Evaluatepharma® World Preview 2018, Outlook to 2024
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Recent Advances in Inflammatory Bowel Disease: Mucosal Immune
Recent advances in basic science Recent advances in inflammatory bowel disease: Gut: first published as 10.1136/gutjnl-2012-303955 on 8 October 2013. Downloaded from mucosal immune cells in intestinal inflammation M Zaeem Cader,1,2 Arthur Kaser1 1Department of Medicine, ABSTRACT Recent years have seen a rapid and exciting Division of Gastroenterology & The intestine and its immune system have evolved to expansion in our understanding of the mucosal Hepatology, University of Cambridge, Addenbrooke’s meet the extraordinary task of maintaining tolerance to immune system with novel insights into environ- Hospital, Cambridge, UK the largest, most complex and diverse microbial mental influences of diet and the microbiota; the 2Wellcome Trust PhD commensal habitat, while meticulously attacking and convergence and integration of fundamental cellu- Programme for Clinicians, containing even minute numbers of occasionally lar processes such as autophagy, microbial sensing Cambridge Institute for incoming pathogens. While our understanding is still far and endoplasmic reticulum (ER) stress; as well as Medical Research, School of Clinical Medicine, University of from complete, recent studies have provided exciting the discovery of new cell types, for example innate Cambridge, Cambridge, UK novel insights into the complex interplay of the many lymphoid cells (ILCs). distinct intestinal immune cell types as well as the The gut is unlike the systemic immune system in Correspondence to discovery of entirely new cell subsets. These studies have several respects and much of the extensive reper- Dr Arthur Kaser, Department of Medicine, Division of also revealed how proper development and function of toire of immune cells and their characteristics are Gastroenterology and the intestinal immune system is dependent on its specific indeed unique to the intestine. -
Summary Analgesics Dec2019
Status as of December 31, 2019 UPDATE STATUS: N = New, A = Advanced, C = Changed, S = Same (No Change), D = Discontinued Update Emerging treatments for acute and chronic pain Development Status, Route, Contact information Status Agent Description / Mechanism of Opioid Function / Target Indication / Other Comments Sponsor / Originator Status Route URL Action (Y/No) 2019 UPDATES / CONTINUING PRODUCTS FROM 2018 Small molecule, inhibition of 1% diacerein TWi Biotechnology / caspase-1, block activation of 1 (AC-203 / caspase-1 inhibitor Inherited Epidermolysis Bullosa Castle Creek Phase 2 No Topical www.twibiotech.com NLRP3 inflamasomes; reduced CCP-020) Pharmaceuticals IL-1beta and IL-18 Small molecule; topical NSAID Frontier 2 AB001 NSAID formulation (nondisclosed active Chronic low back pain Phase 2 No Topical www.frontierbiotech.com/en/products/1.html Biotechnologies ingredient) Small molecule; oral uricosuric / anti-inflammatory agent + febuxostat (xanthine oxidase Gout in patients taking urate- Uricosuric + 3 AC-201 CR inhibitor); inhibition of NLRP3 lowering therapy; Gout; TWi Biotechnology Phase 2 No Oral www.twibiotech.com/rAndD_11 xanthine oxidase inflammasome assembly, reduced Epidermolysis Bullosa Simplex (EBS) production of caspase-1 and cytokine IL-1Beta www.arraybiopharma.com/our-science/our-pipeline AK-1830 Small molecule; tropomyosin Array BioPharma / 4 TrkA Pain, inflammation Phase 1 No Oral www.asahi- A (ARRY-954) receptor kinase A (TrkA) inhibitor Asahi Kasei Pharma kasei.co.jp/asahi/en/news/2016/e160401_2.html www.neurosmedical.com/clinical-research; -
About Pain Pharmacology: What Pain Physicians Should Know Kyung-Hoon Kim1, Hyo-Jung Seo1, Salahadin Abdi2, and Billy Huh2
Korean J Pain 2020;33(2):108-120 https://doi.org/10.3344/kjp.2020.33.2.108 pISSN 2005-9159 eISSN 2093-0569 Review Article All about pain pharmacology: what pain physicians should know Kyung-Hoon Kim1, Hyo-Jung Seo1, Salahadin Abdi2, and Billy Huh2 1Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Korea 2Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Received February 8, 2020 Revised March 12, 2020 From the perspective of the definition of pain, pain can be divided into emotional Accepted March 13, 2020 and sensory components, which originate from potential and actual tissue dam- age, respectively. The pharmacologic treatment of the emotional pain component Correspondence includes antianxiety drugs, antidepressants, and antipsychotics. The anti-anxiety Kyung-Hoon Kim drugs have anti-anxious, sedative, and somnolent effects. The antipsychotics are Department of Anesthesia and Pain effective in patients with positive symptoms of psychosis. On the other hand, the Medicine, Pusan National University sensory pain component can be divided into nociceptive and neuropathic pain. Yangsan Hospital, 20 Geumo-ro, Non-steroidal anti-inflammatory drugs (NSAIDs) and opioids are usually applied for Mulgeum-eup, Yangsan 50612, Korea Tel: +82-55-360-1422 somatic and visceral nociceptive pain, respectively; anticonvulsants and antide- Fax: +82-55-360-2149 pressants are administered for the treatment of neuropathic pain with positive and E-mail: [email protected] negative symptoms, respectively. The NSAIDs, which inhibit the cyclo-oxygenase pathway, exhibit anti-inflammatory, antipyretic, and analgesic effects; however, they have a therapeutic ceiling. -
Classification Decisions Taken by the Harmonized System Committee from the 47Th to 60Th Sessions (2011
CLASSIFICATION DECISIONS TAKEN BY THE HARMONIZED SYSTEM COMMITTEE FROM THE 47TH TO 60TH SESSIONS (2011 - 2018) WORLD CUSTOMS ORGANIZATION Rue du Marché 30 B-1210 Brussels Belgium November 2011 Copyright © 2011 World Customs Organization. All rights reserved. Requests and inquiries concerning translation, reproduction and adaptation rights should be addressed to [email protected]. D/2011/0448/25 The following list contains the classification decisions (other than those subject to a reservation) taken by the Harmonized System Committee ( 47th Session – March 2011) on specific products, together with their related Harmonized System code numbers and, in certain cases, the classification rationale. Advice Parties seeking to import or export merchandise covered by a decision are advised to verify the implementation of the decision by the importing or exporting country, as the case may be. HS codes Classification No Product description Classification considered rationale 1. Preparation, in the form of a powder, consisting of 92 % sugar, 6 % 2106.90 GRIs 1 and 6 black currant powder, anticaking agent, citric acid and black currant flavouring, put up for retail sale in 32-gram sachets, intended to be consumed as a beverage after mixing with hot water. 2. Vanutide cridificar (INN List 100). 3002.20 3. Certain INN products. Chapters 28, 29 (See “INN List 101” at the end of this publication.) and 30 4. Certain INN products. Chapters 13, 29 (See “INN List 102” at the end of this publication.) and 30 5. Certain INN products. Chapters 28, 29, (See “INN List 103” at the end of this publication.) 30, 35 and 39 6. Re-classification of INN products. -
(ESRA) Congress 2018: E-Poster Viewing Abstracts
ABSTRACTS Abstracts and Highlight Papers of the 37th Annual European Society of Regional Anaesthesia & Pain Therapy (ESRA) 09/12/2018 on 1ojZViL9JnKxduCRhL/CcUAdyL6WwH5REYdVcwxqSc9xlxx/plvdjx0D6qkdcm/unXYqc/pwzsZMkY20jLisd3HCPQMoaMFxd03QOXvy15geUE+CR4J9Wp+ug9E5C+r4spJuQLeaJ8i4wLCpNFrgQgvjevOlNs34 by https://journals.lww.com/rapm from Downloaded Congress 2018: E-Poster Viewing Abstracts Downloaded Background and Aims: Deviation of the spinal needle leads to technical dif- from ESRA8-0027 ficulties and can cause neurological complications. The aims of this study are, https://journals.lww.com/rapm E-POSTER VIEWING first, to verify in clinical conditions the results from in vitro studies that the de- viation of the cutting type spinal needle depends on the mutual position of the CENTRAL NERVE BLOCKS bevels (its own and that of the introducer); and second, to compare the incidence of paresthesia with two accesses - median or paramedian. ≥ COMPARING RESISTANCE TO WATER FLOW BETWEEN Methods: 210 patients, aged 18 years, presented for elective surgery were in- TWO SPINAL NEEDLES cluded in a prospective randomised study. Spinal anesthesia in all patients was by performed in a lateral position with 88 mm 25G Quincke with 38 mm 20G in- 1ojZViL9JnKxduCRhL/CcUAdyL6WwH5REYdVcwxqSc9xlxx/plvdjx0D6qkdcm/unXYqc/pwzsZMkY20jLisd3HCPQMoaMFxd03QOXvy15geUE+CR4J9Wp+ug9E5C+r4spJuQLeaJ8i4wLCpNFrgQgvjevOlNs34 Al-Ani T. Queen Elizabeth University Hospital, Anaesthesia, Glasgow, United Kingdom. troducer at L2-3 or L3-4. Paresthesia and the number of attempts have been doc- Background and Aims: This study compares resistance to water flow be- umented. Patient Randomization is a web-based Mersenne Twister algorithm at  tween the newly introduced Pajunk Sprotte® NRFit 25G 90mm spinal needle a 1:1 allocation.  and our department previously used Vygon Whitacre 25G 90mm spinal needle. -
Combining Immune Checkpoint Inhibitors: Established and Emerging Targets and Strategies to Improve Outcomes in Melanoma
King’s Research Portal DOI: 10.3389/fimmu.2019.00453 Document Version Publisher's PDF, also known as Version of record Link to publication record in King's Research Portal Citation for published version (APA): Khair, D. O., Bax, H. J., Mele, S., Crescioli, S., Pellizzari, G., Khiabany, A., Nakamura, M., Harris, R. J., French, E., Hoffmann, R. M., Williams, I. P., Cheung, K. K. A., Thair, B., Beales, C. T., Touizer, E., Signell, A. W., Tasnova, N. L., Spicer, J. F., Josephs, D. H., ... Karagiannis, S. N. (2019). Combining Immune Checkpoint Inhibitors: Established and Emerging Targets and Strategies to Improve Outcomes in Melanoma. Frontiers in Immunology , (MAR), [453]. https://doi.org/10.3389/fimmu.2019.00453 Citing this paper Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections. General rights Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights. •Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research. -
CAS Number Index
2334 CAS Number Index CAS # Page Name CAS # Page Name CAS # Page Name 50-00-0 905 Formaldehyde 56-81-5 967 Glycerol 61-90-5 1135 Leucine 50-02-2 596 Dexamethasone 56-85-9 963 Glutamine 62-44-2 1640 Phenacetin 50-06-6 1654 Phenobarbital 57-00-1 514 Creatine 62-46-4 1166 α-Lipoic acid 50-11-3 1288 Metharbital 57-22-7 2229 Vincristine 62-53-3 131 Aniline 50-12-4 1245 Mephenytoin 57-24-9 1950 Strychnine 62-73-7 626 Dichlorvos 50-23-7 1017 Hydrocortisone 57-27-2 1428 Morphine 63-05-8 127 Androstenedione 50-24-8 1739 Prednisolone 57-41-0 1672 Phenytoin 63-25-2 335 Carbaryl 50-29-3 569 DDT 57-42-1 1239 Meperidine 63-75-2 142 Arecoline 50-33-9 1666 Phenylbutazone 57-43-2 108 Amobarbital 64-04-0 1648 Phenethylamine 50-34-0 1770 Propantheline bromide 57-44-3 191 Barbital 64-13-1 1308 p-Methoxyamphetamine 50-35-1 2054 Thalidomide 57-47-6 1683 Physostigmine 64-17-5 784 Ethanol 50-36-2 497 Cocaine 57-53-4 1249 Meprobamate 64-18-6 909 Formic acid 50-37-3 1197 Lysergic acid diethylamide 57-55-6 1782 Propylene glycol 64-77-7 2104 Tolbutamide 50-44-2 1253 6-Mercaptopurine 57-66-9 1751 Probenecid 64-86-8 506 Colchicine 50-47-5 589 Desipramine 57-74-9 398 Chlordane 65-23-6 1802 Pyridoxine 50-48-6 103 Amitriptyline 57-92-1 1947 Streptomycin 65-29-2 931 Gallamine 50-49-7 1053 Imipramine 57-94-3 2179 Tubocurarine chloride 65-45-2 1888 Salicylamide 50-52-2 2071 Thioridazine 57-96-5 1966 Sulfinpyrazone 65-49-6 98 p-Aminosalicylic acid 50-53-3 426 Chlorpromazine 58-00-4 138 Apomorphine 66-76-2 632 Dicumarol 50-55-5 1841 Reserpine 58-05-9 1136 Leucovorin 66-79-5 -
HY 2021 Results
Roche HY 2021 results Basel, 22 July 2021 This presentation contains certain forward-looking statements. These forward-looking statements may be identified by words such as ‘believes’, ‘expects’, ‘anticipates’, ‘projects’, ‘intends’, ‘should’, ‘seeks’, ‘estimates’, ‘future’ or similar expressions or by discussion of, among other things, strategy, goals, plans or intentions. Various factors may cause actual results to differ materially in the future from those reflected in forward-looking statements contained in this presentation, among others: 1 pricing and product initiatives of competitors; 2 legislative and regulatory developments and economic conditions; 3 delay or inability in obtaining regulatory approvals or bringing products to market; 4 fluctuations in currency exchange rates and general financial market conditions; 5 uncertainties in the discovery, development or marketing of new products or new uses of existing products, including without limitation negative results of clinical trials or research projects, unexpected side-effects of pipeline or marketed products; 6 increased government pricing pressures; 7 interruptions in production; 8 loss of or inability to obtain adequate protection for intellectual property rights; 9 litigation; 10 loss of key executives or other employees; and 11 adverse publicity and news coverage. Any statements regarding earnings per share growth is not a profit forecast and should not be interpreted to mean that Roche’s earnings or earnings per share for this year or any subsequent period will necessarily match or exceed the historical published earnings or earnings per share of Roche. For marketed products discussed in this presentation, please see full prescribing information on our website www.roche.com All mentioned trademarks are legally protected. -
Mirogabalin: Could It Be the Next Generation Gabapentin Or Pregabalin? Jae-Yeon Kim1, Salahadin Abdi2, Billy Huh2, and Kyung-Hoon Kim1
Korean J Pain 2021;34(1):4-18 https://doi.org/10.3344/kjp.2021.34.1.4 pISSN 2005-9159 eISSN 2093-0569 Review Article Mirogabalin: could it be the next generation gabapentin or pregabalin? Jae-Yeon Kim1, Salahadin Abdi2, Billy Huh2, and Kyung-Hoon Kim1 1Department of Anesthesia and Pain Medicine, Pusan National University School of Medicine, Yangsan, Korea 2Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Received November 30, 2020 Revised December 15, 2020 Except for carbamazepine for trigeminal neuralgia, gabapentinoid anticonvulsants Accepted December 22, 2020 have been the standard for the treatment of neuropathic pain. Pregabalin, which followed gabapentin, was developed with the benefit of rapid peak blood concen- Handling Editor: Francis S. Nahm tration and better bioavailability. Mirogabalin besylate (DS-5565, Tarlige®) shows greater sustained analgesia due to a high affinity to, and slow dissociation from, the Correspondence α2δ-1 subunits in the dorsal root ganglion (DRG). Additionally, it produces a lower Kyung-Hoon Kim level of central nervous system-specific adverse drug reactions (ADRs), due to a low Pain Clinic, Pusan National University affinity to, and rapid dissociation from, the α δ-2 subunits in the cerebellum. Maxi- Yangsan Hospital, 20 Geumo-ro, 2 mum plasma concentration is achieved in less than 1 hour, compared to 1 hour Mulgeum-eup, Yangsan 50612, Korea Tel: +82-55-360-1422 for pregabalin and 3 hours for gabapentin. The plasma protein binding is relatively Fax: +82-55-360-2149 low, at less than 25%. As with all gabapentinoids, it is also largely excreted via the E-mail: [email protected] kidneys in an unchanged form, and so the administration dose should also be ad- justed according to renal function. -
On the Horizon: Immuno-Oncology (I-O) Combinations
Immuno-Oncology (I-O) Combinations • Jeffrey A. Sosman, MD • Robert H. Lurie Comprehensive Cancer Center of Northwestern University The Cancer–Immunity Cycle Daniel Chen and Ira Mellman Immunity, Volume 39, Issue 1, 2013, 1 - 10 The Cancer–Immunity Cycle Daniel Chen and Ira Mellman Immunity, Volume 39, Issue 1, 2013, 1 - 10 Stimulatory and Inhibitory Factors in the Cancer-Immunity Cycle Each step of the Cancer-Immunity Cycle requires the coordination of numerous factors, both stimulatory and inhibitory in nature. Stimulatory factors shown in green promote immunity, ... Where will Improvements come from? • Combinations: – Based on Template: anti-PD-1/PD-L1 or with anti-PD- 1/anti-CTLA-4 • Block other co-inhibitory: LAG3, TIM3, KIR, VISTA • Activate co-stimulatory: 4-1BB, OX-40, GITR, CD27, ICOS • Block inhibitory molecules- IDOi, TGFbi, CSF1Ri, anti-IL-6 or anti- IL-10 • Effect trafficking- anti-VEGF, CCL5, CXCR4i • Vaccines- TVEC- oncolytic virus, Neoantigen, other cellular • Adoptive Cellular therapy- TIL, CAR-T cells, TCR T-cells Where will Improvements come from? • Combinations: – Based on Template: anti-PD-1/PD-L1 or with anti-PD- 1/anti-CTLA-4 • Signal Inhibition, BRAF directed (BRAFi+MEKi), MEKi, PI3K inhibition (PTEN effects) • Cytokines- IL-2, IFN a,b,g,, Directed cytokines (FAP-IL-2v or CEA-IL-2v) • Epigenetic modulation- gene expression and EVR expression • Microbiome modification- fecal transplants • Chemotherapy other cytotoxics • Localized Irradiation SBRT, SRS T cells in Tumors Express Multiple Immunoinhibitory Receptors -
The Evolving Landscape of `Next-Generation' Immune
European Journal of Cancer 117 (2019) 14e31 Available online at www.sciencedirect.com ScienceDirect journal homepage: www.ejcancer.com Review The evolving landscape of ‘next-generation’ immune checkpoint inhibitors: A review Luca Mazzarella a, Bruno Achutti Duso a, Dario Trapani a,b, Carmen Belli a, Paolo D’Amico a,b, Emanuela Ferraro a,b, Giulia Viale a,b, Giuseppe Curigliano a,b,* a New Drugs and Early Drug Development for Innovative Therapies Division, IEO, European Institute of Oncology IRCCS, Milan, Italy b University of Milano, Department of Hematology and Hemato-Oncology, Italy Received 17 March 2019; received in revised form 23 April 2019; accepted 26 April 2019 Available online 21 June 2019 KEYWORDS Abstract ‘First-generation’ immune checkpoint inhibitors targeting Cytotoxic T-Lympho- Next generation cyte Antigen 4 (CTLA4) and Programmed death-ligand 1 (PD(L)1) have undoubtedly revolu- immune-checkpoints; tionised the treatment of multiple cancers in the advanced setting. Targeting signalling LAG3; pathways other than core inhibitory modules may strongly impact the outcome of the antitu- TIGIT; mour immune response. Drugs targeting these pathways (‘next-generation’ immune modula- TIM3; tors, NGIMs) constitute a major frontier in translational research and have generated 4-1BB; unprecedented scientific and financial investment. Here, we systematically reviewed published IDO1; literature, abstracts from major cancer conferences and pharma pipelines to identify NGIMs GITR; that have reached clinical development. We identified 107 molecules targeting 16 pathways, Colony stimulating which we classified into 6 groups according to function (inhibitory vs stimulatory) and cell factor-1 (CSF-1) of predominant expression (lymphoid, non-lymphoid and natural killer). -
Immunfarmakológia Immunfarmakológia
Gergely: Immunfarmakológia Immunfarmakológia Prof Gergely Péter Az immunpatológiai betegségek döntő többsége gyulladásos, és ennek következtében általában szövetpusztulással járó betegség, melyben – jelenleg – a terápia alapvetően a gyulladás csökkentésére és/vagy megszűntetésére irányul. Vannak kizárólag gyulladásgátló gyógyszereink és vannak olyanok, amelyek az immunreakció(k) bénításával (=immunszuppresszió révén) vagy emellett vezetnek a gyulladás mérsékléséhez. Mind szerkezetileg, mind hatástanilag igen sokféle csoportba oszthatók, az alábbi felosztás elsősorban didaktikus célokat szolgál. 1. Nem-szteroid gyulladásgátlók (‘nonsteroidal antiinflammatory drugs’ NSAID) 2. Kortikoszteroidok 3. Allergia-elleni szerek (antiallergikumok) 4. Sejtoszlás-gátlók (citosztatikumok) 5. Nem citosztatikus hatású immunszuppresszív szerek 6. Egyéb gyulladásgátlók és immunmoduláns szerek 7. Biológiai terápia 1. Nem-szteroid gyulladásgátlók (NSAID) Ezeket a vegyületeket, melyek őse a szalicilsav (jelenleg, mint acetilszalicilsav ‘aszpirin’ használatos), igen kiterjedten alkalmazzák a reumatológiában, az onkológiában és az orvostudomány szinte minden ágában, ahol fájdalom- és lázcsillapításra van szükség. Egyes felmérések szerint a betegek egy ötöde szed valamilyen NSAID készítményt. Szerkezetük alapján a készítményeket több csoportba sorolhatjuk: szalicilátok (pl. acetilszalicilsav) pyrazolidinek (pl. fenilbutazon) ecetsav származékok (pl. indometacin) fenoxiecetsav származékok (pl. diclofenac, aceclofenac)) oxicamok (pl. piroxicam, meloxicam) propionsav