Potential Future Consideration for Imaging and Blood-Based Biomarkers for Precision Medicine in Lung Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Potential Future Consideration for Imaging and Blood-Based Biomarkers for Precision Medicine in Lung Cancer 713-715 Editorial Potential future consideration for imaging and blood-based biomarkers for precision medicine in lung cancer Feng-Ming (Spring) Kong1, Fred R. Hirsch2, Mitchell Machtay3 1IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IU, USA; 2Division of Medical Oncology, School of Medicine, University of Colorado Denver, Aurora, CO, USA; 3Department of Radiation Oncology, Case Western University Hospital, Cleveland, OH, USA Correspondence to: Feng-Ming (Spring) Kong, MD, PhD. IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IU, USA. Email: [email protected]. Submitted Sep 20, 2017. Accepted for publication Sep 28, 2017. doi: 10.21037/tlcr.2017.09.11 View this article at: http://dx.doi.org/10.21037/tlcr.2017.09.11 In this issue, we have reviewed the current status of imaging past NCI Cooperative Group Programs have joined their and blood-based biomarkers in translational lung cancer collective strengths to form this new IROC group. IROC research. Clearly, some small but important initial steps assures high-quality data for clinical trials designed to have been made toward realizing precision medicine improve clinical outcomes for cancer patients worldwide. approaches for this disease, and research in this area has IROC provides five quality assurance core functions: site revealed significant opportunities to address unmet needs qualification, protocol development support, credentialing, and validate imaging and blood-based biomarkers in clinical data management (pre- and post-review), and case review. trials. The continuous success of IROC has established the very We are pleased to note that the NCI-funded National first step for implementing imaging for precision medicine Clinical Trials Network NCTN has recognized the role of in clinical trials. functional imaging in clinical trials and precision medicine. Looking into the future, we envision even greater RTOG (now NRG Oncology) began functional imaging opportunities to apply novel imaging techniques within work in 2003. The Alliance (which was created from national cooperative group trials. Built on the foundational the merger of CALGB, ACOSOG and the NCCTG) role of IROC, and early phase work from cancer centers and SWOG introduced imaging committees upon their and the Cooperative Groups, imaging for consistent formation in 2012. Most notably, the formation of ECOG- outcome assessment and as integrated biomarkers have ACRIN elevated the importance of imaging to one of its become feasible. We can now apply standardized imaging two primary missions in that new Group. procedures set by the Quantitative Imaging Biomarker To further provide integrated imaging and radiation Alliance (QIBA) and tools developed by the Quantitative quality control programs in support of the NCTN Imaging Network (QIN) to perform correlative studies for program, the NCI funded a quality assurance core facility multicenter cooperative trials to maximize the information known as Imaging and Radiation Oncology Core (IROC) gained via imaging for guidance of precision medicine. in 2014. As detailed by Xiao and Rosen in this issue (1), Specific areas of focus in lung cancer imaging-based IROC has been tasked with providing standardizing biomarkers that will push this field forward can be radiotherapy and imaging quality, data management services multidimensional. CT and positron emission tomography to enforce consistent quality among innovative technical (PET) imaging biomarkers provide complementary developments in imaging, and new therapeutic modalities knowledge to analyses from tissue biospecimens. CT for multi-institutional clinical trials. This core service scans, widely available for all clinical trial patients, can now organization provides scientific and technical expertise in be assessed with greater sophistication, using radiomic both imaging and radiotherapy quality assurance to the techniques, at for prognosis and treatment response entire clinical network. A number of QA Centers in the prediction. FDG-PET and other molecular imaging tests © Translational lung cancer research. All rights reserved. tlcr.amegroups.com Transl Lung Cancer Res 2017;6(6):713-715 714 Kong et al. Imaging and blood based biomarkers for precision medicine as robust predictors of tumor control and patient survival as integrated markers in therapeutic trials, which will lead would support the use of molecular imaging as an accepted to their eventual use as integral biomarkers in therapeutic endpoint in some therapy trials. MRI may also provide clinical trials and clinical practice. Ultimately, validated another dimension of assessment for lung and mediastinal imaging biomarkers for outcome prediction and early tissue analyses. imaging as a surrogate endpoint could reduce sample size To advance the role of imaging in precision medicine and study duration, resulting in significant reductions in cost for clinical trials, specific tasks that can be implemented, for new clinical trials. Most importantly, the development particularly in cooperative groups include (but are not of imaging biomarkers can advance precision medicine to limited to): a new horizon for improving treatment outcome in each (I) Identify imaging resources available in the group individual patient. archive system led by IROC, and develop strategies For blood-based biomarkers, we have reviewed the to maximize what can be learned from imaging roles of these biomarkers for precision treatment with an outcome correlates from the completed clinical emphasis on the methodology for identifying and utilizing trials. the biomarkers in an integrated approach for future (II) Mandate submission of high-quality imaging clinical trials and practice. Circulating tumor cells and/or data for ongoing trials. Such imaging data should circulating tumor DNA have shed some light on strategies include all scans associated with pre-treatment for selected molecular targeted systematic therapies. staging, target delineation and treatment planning, Some genomic, cytokine, and/or proteomic markers have and follow-up imaging used for assessment of furthermore shown potential in predicting treatment treatment response and tumor progression. toxicity. We must note that the field of blood-based markers (III) Validate CT, FDG-PET, and other imaging tests as is still in its infancy for guiding precision medicine. Blood robust predictors of patient survival, to support the biomarker studies—either for discovery or validation—are use of imaging as an accepted ‘surrogate’ endpoint still mostly lacking in cooperative group lung cancer studies. in later-stage therapy trials. While all of the cooperative groups have long since started (IV) Standardize the modern imaging tests needed for blood, serum, or plasma biospecimen banking for “future clinical trial eligibility for each disease site and each use”, sample quality assurance and infrastructure for such clinical trial. an important effort are still needed in all the collaborative (V) Implement prospective imaging biomarker groups. correlative studies in future trials. To advance the role of blood-based biomarkers in (VI) Develop clinical trials to test new imaging tools precision medicine, specific tasks that will increase the and/or new applications of conventional imaging to efficiency of this work include (but are not limited to): direct treatment interventions, like personalized (I) Sort banked blood samples for appropriateness adaptive treatment as described in RTOG1106. in biomarker testing for validity. Proteomic or (VII) Develop new predictive and early-response cytokine tests using samples collected without molecular imaging biomarkers, using probes appropriate temperature control or duration of designed to quantify specific therapeutic targets or blood setting may generate artificial results, as these specific pharmacodynamics or radiation therapy samples are most likely degraded. Genomic testing responses, to assess the efficacy treatment in near- may be the only possibility for samples collected real-time. and stored without rigorous quality control. The cooperative leadership and NCI funding mechanisms (II) Follow NCI’s best practice guidelines (https:// must promote and support correlative studies to discover biospecimens.cancer.gov/bestpractices/to/) for and validate imaging biomarkers, and the molecular future trials and establish standard of procedures imaging community must continue to support research (SOP) to ensure sample quality, and implement and development of new molecular imaging techniques. these SOP’s in each protocol. The molecular imaging community must also come (III) Discontinue traditional blood handling procedures together, working with cooperative clinical trial groups which do not control the blood sitting temperature and the pharmaceutical industry, to support well-designed before processing and the interval between blood prospective trials validating molecular imaging biomarkers drawing and plasma preparation. Implement the © Translational lung cancer research. All rights reserved. tlcr.amegroups.com Transl Lung Cancer Res 2017;6(6):713-715 Translational Lung Cancer Research, Vol 6, No 6 October 2017 715 optimal procedure validated by the multicenter tissue in some settings, and that serial samples will be international study (2). increasingly useful in directing meaningful treatment (IV) Provide training sessions and/or detailed written decisions including aggressiveness of treatment and materials to research associates who are responsible
Recommended publications
  • QIBA Profile. FDG-PET/CT As an Imaging Biomarker 4 Measuring Response to Cancer Therapy
    1 2 3 QIBA Profile. FDG-PET/CT as an Imaging Biomarker 4 Measuring Response to Cancer Therapy 5 Version 1.05 6 Publicly Reviewed Version 7 December 11, 2013 8 Copyright © 2013: RSNA 9 Note to users – when referencing this QIBA Profile document, please use the following format: FDG-PET/CT Technical Committee. FDG-PET/CT as an Imaging Biomarker Measuring Response to Cancer Therapy, Quantitative Imaging Biomarkers Alliance, Version 1.05, Publicly Reviewed Version. QIBA, December 11, 2013. Available from: RSNA.ORG/QIBA. Page: 1 10 11 12 Table of Contents 13 1. Executive Summary ........................................................................................................................................ 3 14 Summary for Clinical Trial Use ....................................................................................................................... 4 15 2. Clinical Context and Claims............................................................................................................................. 5 16 Applications and Endpoints for Clinical Trials ................................................................................................ 5 17 Claim: Measure Change in SUV ...................................................................................................................... 6 18 3. Profile Details .................................................................................................................................................. 7 19 3.1. Subject Handling .....................................................................................................................................
    [Show full text]
  • Facilitating the Use of Imaging Biomarkers in Therapeutic Clinical
    Facilitating the Use of Imaging Biomarkers in Therapeutic Clinical Trials Michael Graham, PhD, MD President, SNM Co-chair, Clinical Trials Network Facilitating the Use of Imaging Biomarkers in Therapeutic Clinical Trials • Definitions – Biomarker, Surrogate Biomarker • Standardization • Harmonization • Elements of a clinical trial • What can be facilitated • SNM Clinical Trials Network Imaging Biomarkers A biomarker is a characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. (FDA website) • Utility of imaging biomarkers in clinical trials – Assessing response to therapy (surrogate end point) • FDG • FLT – Stratifying patient populations • Receptor status (FES, SRS, etc.) • Hypoxia Surrogate Endpoints in Clinical Trials A surrogate endpoint is expected to predict clinical benefit (or harm, or lack of benefit) based on epidemiologic, therapeutic, pathophysiologic or other scientific evidence. (FDA website) • Assessing response to therapy – Relatively early “go vs. no go” decisions in Phase I or II – Decision point in adaptive designed trials – Building evidence for “validation” or “qualification” • Personalized medicine – Early identification of responders and non-responders Sohn HJ, et al. FLT PET before and 7 days after gefitinib (EGFR inhibitor) treatment predicts response in patients with advanced adenocarcinoma of the lung. Clin Cancer Res. 2008 Nov 15;14(22):7423-9. Imaging at 1 hr p 15 mCi FLT Threshold:
    [Show full text]
  • Design and Conduct of Early Clinical Studies
    Published OnlineFirst February 21, 2020; DOI: 10.1158/1078-0432.CCR-19-3136 CLINICAL CANCER RESEARCH | PERSPECTIVES Design and Conduct of Early Clinical Studies of Immunotherapy: Recommendations from the Task Force on Methodology for the Development of Innovative Cancer Therapies 2019 (MDICT) Martin Smoragiewicz1, Alex A. Adjei2, Emiliano Calvo3, Josep Tabernero4, Aurelien Marabelle5, Christophe Massard5, Jun Tang6, Elisabeth G.E. de Vries7, Jean-Yves Douillard8, and Lesley Seymour1; for the task force on Methodology for the Development of Innovative Cancer Therapies ABSTRACT ◥ Purpose: To review key aspects of the design and conduct of early Results: Although early successes have been seen, the landscape clinical trials (ECT) of immunotherapy agents. continues to be very dynamic, and there are ongoing concerns Experimental Design: The Methodology for the Development of regarding the capacity to test all new drugs and combinations in Innovative Cancer Therapies Task Force 2019 included experts clinical trials. from academia, nonprofit organizations, industry, and regulatory Conclusions: Optimization of drug development methodology agencies. The review focus was on methodology for ECTs testing is required, taking into account early, late, and lower grade immune-oncology therapies (IO) used in combination with other intolerable toxicities, novel response patterns, as well as phar- IO or chemotherapy. macodynamic data. Introduction Materials and Methods The Methodology for the Development of Innovative Cancer The 2019 meeting was held at the International Symposium on Therapies (MDICT) task force, established in 2006, is composed of Targeted Anticancer Therapies (ESMO-TAT). Participants included experts from academia, nonprofit organizations, industry, and regu- experts from academia, nonprofit organizations, industry, and regu- latory stakeholders, and provides guidance and recommendations on latory agencies.
    [Show full text]
  • Imaging Biomarker Roadmap for Cancer [email protected]
    Imaging Biomarkers in Radiation Oncology and Beyond: Development, Evaluation and Clinical Translation Imaging Biomarker Roadmap for Cancer [email protected] AAPM/COMP 2020-07-14 Funding Support, Disclosures, and Conflict of Interest statement FUNDING. The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking (www.imi.europa.eu) under grant agreement number 115151, resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007- 2013) and EFPIA companies’ in kind contribution. Part of the work was also performed during the author's previous employment with AstraZeneca, a for-profit company engaged in the discovery, development, manufacturing and marketing of proprietary therapeutics. DISCLOSURES & CONFLICT OF INTEREST. John Waterton holds stock in Quantitative Imaging Ltd and receives compensation from Bioxydyn Ltd, a for-profit company engaged in the discovery, development, provision and marketing of imaging biomarkers. BEST resource (2016) Biomarker: A defined characteristic that is measured as an indicator of normal biological processes, pathogenic processes, or responses to an exposure or intervention, including therapeutic interventions. Molecular, histologic, radiographic, or physiologic characteristics are types of biomarkers. A biomarker is not an assessment of how an individual feels, functions, or survives. Categories of biomarkers include: • susceptibility/risk biomarker • diagnostic biomarker • monitoring biomarker • prognostic biomarker • predictive biomarker Development of 1999 workshop • pharmacodynamic/response biomarker (Atkinson et al 2001) • safety biomarker Six key cancer imaging modalities Metrology Colloquial Examples definition definition Ordered How ugly? categorical (incl. binary) Extensive How big? Intensive How hot? Metrology Colloquial Examples definition definition Ordered How ugly? • TNM stage PET SPECT vis XR/CT MR us categorical • OR PET SPECT vis XR/CT MR us (incl.
    [Show full text]
  • Qualification Opinion on Dopamine Transporter Imaging As an Enrichment Biomarker for Parkinson’S Disease Clinical Trials in Patients with Early Parkinsonian Symptoms
    29 May 2018 EMA/CHMP/SAWP/765041/2017 Committee for Medicinal Products for Human Use (CHMP) Qualification opinion on dopamine transporter imaging as an enrichment biomarker for Parkinson’s disease clinical trials in patients with early Parkinsonian symptoms Draft agreed by Scientific Advice Working Party 26 October 2017 Adopted by CHMP for release for consultation 09 November 20171 Start of public consultation 24 January 20182 End of consultation (deadline for comments) 07 March 20183 Adoption by CHMP 26 April 2018 Biomarker, Molecular neuroimaging, Parkinson’s disease Keywords 1 Last day of relevant Committee meeting. 2 Date of publication on the EMA public website. 3 Last day of the month concerned. 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2018. Reproduction is authorised provided the source is acknowledged. Executive summary Critical Path Global Ltd.’s Critical Path for Parkinson’s (CPP) is a multinational consortium of the Critical Path Institute supported by Parkinson’s UK and industry. This broad collaboration of pharmaceutical companies, government agencies, academic institutions, and charities aims to accelerate the development of therapies for Parkinson’s disease (PD). The CPP Imaging Biomarker team aims to achieve a qualification opinion by EMA Committee for Medical Products for Human Use (CHMP) for the use of low baseline Dopamine Transporter levels for subject enrichment in clinical trials in early stages of PD. This package reports the results of the Critical Path Global Ltd.
    [Show full text]
  • Imaging Biomarkers a New Dimension Olea in the Precision Imagein Medicine Era
    Imaging Biomarkers A new Dimension Olea in the Precision Imagein Medicine Era P9 P15 P19-25-29-35-47 P5-41 Interventional Molecular Liver, Prostate QSM & MSK Oncology Imaging & Stroke Biomarkers #8 - October 2019 - JFR-RSNA Edition Edito EDITO - Dr. Adam Davis P3 QUANTITATIVE SUSCEPTIBILITY MAPPING - Dr. Yasutaka Fushimimi, P5 INTERVENTIONAL ONCOLOGY - Interview with Prof. Ricardo Garcia Monaco P9 A biomarker is any medical sign or characteristic that objectively measures a MOLECULAR IMAGING - Interview with Prof. Gabriel P. Krestin P15 normal or pathological process or a response to treatment [1,2]. In essence, all LIVER PREDICTIVE IMAGING - Interview with Prof. Alain Luciani P19 imaging findings are biomarkers. Radiographic characteristics are objective – quantifiable and reproducible, even if the interpretation is not. Dr François FAT & IRON CONTENT IN THE LIVER - Interview with Prof. Scott B. Reeder P25 Cornud elegantly describes the use of complex diffusion-based values such as PROSTATE IMAGING BIOMARKERS - Dr. Daniel Margolis P29 ADC, IVIM, Kurtosis & DTI as modern biomarkers for prostate cancer evaluation. Yet even the simplest radiographic sign – the absorption of an X-ray on a plain PROSTATE IMAGING - Interview with Dr. François Cornud P35 radiograph, reflects a quantity that radiologists use to define a physiologic or MUSCULOSKELETAL BIOMARKERS - Interview with Prof. Christian Jorgensen P41 pathologic state. ALGO-LESS BIOMARKERS - Christophe Avare P43 If biomarkers are as old as radiology itself, then why are they now attracting so much attention? Dr Krestin remarks: “medical imaging is moving from simple STROKE BIOMARKERS - Interview with Prof. Vincent Costalat P47 interpretation of the morphological appearance of anatomy and diseases, WOMEN IMAGING-BREAST CANCER - Case Report with Prof.
    [Show full text]
  • QA & Imaging Biomarkers Within the Framework of Clinical Trials
    QA & imaging biomarkers within the framework of clinical trials L Fournier, Y Liu, N de Souza, P Bourguet For the Imaging Group - EORTC Imaging biomarkers in clinical trials: role Clinical trial = validation of the imaging biomarker Imaging biomarker Imaging biomarker = endpoint of clinical trial 2 Imaging biomarkers in clinical trials: role Clinical trial = validation of the imaging biomarker Imaging biomarker Imaging biomarker = endpoint of clinical trial 3 Imaging biomarkers in clinical trials • In oncology clinical trials: imaging is almost always present • “Endpoints for FDA approval in oncology drugs” Johnson, JCO 2003;21:1404-1411 • 1990-2002: 57 molecules approved • 18 (32%) on OS • 29 (51%) on response criteria or PFS MEASURED ON IMAGING 4 Imaging biomarkers: interrogating biology Diffusion MRI PET- FDG Cellularity Cell metabolism MRSpectroscopy Molecular composition Perfusion imaging Angiogenesis BOLD MRI Hypoxia O O2 2 O2 Hanahan & Weinberg, Cell 2011 Innovative imaging biomarkers: hurdles • Upstream • Technical validation understand the conditions for reliable quantification • Clinical trial • Complexity of imaging technologies • Safety issues related to new imaging contrast agents • Standardisation of image acquisition across multivendor platforms • Variable post-processing options Centers selected for their clinical not their imaging expertise 6 Upstream: technical validation • Pre-clinical and clinical phase • Phantom studies • Repeatability (test-retest) • Reproducibility • Variability between machines • Variability
    [Show full text]
  • Advancing Biomarker Development
    This is a repository copy of Advancing biomarker development through convergent engagement : Summary Report of the 2nd International Danube Symposium on Biomarker Development, Molecular Imaging and Applied Diagnostics; March 14–16, 2018; Vienna, Austria. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/151395/ Version: Published Version Article: Lim, M, Beyer, T, Soares, Marta Ferreira Oliveira orcid.org/0000-0003-1579-8513 et al. (1 more author) (2019) Advancing biomarker development through convergent engagement : Summary Report of the 2nd International Danube Symposium on Biomarker Development, Molecular Imaging and Applied Diagnostics; March 14–16, 2018; Vienna, Austria. Molecular Imaging and Biology. ISSN 1536-1632 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Mol Imaging Biol (2019) DOI: 10.1007/s11307-019-01361-2 * The Author(s), 2019 SPECIAL TOPIC Advancing Biomarker Development Through Convergent Engagement: Summary Report of the 2nd International Danube Symposium on Biomarker Development, Molecular Imaging and Applied Diagnostics; March 14–16, 2018; Vienna, Austria M. S. Lim,1 Thomas Beyer ,2 A.
    [Show full text]
  • Development and Validation of a Novel MR Imaging Predictor of Response
    Dong et al. BMC Medicine (2019) 17:190 https://doi.org/10.1186/s12916-019-1422-6 RESEARCH ARTICLE Open Access Development and validation of a novel MR imaging predictor of response to induction chemotherapy in locoregionally advanced nasopharyngeal cancer: a randomized controlled trial substudy (NCT01245959) Di Dong1,2,3†, Fan Zhang2,4†, Lian-Zhen Zhong1,3†, Meng-Jie Fang1,3, Cheng-Long Huang2, Ji-Jin Yao4, Ying Sun2, Jie Tian1,5*, Jun Ma2* and Ling-Long Tang2* Abstract Background: In locoregionally advanced nasopharyngeal carcinoma (LANPC) patients, variance of tumor response to induction chemotherapy (ICT) was observed. We developed and validated a novel imaging biomarker to predict which patients will benefit most from additional ICT compared with chemoradiotherapy (CCRT) alone. Methods: All patients, including retrospective training (n = 254) and prospective randomized controlled validation cohorts (a substudy of NCT01245959, n = 248), received ICT+CCRT or CCRT alone. Primary endpoint was failure-free survival (FFS). From the multi-parameter magnetic resonance images of the primary tumor at baseline, 819 quantitative 2D imaging features were extracted. Selected key features (according to their interaction effect between the two treatments) were combined into an Induction Chemotherapy Outcome Score (ICTOS) with a multivariable Cox proportional hazards model using modified covariate method. Kaplan-Meier curves and significance test for treatment interaction were used to evaluate ICTOS, in both cohorts. (Continued on next page) * Correspondence: [email protected]; [email protected]; [email protected]; [email protected] †Di Dong, Fan Zhang and Lian-Zhen Zhong contributed equally to this work. 1CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, No.
    [Show full text]
  • Personalized Medicine: Challenges in Biomarker-Related Clinical Trial Design
    Clinical Trial Methodology He Personalized medicine: challenges in bio- marker-related clinical trial design 5 Clinical Trial Methodology Personalized medicine: challenges in biomarker-related clinical trial design Clin. Invest. (Lond.) Personalized medicine becomes an area of great interest following the recent Pei He development in human genetics, proteomics and metabolomics. There is an increasing Amgen, Inc. 1120 Veterans Boulevard, need to embed the scientific discoveries from basic medical research into real life clinical South San Francisco, CA 94080, USA [email protected] practices, such that a patient’s biological traits can be used to facilitate treatment. Those individualized biological traits, termed as biomarkers, are actively involved in developing personalized medicine and therefore bring out challenges to clinical trial designs. The necessity of biomarker validation and patient subgroup selection make the trial design more complex. This paper will first introduce different types of biomarkers and then review the challenges of clinical trial design with biomarkers from the clinical, statistical and regulatory perspectives. Keywords: biomarkers • clinical trial design • personalized medicine • predictive • prognostic • targeted cancer therapy Personalized medicine is an increasingly recently added more complexity to clinical promising field of interest that connects trial design and data analysis. biological research with clinical practices. All biomarkers of different types require Recent developments in human genetics and clinical trials to confirm their properties and 10.4155/CLI.14.123 sequencing techniques make it possible to to inform and influence daily clinical prac- identify disease-related genes that affect the tices. Regulatory agencies, such as FDA in onset risk of a certain disease and influence the U.S.
    [Show full text]
  • Reproducibility and Standardization of MR Imaging Biomarkers
    AAPM 2017 – E. Jackson Certificate Course: Beyond Clinical Imaging – August 2, 2017 Session 2: Recent Advancement of Imaging Guidance in Clinical Trials WE-DE-205-0 QIBA / Imaging Analysis in Clinical Trials Edward F. Jackson, PhD Professor and Chair, Department of Medical Physics Professor of Radiology and Human Oncology School of Medicine and Public Health UNIVERSITY OF WISCONSIN-MADISON Objectives This presentation will address: – the advantages of quantitative imaging biomarker (QIB) measurements in clinical trials, – key challenges to the validation and qualification of QIB measurements, and – examples of efforts to address such challenges Biomarkers Biomarkers are characteristics that are objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention.1 Quantitative imaging biomarkers (QIBs) are objective characteristics derived from in vivo images as indicators of normal biological processes, pathogenic processes, or response to a therapeutic intervention.2 1NIH Biomarkers Definitions Working Group, Clin Pharmacol Therap 69(3):89-95, 2001 2Sullivan et al., Radiology 277(3):813-825, 2015 (www.rsna.org/qiba) •1 AAPM 2017 – E. Jackson From Qualitative Findings to QIB Assay • Validation: “assessing the assay and its measurement performance characteristics, and determining the range of conditions under which the assay will give reproducible and accurate data” • Qualification: “’fit-for-purpose’ evidentiary process linking a biomarker with
    [Show full text]
  • Imaging Readouts As Biomarkers Or Surrogate Parameters for the Assessment of Therapeutic Interventions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Eur Radiol (2007) 17: 2441–2457 DOI 10.1007/s00330-007-0619-9 MOLECULAR IMAGING Markus Rudin Imaging readouts as biomarkers or surrogate parameters for the assessment of therapeutic interventions Abstract Surrogate markers and structural, physiological and metabol- Received: 11 August 2006 Revised: 6 February 2007 biomarkers based on imaging readouts ic information. Novel imaging Accepted: 13 February 2007 providing predictive information on approaches annotate structure with Published online: 6 March 2007 clinical outcome are of increasing molecular signatures that are tightly # Springer-Verlag 2007 importance in the preclinical and linked to the pathophysiology or to the clinical evaluation of novel therapies. therapeutic principle. These cellular They are primarily used in studies and molecular imaging methods yield designed to establish evidence that the information on drug biodistribution, therapeutic principle is valid in a receptor expression and occupancy, representative patient population or in and/or intra- and intercellular signal- an individual. A critical step in the ing. The design of novel target-spe- development of (imaging) surrogates cific imaging probes is closely related is validation: correlation with to the development of the therapeutic M. Rudin (*) Institute for Biomedical Engineering, established clinical endpoints must be agents and should be considered early University of Zürich/ETH Zürich, demonstrated. Biomarkers must not in the discovery phase. Significant AIC - HCI E488.2, fulfill such stringent validation technical and regulatory hurdles have 8093 Zürich, Switzerland criteria; however, they should provide to be overcome to foster the use e-mail: [email protected] Tel.: +41-44-633-7604 insight into mechanistic aspects of of imaging biomarkers for clinical Fax: +41-44-633-1187 the therapeutic intervention (proof- drug evaluation.
    [Show full text]