An Atlas of Protected Hydrothermal Vents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Inferences on Potential Seamount Locations from Mid-Resolution
T. Morato and D. Pauly (eds.), Seamounts: Biodiversity and Fisheries, Page 7 INFERENCES ON POTENTIAL SEAMOUNT LOCATIONS FROM MID- RESOLUTION BATHYMETRIC DATA Adrian Kitchingman and Sherman Lai Fisheries Centre, The University of British Columbia. 2259 Lower Mall, Vancouver, B.C., V6T 1Z4, Canada [email protected]; [email protected] ABSTRACT Seamounts are underwater volcanoes that did not grow tall enough to break to the sea surface and turn into islands. Once formed, seamounts tend to gradually sink under their own weight and the subsidence of the lithosphere. The ocean floor is littered with these former seamounts, here called ‘seamounds’. Seamounts occur throughout the world's oceans, but their number (which may surpass 50,000) is difficult to estimate, even roughly, because it depends on the resolution of the bathymetric map used and the specific definition of a seamount used, i.e., the limits used to distinguish between seamounts and seamounds. Here, the locations of a subset of the seamounts of the world were identified using two algorithms relying on the depth differences between adjacent cells of a digital global elevation map distributed by the U.S. National Oceanographic and Atmospheric Agency (NOAA). The overlap of both algorithms resulted in a set of about 14,000 seamounts, but a different number would have been found had we used different thresholds. Known seamount locations supplied by NOAA and SeamountsOnline (http://seamounts.sdsc.edu) were compared against the corresponding seamounts located by the study, which led to some degree of ground-truthing. The coordinates of the seamounts identified in this study are available on the CD-ROM attached to this report, and on http://www.seaaroundus.org. -
Hydrothermal Vents. Teacher's Notes
Hydrothermal Vents Hydrothermal Vents. Teacher’s notes. A hydrothermal vent is a fissure in a planet's surface from which geothermally heated water issues. They are usually volcanically active. Seawater penetrates into fissures of the volcanic bed and interacts with the hot, newly formed rock in the volcanic crust. This heated seawater (350-450°) dissolves large amounts of minerals. The resulting acidic solution, containing metals (Fe, Mn, Zn, Cu) and large amounts of reduced sulfur and compounds such as sulfides and H2S, percolates up through the sea floor where it mixes with the cold surrounding ocean water (2-4°) forming mineral deposits and different types of vents. In the resulting temperature gradient, these minerals provide a source of energy and nutrients to chemoautotrophic organisms that are, thus, able to live in these extreme conditions. This is an extreme environment with high pressure, steep temperature gradients, and high concentrations of toxic elements such as sulfides and heavy metals. Black and white smokers Some hydrothermal vents form a chimney like structure that can be as 60m tall. They are formed when the minerals that are dissolved in the fluid precipitates out when the super-heated water comes into contact with the freezing seawater. The minerals become particles with high sulphur content that form the stack. Black smokers are very acidic typically with a ph. of 2 (around that of vinegar). A black smoker is a type of vent found at depths typically below 3000m that emit a cloud or black material high in sulphates. White smokers are formed in a similar way but they emit lighter-hued minerals, for example barium, calcium and silicon. -
Cenozoic Changes in Pacific Absolute Plate Motion A
CENOZOIC CHANGES IN PACIFIC ABSOLUTE PLATE MOTION A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI`I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN GEOLOGY AND GEOPHYSICS DECEMBER 2003 By Nile Akel Kevis Sterling Thesis Committee: Paul Wessel, Chairperson Loren Kroenke Fred Duennebier We certify that we have read this thesis and that, in our opinion, it is satisfactory in scope and quality as a thesis for the degree of Master of Science in Geology and Geophysics. THESIS COMMITTEE Chairperson ii Abstract Using the polygonal finite rotation method (PFRM) in conjunction with the hotspot- ting technique, a model of Pacific absolute plate motion (APM) from 65 Ma to the present has been created. This model is based primarily on the Hawaiian-Emperor and Louisville hotspot trails but also incorporates the Cobb, Bowie, Kodiak, Foundation, Caroline, Mar- quesas and Pitcairn hotspot trails. Using this model, distinct changes in Pacific APM have been identified at 48, 27, 23, 18, 12 and 6 Ma. These changes are reflected as kinks in the linear trends of Pacific hotspot trails. The sense of motion and timing of a number of circum-Pacific tectonic events appear to be correlated with these changes in Pacific APM. With the model and discussion presented here it is suggested that Pacific hotpots are fixed with respect to one another and with respect to the mantle. If they are moving as some paleomagnetic results suggest, they must be moving coherently in response to large-scale mantle flow. iii List of Tables 4.1 Initial hotspot locations . -
Deep-Sea Mining: the Basics
A fact sheet from June 2018 NOAA Office of Ocean Exploration and Research Deep-sea Mining: The Basics Overview The deepest parts of the world’s ocean feature ecosystems found nowhere else on Earth. They provide habitat for multitudes of species, many yet to be named. These vast, lightless regions also possess deposits of valuable minerals in rich concentrations. Deep-sea extraction technologies may soon develop to the point where exploration of seabed minerals can give way to active exploitation. The International Seabed Authority (ISA) is charged with formulating and enforcing rules for all seabed mining that takes place in waters beyond national jurisdictions. These rules are now under development. Environmental regulations, liability and financial rules, and oversight and enforcement protocols all must be written and approved within three to five years. Figure 1 Types of Deep-sea Mining Production support vessel Return pipe Riser pipe Cobalt Seafloor massive Polymetallic crusts sulfides nodules Subsurface plumes 800-2,500 from return water meters deep Deposition 1,000-4,000 meters deep 4,000-6,500 meters deep Cobalt-rich Localized plumes Seabed pump Ferromanganeseferromanganese from cutting crusts Seafloor production tool Nodule deposit Massive sulfide deposit Sediment Source: New Zealand Environment Guide © 2018 The Pew Charitable Trusts 2 The legal foundations • The United Nations Convention on the Law of the Sea (UNCLOS). Also known as the Law of the Sea Treaty, UNCLOS is the constitutional document governing mineral exploitation on the roughly 60 percent of the world seabed that lies beyond national jurisdictions. UNCLOS took effect in 1994 upon passage of key enabling amendments designed to spur commercial mining. -
S41467-020-18361-4.Pdf
ARTICLE https://doi.org/10.1038/s41467-020-18361-4 OPEN Seafloor evidence for pre-shield volcanism above the Tristan da Cunha mantle plume ✉ Wolfram H. Geissler 1 , Paul Wintersteller 2,3, Marcia Maia4, Anne Strack3, Janina Kammann5, Graeme Eagles 1, Marion Jegen6, Antje Schloemer1,7 & Wilfried Jokat 1,2 Tristan da Cunha is assumed to be the youngest subaerial expression of the Walvis Ridge hot spot. Based on new hydroacoustic data, we propose that the most recent hot spot volcanic 1234567890():,; activity occurs west of the island. We surveyed relatively young intraplate volcanic fields and scattered, probably monogenetic, submarine volcanoes with multibeam echosounders and sub-bottom profilers. Structural and zonal GIS analysis of bathymetric and backscatter results, based on habitat mapping algorithms to discriminate seafloor features, revealed numerous previously-unknown volcanic structures. South of Tristan da Cunha, we discovered two large seamounts. One of them, Isolde Seamount, is most likely the source of a 2004 submarine eruption known from a pumice stranding event and seismological analysis. An oceanic core complex, identified at the intersection of the Tristan da Cunha Transform and Fracture Zone System with the Mid-Atlantic Ridge, might indicate reduced magma supply and, therefore, weak plume-ridge interaction at present times. 1 Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 26, 27568 Bremerhaven, Germany. 2 Faculty of Geosciences, University of Bremen, Klagenfurter Str. 4, 28359 Bremen, Germany. 3 MARUM—Center of Marine Environmental Sciences, University of Bremen, Leobener Str. 8, 28359 Bremen, Germany. 4 CNRS-UBO Laboratoire Domaines Océaniques, Institut Universitaire Européen de la Mer, 29280 Plouzané, France. -
Ancient Helium and Tungsten Isotopic Signatures Preserved in Mantle Domains Least Modified by Crustal Recycling
Ancient helium and tungsten isotopic signatures preserved in mantle domains least modified by crustal recycling Matthew G. Jacksona,1, Janne Blichert-Toftb,2, Saemundur A. Halldórssonc,2, Andrea Mundl-Petermeierd, Michael Bizimise, Mark D. Kurzf, Allison A. Pricea, Sunna Harðardóttirc, Lori N. Willhitea,g, Kresten Breddamh, Thorsten W. Beckeri,j, and Rebecca A. Fischerk aDepartment of Earth Science, University of California, Santa Barbara, CA 93106-9630; bLaboratoire de Géologie de Lyon, Ecole Normale Supérieure de Lyon, CNRS, and Université de Lyon, 69007 Lyon, France; cNordVulk, Institute of Earth Sciences, University of Iceland, 102 Reykjavík, Iceland; dDepartment of Lithospheric Research, University of Vienna, 1090 Vienna, Austria; eSchool of the Earth, Ocean and Environment, University of South Carolina, Columbia, SC 29208; fDepartment of Marine Chemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; gDepartment of Geology, University of Maryland, College Park, MD 20742; hRadiation Protection, Danish Health Authority, 2300 Copenhagen, Denmark; iInstitute for Geophysics, The Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78713; jDepartment of Geological Sciences, The Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78713; and kDepartment of Earth & Planetary Sciences, Harvard University, Cambridge, MA 02138 Edited by Albrecht W. Hofmann, Max Planck Institute for Chemistry, Mainz, Germany, and approved October 22, 2020 (received for review May 14, 2020) Rare high-3He/4He signatures in ocean island basalts (OIB) erupted Sr-Nd-Pb isotopic space, these four geochemical endmembers can at volcanic hotspots derive from deep-seated domains preserved in be used to define the apices of a tetrahedron (8) (Fig. -
Biodiversity and Trophic Ecology of Hydrothermal Vent Fauna Associated with Tubeworm Assemblages on the Juan De Fuca Ridge
Biogeosciences, 15, 2629–2647, 2018 https://doi.org/10.5194/bg-15-2629-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Biodiversity and trophic ecology of hydrothermal vent fauna associated with tubeworm assemblages on the Juan de Fuca Ridge Yann Lelièvre1,2, Jozée Sarrazin1, Julien Marticorena1, Gauthier Schaal3, Thomas Day1, Pierre Legendre2, Stéphane Hourdez4,5, and Marjolaine Matabos1 1Ifremer, Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, 29280 Plouzané, France 2Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada 3Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR 6539 9 CNRS/UBO/IRD/Ifremer, BP 70, 29280, Plouzané, France 4Sorbonne Université, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France 5CNRS, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France Correspondence: Yann Lelièvre ([email protected]) Received: 3 October 2017 – Discussion started: 12 October 2017 Revised: 29 March 2018 – Accepted: 7 April 2018 – Published: 4 May 2018 Abstract. Hydrothermal vent sites along the Juan de Fuca community structuring. Vent food webs did not appear to be Ridge in the north-east Pacific host dense populations of organised through predator–prey relationships. For example, Ridgeia piscesae tubeworms that promote habitat hetero- although trophic structure complexity increased with ecolog- geneity and local diversity. A detailed description of the ical successional stages, showing a higher number of preda- biodiversity and community structure is needed to help un- tors in the last stages, the food web structure itself did not derstand the ecological processes that underlie the distribu- change across assemblages. -
Deep-Sea Life Issue 8, November 2016 Cruise News Going Deep: Deepwater Exploration of the Marianas by the Okeanos Explorer
Deep-Sea Life Issue 8, November 2016 Welcome to the eighth edition of Deep-Sea Life: an informal publication about current affairs in the world of deep-sea biology. Once again we have a wealth of contributions from our fellow colleagues to enjoy concerning their current projects, news, meetings, cruises, new publications and so on. The cruise news section is particularly well-endowed this issue which is wonderful to see, with voyages of exploration from four of our five oceans from the Arctic, spanning north east, west, mid and south Atlantic, the north-west Pacific, and the Indian Ocean. Just imagine when all those data are in OBIS via the new deep-sea node…! (see page 24 for more information on this). The photo of the issue makes me smile. Angelika Brandt from the University of Hamburg, has been at sea once more with her happy-looking team! And no wonder they look so pleased with themselves; they have collected a wonderful array of life from one of the very deepest areas of our ocean in order to figure out more about the distribution of these abyssal organisms, and the factors that may limit their distribution within this region. Read more about the mission and their goals on page 5. I always appreciate feedback regarding any aspect of the publication, so that it may be improved as we go forward. Please circulate to your colleagues and students who may have an interest in life in the deep, and have them contact me if they wish to be placed on the mailing list for this publication. -
Importance of Seamount-Like Features for Conserving Mediterranean Marine Habitats and Threatened Species
Nº. 1105 IMPORTANCE OF SEAMOUNT-LIKE FEATURES FOR CONSERVING MEDITERRANEAN MARINE HABITATS AND THREATENED SPECIES Ricardo Aguilar, Xavier Pastor, Silvia García & Pilar Marín Oceana. Leganitos, 47 - 28013 Madrid. Spain - *[email protected] INTRODUCTION HABITAT LOCATION MAIN SPECIES 16 of the more than 200 seamount‑like peaks in the Mediterranean1 have been observed using ROV. Coral reefs 4, 5, 6, 7 Lophelia pertusa, Madrepora oculata Desmophyllum dianthus, Stenocyathus vermiformis, The findings, which include carnivorous sponges, elasmobranches, coral gardens, sponge aggregations, Cold water corals All sites Caryophyllia spp. Pourtalosmilia anthophyllites, Javania caileti, coralligenous beds, as well as species new to science like the giant foraminifera Spiculosiphon oceana, Anomocora fecunda, Dendrophyllia spp. Paramuricea spp., Eunicella spp., Viminella flagellum, or new to the Mediterranean, like the scleractinian Anomocora fecunda, underscore the importance of 1, 2, 3, 4, 5, Callogorgia verticillata, Acanthogorgia spp., Placogorgia these geological features as hotspots and shelters/refuges species and habitats that are threatened, in Gorgonian/coral gardens: 6, 7, 8, 9, 11, coronata, Swiftia pallida, Muriceides lepida, Villogorgia regression, or rare in other Mediterranean areas. 12, 13, 14 bebrycoides, Bebryce mollis, Nicella granifera 1, 4, 5, 6, 7, Leiopathes glaberrima, Antipathes dichotoma, Antipathella METHODOLOGY Black corals Since 2006, Oceana has carried out six expeditions in the Mediterranean performing 129 ROV’s dives 9, 11, 15, 16 subpinnata, Parantipathes larix Isidella elongata, Pennatula spp., Pteroeides griseum, 2, 3, 4, 7, 8, over 16 seamounts, between ‑37 and ‑638 meters deep. Soft bottoms’ octocorals Virgularia mirabilis, Veretillun cynomorium, Kophobelemnon 9, 11, 14, 16 RESULTS stelliferum, Funiculina quadrangularis 2 3, 4, 5, 6, 7, Asconema setubalense, Phakellia spp., Axinella spp. -
Ocean Ridge Hydrothermal Vent Fluids Alison Marie Bray University of New Hampshire, Durham
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Winter 2001 The geochemistry of boron and lithium in mid - ocean ridge hydrothermal vent fluids Alison Marie Bray University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Bray, Alison Marie, "The eg ochemistry of boron and lithium in mid -ocean ridge hydrothermal vent fluids" (2001). Doctoral Dissertations. 46. https://scholars.unh.edu/dissertation/46 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. NOTE TO USERS This reproduction is the best copy available. __ ® UMI Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. THE GEOCHEMISTRY OF BORON AND LITHIUM IN MID-OCEAN RIDGE HYDROTHERMAL VENT FLUIDS by Alison Marie Bray Bachelor of Arts, University of San Diego, 1995 Master of Science, University of New Hampshire, 1998 Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy In Earth Sciences December 2001 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3030597 ___ ® UMI UMI Microform 3030597 Copyright 2002 by Bell & Howell Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. -
Resolving Geographic Expansion in the Marine Trophic Index
Vol. 512: 185–199, 2014 MARINE ECOLOGY PROGRESS SERIES Published October 9 doi: 10.3354/meps10949 Mar Ecol Prog Ser Contribution to the Theme Section ‘Trophodynamics in marine ecology’ FREEREE ACCESSCCESS Region-based MTI: resolving geographic expansion in the Marine Trophic Index K. Kleisner1,3,*, H. Mansour2,3, D. Pauly1 1Sea Around Us Project, Fisheries Centre, University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada 2Earth and Ocean Sciences, University of British Columbia, 2207 Main Mall, Vancouver, BC V6T 1Z4, Canada 3Present address: NOAA, Northeast Fisheries Science Center, 166 Water St., Woods Hole, MA 02543, USA ABSTRACT: The Marine Trophic Index (MTI), which tracks the mean trophic level of fishery catches from an ecosystem, generally, but not always, tracks changes in mean trophic level of an ensemble of exploited species in response to fishing pressure. However, one of the disadvantages of this indicator is that declines in trophic level can be masked by geographic expansion and/or the development of offshore fisheries, where higher trophic levels of newly accessed resources can overwhelm fishing-down effects closer inshore. Here, we show that the MTI should not be used without accounting for changes in the spatial and bathymetric reach of the fishing fleet, and we develop a new index that accounts for the potential geographic expansion of fisheries, called the region-based MTI (RMTI). To calculate the RMTI, the potential catch that can be obtained given the observed trophic structure of the actual catch is used to assess the fisheries in an initial (usu- ally coastal) region. When the actual catch exceeds the potential catch, this is indicative of a new fishing region being exploited. -
MARINE ECOLOGY – Marine Ecology - Carlos M
MARINE ECOLOGY – Marine Ecology - Carlos M. Duarte MARINE ECOLOGY Carlos M. Duarte IMEDEA (CSIC-UIB), Instituto Mediterráneo de Estudios Avanzados, Esporles, Majorca, Spain Keywords: marine ecology, sea as an ecosystem, marine biodiversity, habitats, formation of organic matters, primary producers and respiration, organic matter transformations, marine food webs,marine ecosystem profiles, services provided, human alteration of marine ecosystems. Contents 1. Introduction: The Sea as an Ecosystem 2. Marine Biodiversity and Marine Habitats 3. Marine Ecology: Definition and Goals 4. The Formation and Destruction of Organic Matter in the Sea: Primary Producers and Respiration 5. Transformations of Organic Matter: The Structure and Dynamics of Marine Food Webs 6. External Drivers of the Function and Structure of Marine Food Webs 7. Profiles of Marine Ecosystems 7.1. Benthic Ecosystems 7.2. Pelagic Ecosystems 8. Services Provided by Marine Ecosystems to Society 9. Human Alteration of Marine Ecosystems Acknowledgments Glossary Bibliography Biographical Sketch Summary: The Ocean Ecosystem The ocean is the largest biome on the biosphere, and the place where life first evolved. Life in a viscous fluid, such as seawater, imposed particular constraints on the structure and functioning of ecosystems, impinging on all relevant aspects of ecology, including the spatialUNESCO and time scales of variabilit – y,EOLSS the dispersal of organisms, and the connectivity between populations and ecosystems. The ocean ecosystem contains a greater diversitySAMPLE of life forms than the terrestrial CHAPTERS ecosystem, even though the number of marine species is almost 100-fold less than that on land, and the discovery of new life forms in the ocean is an on-going process.