ as a Riemann surface . 34 3.9 A few basics about compact Riemann surfaces . 35 3.10 The genus of X(Γ) . 37 4 Automorphic Forms for Fuchsian Groups 40 4.1 A general definition of classical automorphic forms . 40 4.2 Dimensions of spaces of modular forms . 42 4.3 The Riemann-Roch theorem . 43 4.4 Proof of dimension formulas . 44 4.5 Modular forms as sections of line bundles . 46 4.6 Poincar´eSeries . 48 4.7 Fourier coefficients of Poincar´eseries . 50 4.8 The Hilbert space of cusp forms . 54 4.9 Basic estimates for Kloosterman sums . 56 4.10 The size of Fourier coefficients for general cusp forms .
    [Show full text]
  • The Trace Formula and Its Applications an Introduction to the Work of James Arthur∗
    The Trace Formula and its Applications An introduction to the work of James Arthur∗ I balanced all, brought all to mind, An Irish airman foresees his death W. B. Yeats In May, 1999 James Greig Arthur, University Professor at the University of Toronto was awarded the Canada Gold Medal by the National Science and Engineering Research Council. This is a high honour for a Canadian scientist, instituted in 1991 and awarded annually, but not previously to a mathematician, and the choice of Arthur, although certainly a recognition of his great merits, is also a recognition of the vigour of contemporary Canadian mathematics. Although Arthur’s name is familiar to most mathematicians, especially to those with Canadian connections, the nature of his contributions undoubtedly remains obscure to many, for they are all tied in one way or another to the grand project of developing the trace formula as an effective tool for the study, both analytic and arithmetic, of automorphic forms. From the time of its introduction by Selberg, the importance of the trace formula was generally accepted, but it was perhaps not until Wiles used results obtained with the aid of the trace formula in the demonstration of Fermat’s theorem that it had any claims on the attention of mathematicians – or even number theorists – at large. Now it does, and now most mathematicians are willing to accept it in the context in which it has been developed by Arthur, namely as part of representation theory. The relation between representation theory and automorphic forms, or more generally the theory of numbers, has been largely misunderstood by number theorists, who are often of a strongly conservative bent.
    [Show full text]