Dmsp4 V7r1.Pdf (1.02MB)

Total Page:16

File Type:pdf, Size:1020Kb

Dmsp4 V7r1.Pdf (1.02MB) z/VM Version 7 Release 1 OpenExtensions Advanced Application Programming Tools IBM SC24-6295-00 Note: Before you use this information and the product it supports, read the information in “Notices” on page 135. This edition applies to version 7, release 1, modification 0 of IBM z/VM (product number 5741-A09) and to all subsequent releases and modifications until otherwise indicated in new editions. Last updated: 2018-09-05 © Copyright International Business Machines Corporation 1993, 2018. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents List of Tables........................................................................................................vii About this Document............................................................................................ ix Intended Audience......................................................................................................................................ix Conventions Used in This Document.......................................................................................................... ix Case-Sensitivity..................................................................................................................................... ix Typography.............................................................................................................................................ix Where to Find More Information.................................................................................................................ix Links to Other Documents and Websites............................................................................................... x How to Send Your Comments to IBM......................................................................xi Summary of Changes for z/VM OpenExtensions Advanced Application Programming Tools.......................................................................................... xii SC24-6295-00, z/VM Version 7 Release 1................................................................................................xii Chapter 1. Tutorial Using OpenExtensions lex and yacc...........................................1 Uses for the lex and yacc Utilities................................................................................................................1 Code Produced by lex and yacc................................................................................................................... 1 lex Output............................................................................................................................................... 2 yacc Output.............................................................................................................................................2 Defining Tokens...................................................................................................................................... 2 Calling the Code......................................................................................................................................3 Using the lex and yacc Commands........................................................................................................ 3 Tokenizing with lex.......................................................................................................................................3 Characters and Regular Expressions..................................................................................................... 4 Definitions...............................................................................................................................................7 Translations............................................................................................................................................ 7 Declarations............................................................................................................................................8 lex Input for Simple Desk Calculator................................................................................................... 10 yacc Grammars.......................................................................................................................................... 10 The Declarations Section..................................................................................................................... 10 The Grammar Rules Section................................................................................................................ 12 The Functions Section..........................................................................................................................14 The Simple Desk Calculator................................................................................................................. 14 Error Handling............................................................................................................................................ 15 Error Handling in lex.............................................................................................................................15 lex Input for the Improved Desk Calculator........................................................................................ 16 Error Handling in yacc.......................................................................................................................... 17 A Sophisticated Example...........................................................................................................................19 Multiple Values for yylval..................................................................................................................... 20 lex Input................................................................................................................................................20 The yacc Bare Grammar.......................................................................................................................21 Expression Trees.................................................................................................................................. 22 Compilation.......................................................................................................................................... 26 Chapter 2. Generating a Lexical Analyzer Using OpenExtensions lex......................29 Introduction to the lex Utility.................................................................................................................... 29 The lex Input Language............................................................................................................................. 29 Language Fundamentals...................................................................................................................... 29 Putting Things Together....................................................................................................................... 31 lex Programs.........................................................................................................................................32 iii Definitions.............................................................................................................................................33 Translations.......................................................................................................................................... 34 Declarations..........................................................................................................................................35 Using lex.....................................................................................................................................................35 Using yylex()......................................................................................................................................... 35 Generating a Table File.........................................................................................................................36 Compiling the Table File.......................................................................................................................37 The lex Library Routines.......................................................................................................................37 Error Detection and Recovery....................................................................................................................40 Ambiguity and Lookahead......................................................................................................................... 41 Lookahead............................................................................................................................................ 42 Left Context Sensitivity and Start Conditions......................................................................................43 Tracing a lex Program...........................................................................................................................44 The REJECT Action...............................................................................................................................46 Character Set........................................................................................................................................46 Chapter 3. Generating a Parser Using OpenExtensions yacc.................................
Recommended publications
  • Artificial Intelligence in Health Care: the Hope, the Hype, the Promise, the Peril
    Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril Michael Matheny, Sonoo Thadaney Israni, Mahnoor Ahmed, and Danielle Whicher, Editors WASHINGTON, DC NAM.EDU PREPUBLICATION COPY - Uncorrected Proofs NATIONAL ACADEMY OF MEDICINE • 500 Fifth Street, NW • WASHINGTON, DC 20001 NOTICE: This publication has undergone peer review according to procedures established by the National Academy of Medicine (NAM). Publication by the NAM worthy of public attention, but does not constitute endorsement of conclusions and recommendationssignifies that it is the by productthe NAM. of The a carefully views presented considered in processthis publication and is a contributionare those of individual contributors and do not represent formal consensus positions of the authors’ organizations; the NAM; or the National Academies of Sciences, Engineering, and Medicine. Library of Congress Cataloging-in-Publication Data to Come Copyright 2019 by the National Academy of Sciences. All rights reserved. Printed in the United States of America. Suggested citation: Matheny, M., S. Thadaney Israni, M. Ahmed, and D. Whicher, Editors. 2019. Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril. NAM Special Publication. Washington, DC: National Academy of Medicine. PREPUBLICATION COPY - Uncorrected Proofs “Knowing is not enough; we must apply. Willing is not enough; we must do.” --GOETHE PREPUBLICATION COPY - Uncorrected Proofs ABOUT THE NATIONAL ACADEMY OF MEDICINE The National Academy of Medicine is one of three Academies constituting the Nation- al Academies of Sciences, Engineering, and Medicine (the National Academies). The Na- tional Academies provide independent, objective analysis and advice to the nation and conduct other activities to solve complex problems and inform public policy decisions.
    [Show full text]
  • Chapter 5 Names, Bindings, and Scopes
    Chapter 5 Names, Bindings, and Scopes 5.1 Introduction 198 5.2 Names 199 5.3 Variables 200 5.4 The Concept of Binding 203 5.5 Scope 211 5.6 Scope and Lifetime 222 5.7 Referencing Environments 223 5.8 Named Constants 224 Summary • Review Questions • Problem Set • Programming Exercises 227 CMPS401 Class Notes (Chap05) Page 1 / 20 Dr. Kuo-pao Yang Chapter 5 Names, Bindings, and Scopes 5.1 Introduction 198 Imperative languages are abstractions of von Neumann architecture – Memory: stores both instructions and data – Processor: provides operations for modifying the contents of memory Variables are characterized by a collection of properties or attributes – The most important of which is type, a fundamental concept in programming languages – To design a type, must consider scope, lifetime, type checking, initialization, and type compatibility 5.2 Names 199 5.2.1 Design issues The following are the primary design issues for names: – Maximum length? – Are names case sensitive? – Are special words reserved words or keywords? 5.2.2 Name Forms A name is a string of characters used to identify some entity in a program. Length – If too short, they cannot be connotative – Language examples: . FORTRAN I: maximum 6 . COBOL: maximum 30 . C99: no limit but only the first 63 are significant; also, external names are limited to a maximum of 31 . C# and Java: no limit, and all characters are significant . C++: no limit, but implementers often impose a length limitation because they do not want the symbol table in which identifiers are stored during compilation to be too large and also to simplify the maintenance of that table.
    [Show full text]
  • Chapter # 9 LEX and YACC
    Chapter # 9 LEX and YACC Dr. Shaukat Ali Department of Computer Science University of Peshawar Lex and Yacc Lex and yacc are a matched pair of tools. Lex breaks down files into sets of "tokens," roughly analogous to words. Yacc takes sets of tokens and assembles them into higher-level constructs, analogous to sentences. Lex's output is mostly designed to be fed into some kind of parser. Yacc is designed to work with the output of Lex. 2 Lex and Yacc Lex and yacc are tools for building programs. Their output is itself code – Which needs to be fed into a compiler – May be additional user code is added to use the code generated by lex and yacc 3 Lex : A lexical analyzer generator Lex is a program designed to generate scanners, also known as tokenizers, which recognize lexical patterns in text Lex is an acronym that stands for "lexical analyzer generator.“ The main purpose is to facilitate lexical analysis The processing of character sequences in source code to produce tokens for use as input to other programs such as parsers Another tool for lexical analyzer generation is Flex 4 Lex : A lexical analyzer generator lex.lex is an a input file written in a language which describes the generation of lexical analyzer. The lex compiler transforms lex.l to a C program known as lex.yy.c. lex.yy.c is compiled by the C compiler to a file called a.out. The output of C compiler is the working lexical analyzer which takes stream of input characters and produces a stream of tokens.
    [Show full text]
  • Project1: Build a Small Scanner/Parser
    Project1: Build A Small Scanner/Parser Introducing Lex, Yacc, and POET cs5363 1 Project1: Building A Scanner/Parser Parse a subset of the C language Support two types of atomic values: int float Support one type of compound values: arrays Support a basic set of language concepts Variable declarations (int, float, and array variables) Expressions (arithmetic and boolean operations) Statements (assignments, conditionals, and loops) You can choose a different but equivalent language Need to make your own test cases Options of implementation (links available at class web site) Manual in C/C++/Java (or whatever other lang.) Lex and Yacc (together with C/C++) POET: a scripting compiler writing language Or any other approach you choose --- must document how to download/use any tools involved cs5363 2 This is just starting… There will be two other sub-projects Type checking Check the types of expressions in the input program Optimization/analysis/translation Do something with the input code, output the result The starting project is important because it determines which language you can use for the other projects Lex+Yacc ===> can work only with C/C++ POET ==> work with POET Manual ==> stick to whatever language you pick This class: introduce Lex/Yacc/POET to you cs5363 3 Using Lex to build scanners lex.yy.c MyLex.l lex/flex lex.yy.c a.out gcc/cc Input stream a.out tokens Write a lex specification Save it in a file (MyLex.l) Compile the lex specification file by invoking lex/flex lex MyLex.l A lex.yy.c file is generated
    [Show full text]
  • User Manual for Ox: an Attribute-Grammar Compiling System Based on Yacc, Lex, and C Kurt M
    Computer Science Technical Reports Computer Science 12-1992 User Manual for Ox: An Attribute-Grammar Compiling System based on Yacc, Lex, and C Kurt M. Bischoff Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/cs_techreports Part of the Programming Languages and Compilers Commons Recommended Citation Bischoff, Kurt M., "User Manual for Ox: An Attribute-Grammar Compiling System based on Yacc, Lex, and C" (1992). Computer Science Technical Reports. 21. http://lib.dr.iastate.edu/cs_techreports/21 This Article is brought to you for free and open access by the Computer Science at Iowa State University Digital Repository. It has been accepted for inclusion in Computer Science Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. User Manual for Ox: An Attribute-Grammar Compiling System based on Yacc, Lex, and C Abstract Ox generalizes the function of Yacc in the way that attribute grammars generalize context-free grammars. Ordinary Yacc and Lex specifications may be augmented with definitions of synthesized and inherited attributes written in C syntax. From these specifications, Ox generates a program that builds and decorates attributed parse trees. Ox accepts a most general class of attribute grammars. The user may specify postdecoration traversals for easy ordering of side effects such as code generation. Ox handles the tedious and error-prone details of writing code for parse-tree management, so its use eases problems of security and maintainability associated with that aspect of translator development. The translators generated by Ox use internal memory management that is often much faster than the common technique of calling malloc once for each parse-tree node.
    [Show full text]
  • Yacc a Tool for Syntactic Analysis
    1 Yacc a tool for Syntactic Analysis CS 315 – Programming Languages Pinar Duygulu Bilkent University CS315 Programming Languages © Pinar Duygulu Lex and Yacc 2 1) Lexical Analysis: Lexical analyzer: scans the input stream and converts sequences of characters into tokens. Lex is a tool for writing lexical analyzers. 2) Syntactic Analysis (Parsing): Parser: reads tokens and assembles them into language constructs using the grammar rules of the language. Yacc is a tool for constructing parsers. Yet Another Compiler to Compiler Reads a specification file that codifies the grammar of a language and generates a parsing routine CS315 Programming Languages © Pinar Duygulu 3 Yacc • Yacc specification describes a Context Free Grammar (CFG), that can be used to generate a parser. Elements of a CFG: 1. Terminals: tokens and literal characters, 2. Variables (nonterminals): syntactical elements, 3. Production rules, and 4. Start rule. CS315 Programming Languages © Pinar Duygulu 4 Yacc Format of a production rule: symbol: definition {action} ; Example: A → Bc is written in yacc as a: b 'c'; CS315 Programming Languages © Pinar Duygulu 5 Yacc Format of a yacc specification file: declarations %% grammar rules and associated actions %% C programs CS315 Programming Languages © Pinar Duygulu 6 Declarations To define tokens and their characteristics %token: declare names of tokens %left: define left-associative operators %right: define right-associative operators %nonassoc: define operators that may not associate with themselves %type: declare the type of variables %union: declare multiple data types for semantic values %start: declare the start symbol (default is the first variable in rules) %prec: assign precedence to a rule %{ C declarations directly copied to the resulting C program %} (E.g., variables, types, macros…) CS315 Programming Languages © Pinar Duygulu 7 A simple yacc specification to accept L={ anbn | n>1}.
    [Show full text]
  • Binpac: a Yacc for Writing Application Protocol Parsers
    binpac: A yacc for Writing Application Protocol Parsers Ruoming Pang∗ Vern Paxson Google, Inc. International Computer Science Institute and New York, NY, USA Lawrence Berkeley National Laboratory [email protected] Berkeley, CA, USA [email protected] Robin Sommer Larry Peterson International Computer Science Institute Princeton University Berkeley, CA, USA Princeton, NJ, USA [email protected] [email protected] ABSTRACT Similarly, studies of Email traffic [21, 46], peer-to-peer applica- A key step in the semantic analysis of network traffic is to parse the tions [37], online gaming, and Internet attacks [29] require under- traffic stream according to the high-level protocols it contains. This standing application-level traffic semantics. However, it is tedious, process transforms raw bytes into structured, typed, and semanti- error-prone, and sometimes prohibitively time-consuming to build cally meaningful data fields that provide a high-level representation application-level analysis tools from scratch, due to the complexity of the traffic. However, constructing protocol parsers by hand is a of dealing with low-level traffic data. tedious and error-prone affair due to the complexity and sheer num- We can significantly simplify the process if we can leverage a ber of application protocols. common platform for various kinds of application-level traffic anal- This paper presents binpac, a declarative language and com- ysis. A key element of such a platform is application-protocol piler designed to simplify the task of constructing robust and effi- parsers that translate packet streams into high-level representations cient semantic analyzers for complex network protocols. We dis- of the traffic, on top of which we can then use measurement scripts cuss the design of the binpac language and a range of issues that manipulate semantically meaningful data elements such as in generating efficient parsers from high-level specifications.
    [Show full text]
  • An Attribute- Grammar Compiling System Based on Yacc, Lex, and C Kurt M
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Repository @ Iowa State University Computer Science Technical Reports Computer Science 12-1992 Design, Implementation, Use, and Evaluation of Ox: An Attribute- Grammar Compiling System based on Yacc, Lex, and C Kurt M. Bischoff Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/cs_techreports Part of the Programming Languages and Compilers Commons Recommended Citation Bischoff, Kurt M., "Design, Implementation, Use, and Evaluation of Ox: An Attribute- Grammar Compiling System based on Yacc, Lex, and C" (1992). Computer Science Technical Reports. 23. http://lib.dr.iastate.edu/cs_techreports/23 This Article is brought to you for free and open access by the Computer Science at Iowa State University Digital Repository. It has been accepted for inclusion in Computer Science Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Design, Implementation, Use, and Evaluation of Ox: An Attribute- Grammar Compiling System based on Yacc, Lex, and C Abstract Ox generalizes the function of Yacc in the way that attribute grammars generalize context-free grammars. Ordinary Yacc and Lex specifications may be augmented with definitions of synthesized and inherited attributes written in C syntax. From these specifications, Ox generates a program that builds and decorates attributed parse trees. Ox accepts a most general class of attribute grammars. The user may specify postdecoration traversals for easy ordering of side effects such as code generation. Ox handles the tedious and error-prone details of writing code for parse-tree management, so its use eases problems of security and maintainability associated with that aspect of translator development.
    [Show full text]
  • Sensitivity Training for Prxers Kenneth W
    PharmaSUG 2015 – QT29 Sensitivity Training for PRXers Kenneth W. Borowiak, PPD, Morrisville, NC ABSTRACT Any SAS® user who intends to use the Perl style regular expressions through the PRX family of functions and call routines should be required to go through sensitivity training. Is this because those who use PRX are mean and rude? Nay, but the regular expressions they write are case sensitive by default. This paper discusses the various ways to flip the case sensitivity switch for the entire or part of the regular expression, which can aid in making it more readable and succinct. Keywords: case sensitivity, alternation, character classes, modifiers, mode modified span INTRODUCTION Any SAS® user who intends to use the Perl style regular expressions through the PRX family of functions and call routines should be required to go through sensitivity training. Is this because those who use PRX are mean and rude? Nay, but the regular expressions they write are case sensitive by default. Before proceeding with an example, it will be assumed that the reader has at least some previous exposure to regular expressions1. Now consider the two queries below in Figure 1 against the CHARACTERS data set for the abbreviation for ‘mister’ at the beginning of the free-text captured field NAME. Figure 1 Case Sensitivity of Regular Expressions data characters ; input name $40. ; datalines ; Though the two MR Bigglesworth regexen below Mini-mr bigglesworth look similar … Mr. Austin D. Powers dr evil mr bIgglesWorTH ; proc print data=characters ; proc print data=characters ; where prxmatch('/^MR/', name) ; where prxmatch('/^Mr/', name); run ; run ; Obs name … they generate Obs name 1 MR Bigglesworth different results 3 Mr.
    [Show full text]
  • Rexx Hands-On Lab
    1 2 Welcome to the Introduction to Rexx Hands-on Lab. This lab will cover a series of topics about the Rexx language. At the end of each topic, there will be exercises that use the concepts covered in the charts and text for that topic. The solutions for the exercises are in Appendix A. This is not a graded class or lab so you are free to refer to the solutions if you would like or if you need help with any of the exercises. Also, if you need assistance with any of the lab material or exercises, please raise your hand and someone will come to assist you. 3 These are the exercises that you will be doing today. There are 2 PDF files on your desktop that you might find helpful as you work on the exercises: • REXX Reference will help you with statement syntax and usage • Appendix H is a summary of XEDIT commands that might be helpful when you are writing and updating your Rexx programs 4 This section introduces the Rexx Language and explains how to create and execute Rexx programs on z/VM and TSO systems. It also includes some z/VM hints to help you with today's exercises. 5 REXX is a nickname for Restructured eXtended eXecutor. The Rexx language was designed to be intuitive, easy to read, and easy to follow a program's logic. Rexx programs can be very simple, ranging from personal tools and utilities such as "scripts" of commands that you might run every day to set up your system or run test cases, to very complex programs that might be part of a licensed product.
    [Show full text]
  • Usability Improvements for Products That Mandate Use of Command-Line Interface: Best Practices
    Usability improvements for products that mandate use of command-line interface: Best Practices Samrat Dutta M.Tech, International Institute of Information Technology, Electronics City, Bangalore Software Engineer, IBM Storage Labs, Pune [email protected] ABSTRACT This paper provides few methods to improve the usability of products which mandate the use of command-line interface. At present many products make command-line interfaces compulsory for performing some operations. In such environments, usability of the product becomes the link that binds the users with the product. This paper provides few mechanisms like consolidated hierarchical help structure for the complete product, auto-complete command-line features, intelligent command suggestions. These can be formalized as a pattern and can be used by software companies to embed into their product's command-line interfaces, to simplify its usability and provide a better experience for users so that they can adapt with the product much faster. INTRODUCTION Products that are designed around a command-line interface (CLI), often strive for usability issues. A blank prompt with a cursor blinking, waiting for input, does not provide much information about the functions and possibilities available. With no click-able option and hover over facility to view snippets, some users feel lost. All inputs being commands, to learn and gain expertise of all of them takes time. Considering that learning a single letter for each command (often the first letter of the command is used instead of the complete command to reduce stress) is not that difficult, but all this seems useless when the command itself is not known.
    [Show full text]
  • Software II: Principles of Programming Languages Introduction
    Software II: Principles of Programming Languages Lecture 5 – Names, Bindings, and Scopes Introduction • Imperative languages are abstractions of von Neumann architecture – Memory – Processor • Variables are characterized by attributes – To design a type, must consider scope, lifetime, type checking, initialization, and type compatibility Names • Design issues for names: – Are names case sensitive? – Are special words reserved words or keywords? Names (continued) • Length – If too short, they cannot be connotative – Language examples: • FORTRAN 95: maximum of 31 (only 6 in FORTRAN IV) • C99: no limit but only the first 63 are significant; also, external names are limited to a maximum of 31 (only 8 are significant K&R C ) • C#, Ada, and Java: no limit, and all are significant • C++: no limit, but implementers often impose one Names (continued) • Special characters – PHP: all variable names must begin with dollar signs – Perl: all variable names begin with special characters, which specify the variable’s type – Ruby: variable names that begin with @ are instance variables; those that begin with @@ are class variables Names (continued) • Case sensitivity – Disadvantage: readability (names that look alike are different) • Names in the C-based languages are case sensitive • Names in others are not • Worse in C++, Java, and C# because predefined names are mixed case (e.g. IndexOutOfBoundsException ) Names (continued) • Special words – An aid to readability; used to delimit or separate statement clauses • A keyword is a word that is special only
    [Show full text]