Bézier Curves

Total Page:16

File Type:pdf, Size:1020Kb

Bézier Curves Bézier Curves Kristine Harwood Iowa State University MSM Creative Component Spring 2009 Heather Bolles, Major Professor Irvin Hentzel, Major Professor Larry Ebbers, Committee Member Where Bézier Curves originated and where they are used page 3 Bézier Curves – Parametric Equations page 5 Bézier Curves on Geometer’s Sketch Pad page 15 Connecting the graph to Algebra page 23 Looking at Bézier Curves with an Excel spreadsheet page 25 Bézier Curves and Fonts page 29 Bézier Curves – the Basics for Students page 37 Classroom exercises page 41 Graphing Calculator Excel Spreadsheet Challenge Problems Bibliography page 48 2 Where Bézier curves originated and where they are used Pierre Bézier (1910-1999) was a French engineer who worked for many years at the Renault automobile company. In the 1960’s and 1970’s he developed a method of producing computer-driven curves to be used in the design of automobiles which came to be known as Bézier curves (Staples, 2005). Bézier curves are used because of their flexibility and high adaptability. While the points of the curve can be attached to a Cartesian coordinate system, they also behave intuitively for the non- mathematician. They can be made to any length and variety of shape, by attaching the endpoint of one curve to the beginning point of another. They can be expanded to make Bézier surfaces and B-splines, both topics that will not be covered in this paper, but which are highly interesting to those who work in computer design programs. I was first intrigued with Bézier curves during a computer algorithms course. The subject was mentioned only briefly, and the idea of a curve being influenced by points that were not on it was one that tugged at my imagination. As I have investigated and become familiar with these curves, I have found another truth – they beg to be played with, much like a wireless puppet. It is near impossible to make a Bézier curve and not move points about to change the shape. On a more intellectual level, these curves have helped me see more clearly how parametric equations behave and can be developed into increasingly complex representations. Professional designers respect Bézier curves (Kirsanov, 1999). The author acknowledges the usefulness and versatility of Bézier curves without delving into the mathematics. He demonstrates the usefulness of these curves in expression and gives numerous artistic and design examples. Mathematicians seem to like them for their connection between usefulness in industry, the connectedness between equation and graph, and the relative ease with which they can be connected together to form an impressive and flexible curve. S.G. Hoggar (2006) describes them as the basis for 3 more complicated B-splines. B-splines are formed in a manner similar to connecting a number of Bézier curves together at their endpoints. Both are used to create and analyze curves in computer imagery. An internet search today finds the term “Bézier curves” in computer graphic design, digitizing and animation programs and mentioned specifically as used in the programs Inkscape, Adobe Illustrator, Adobe Photoshop, General Image Manipulation Program, Adobe Flash, Adobe After Effects, Macromedia Freehand, and Microsoft Expression Blend. Bézier curves are the basis for many computer generated fonts, most notably Adobe Type fonts. There is a wide variety of font styles, as is apparent to the user of any word processing program. The advantage to a font using a basis of Bézier curves is that the character’s size is easily scalable. Since Bézier curves are vector drawings, the lines they produce remain crisp and sharp when they are enlarged. By comparison, a raster image is formed by pixels, and this type of image loses sharpness as it is enlarged, showing the box-like pixels on its edges. (Groleau, 2002) The Bézier curve provides a meaningful bridge between algebraic equation and graceful curve. Through the use of parametric equations and dynamic graphing, an elegant and flexible curve can be produced. Throughout this paper, parametric equations and the mathematics of a Bézier curve will be explored. Graphs and constructions will be displayed using a variety of technology programs. Several exercises linking the two will be presented and an introduction for students and a sampling of student activities will complete the paper. 4 Bézier Curves – Parametric Equations The equations for Bézier curves are parametric equations. A parametric representation is a curve that is determined by coordinate pairs of (x,y) points graphed on an x-y plane but in which the y value is not determined directly from the x-value nor is the x-value determined from the y-value. The two values of the point are determined separately with another variable, the parameter, which many times is the variable t and represents a time variable (Purcell and Varberg, 1984). A straight line can be determined by a pair of parametric equations. Let a segment begin at point A and end at point B. Let the external parameter be t. Since the segment has a beginning and end, the parameter must be on a closed interval. Let the beginning of the interval be at t = 0 and let it end at t = 1. The equation for x will need to be calculable from the x-value at endpoint A when t = 0 to the x- value at endpoint B when t = 1. To determine the parametric equation, the x-value at A (call this ax) is multiplied by (1 - t) and added to the x-value at B (call this bx) multiplied by t. Therefore the parametric equation for the x-variable of a straight line can be expressed as: x = f(t) = (1 – t) ax + t·bx Similarly, the y-value can be calculated as: A(ax,ay) B (bx,by) y = g(t) = (1 – t) ay + t·by If the two endpoints of the segment are B and C, the parametric equations are: x = f(t) = (1 – t) bx + t·cx B (bx,by) C (cx,cy) y = g(t) = (1 – t) by + t·cy 5 Consider a point P1, determined by a certain ratio along AB . A P1 B Consider another point, Q1, determined by the same ratio along BC . B Q C 1 Since the two ratios are the same, they can be considered as having the same t-value. If this new point, P1, on moves, the new point on , Q1, moves as well, always with the same ratio. A P1 A B C Q1 P1 A B Q1 C P1 B C Q1 6 Consider the segment between these two new points, P1QAB1 . Consider a point, P2, determined using the the same ratio (and the same t –value) along this line segment. A BC P1 P2 B Q1 C Now there are three places where the t-value is at work; in on point P1, in on point Q1, and in and point P2. A A P1 P2 B Q1 C P1 P2 B Q1 C 7 The curve traced by this inner third moving point (P2) is the Bézier curve. The equation for this curve of points can be arrived at by using the beginning x – value of segment AB , i.e. (1 – t) ax + t·bx and the ending x-value of segment AC, ie. (1 – t) bx + t·cx, since that is where the path starts and where it ends after tracing its curve from t = 0 to t = 1. Apply the original parametric equation f(t) = (1 – t) ax + t·bx, we arrive at fx(t) = (1 – t) [ (1 – t) ax + t·bx] + (t) [ (1 – t) bx + t·cx] 2 Simplifying fx(t) = (1 – t) ax + t(1 – t) bx + (1 – t) (t) bx + t(t) ·cx 2 2 = (1 – t) ax + 2t(1 – t) bx + t cx 2 2 Similarly gy(t) = (1 – t) ay + 2t(1 – t) by + t ·cy This is a quadratic equation and is the equation for a Bézier curve with two endpoints and one control point. This equation can also be arrived at by using the moving t parts; (1 – t) + t, and squaring: [(1 – t) + t]2 = (1 – t)2 + 2t(1-t) + t2 and including as coefficients the values of each of the three points: 2 2 fx(t) = (1 – t) ax + 2t(1 – t) bx + t cx 2 2 gy(t) = (1 – t) ay + 2t(1 – t) by + t cy For a cubic equation, that is, for the equation of a Bézier curve with two endpoints and two control points, we can cube this expression: [(1 – t) + t]3 = (1-t)3 + 3t(1-t)2 + 3t2(1-t) + t3 and inserting coefficients, arrive at the equations: 8 3 2 2 3 fx(t) = (1-t) ax + 3t(1-t) bx + 3t (1-t) cx + t dx 3 2 2 3 gy(t) = (1-t) ay + 3t(1-t) by + 3t (1-t) cy + t dy The equation can continue to be made more complex and raised to a higher degree. Add a third control point and we reach a fourth degree polynomial with coefficients derived from the binomial theorem: 4 3 2 2 3 1 4 fx(t) = (1-t) ax + 4t(1-t) bx + 6t (1-t) cx + 4dxt (1-t) dx + t ex 4 3 2 2 3 1 4 gy(t) = (1-t) ay + 4t(1-t) by + 6t (1-t) cy + 4t (1-t) dy + t ey As a control point is added, another segment is added as well as an increasing number of moving points determined by the t-variable. For each additional point, another term is added to the polynomial, the degree of the equation increases, and the coefficients follow the pattern identified with the binomial theorem.
Recommended publications
  • Parametric Surfaces and 16.6 Their Areas Parametric Surfaces
    Parametric Surfaces and 16.6 Their Areas Parametric Surfaces 2 Parametric Surfaces Similarly to describing a space curve by a vector function r(t) of a single parameter t, a surface can be expressed by a vector function r(u, v) of two parameters u and v. Suppose r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k is a vector-valued function defined on a region D in the uv-plane. So x, y, and, z, the component functions of r, are functions of the two variables u and v with domain D. The set of all points (x, y, z) in R3 s.t. x = x(u, v), y = y(u, v), z = z(u, v) and (u, v) varies throughout D, is called a parametric surface S. Typical surfaces: Cylinders, spheres, quadric surfaces, etc. 3 Example 3 – Important From Book The vector equation of a plane through (x0, y0, z0) and containing vectors is rather 4 Example – Point on Surface? Does the point (2, 3, 3) lie on the given surface? How about (1, 2, 1)? 5 Example – Identify the Surface Identify the surface with the given vector equation. 6 Example – Identify the Surface Identify the surface with the given vector equation. 7 Example – Find a Parametric Equation The part of the hyperboloid –x2 – y2 + z = 1 that lies below the rectangle [–1, 1] X [–3, 3]. 8 Example – Find a Parametric Equation The part of the cylinder x2 + z2 = 1 that lies between the planes y = 1 and y = 3. 9 Example – Find a Parametric Equation Part of the plane z = 5 that lies inside the cylinder x2 + y2 = 16.
    [Show full text]
  • Multivariable and Vector Calculus
    Multivariable and Vector Calculus Lecture Notes for MATH 0200 (Spring 2015) Frederick Tsz-Ho Fong Department of Mathematics Brown University Contents 1 Three-Dimensional Space ....................................5 1.1 Rectangular Coordinates in R3 5 1.2 Dot Product7 1.3 Cross Product9 1.4 Lines and Planes 11 1.5 Parametric Curves 13 2 Partial Differentiations ....................................... 19 2.1 Functions of Several Variables 19 2.2 Partial Derivatives 22 2.3 Chain Rule 26 2.4 Directional Derivatives 30 2.5 Tangent Planes 34 2.6 Local Extrema 36 2.7 Lagrange’s Multiplier 41 2.8 Optimizations 46 3 Multiple Integrations ........................................ 49 3.1 Double Integrals in Rectangular Coordinates 49 3.2 Fubini’s Theorem for General Regions 53 3.3 Double Integrals in Polar Coordinates 57 3.4 Triple Integrals in Rectangular Coordinates 62 3.5 Triple Integrals in Cylindrical Coordinates 67 3.6 Triple Integrals in Spherical Coordinates 70 4 Vector Calculus ............................................ 75 4.1 Vector Fields on R2 and R3 75 4.2 Line Integrals of Vector Fields 83 4.3 Conservative Vector Fields 88 4.4 Green’s Theorem 98 4.5 Parametric Surfaces 105 4.6 Stokes’ Theorem 120 4.7 Divergence Theorem 127 5 Topics in Physics and Engineering .......................... 133 5.1 Coulomb’s Law 133 5.2 Introduction to Maxwell’s Equations 137 5.3 Heat Diffusion 141 5.4 Dirac Delta Functions 144 1 — Three-Dimensional Space 1.1 Rectangular Coordinates in R3 Throughout the course, we will use an ordered triple (x, y, z) to represent a point in the three dimensional space.
    [Show full text]
  • Math 1300 Section 4.8: Parametric Equations A
    MATH 1300 SECTION 4.8: PARAMETRIC EQUATIONS A parametric equation is a collection of equations x = x(t) y = y(t) that gives the variables x and y as functions of a parameter t. Any real number t then corresponds to a point in the xy-plane given by the coordi- nates (x(t); y(t)). If we think about the parameter t as time, then we can interpret t = 0 as the point where we start, and as t increases, the parametric equation traces out a curve in the plane, which we will call a parametric curve. (x(t); y(t)) • The result is that we can \draw" curves just like an Etch-a-sketch! animated parametric circle from wolfram Date: 11/06. 1 4.8 2 Let's consider an example. Suppose we have the following parametric equation: x = cos(t) y = sin(t) We know from the pythagorean theorem that this parametric equation satisfies the relation x2 + y2 = 1 , so we see that as t varies over the real numbers we will trace out the unit circle! Lets look at the curve that is drawn for 0 ≤ t ≤ π. Just picking a few values we can observe that this parametric equation parametrizes the upper semi-circle in a counter clockwise direction. (0; 1) • t x(t) y(t) 0 1 0 p p π 2 2 •(1; 0) 4 2 2 π 2 0 1 π -1 0 Looking at the curve traced out over any interval of time longer that 2π will indeed trace out the entire circle.
    [Show full text]
  • Parametric Curves You Should Know
    Parametric Curves You Should Know Straight Lines Let a and c be constants which are not both zero. Then the parametric equations determining the straight line passing through (b; d) with slope c=a (i.e., the line y − d = c=a(x − b)) are: x(t) = at + b ; −∞ < t < 1: y(t) = ct + d Note that when c = 0, the line is horizontal of the form y = d, and when a = 0, the line is vertical of the form x = b. 15 10 x(t)= 2t+ 3, y(t)=t+4 5 x(t)=3-2t, y(t)= 2t+1 �������� x(t)=t+ 2, y(t)=3- 3t x(t)= 3, y(t)=2+ 3t -10 -5 5 10 15 x(t)=2+3t, y(t)=3 -5 -10 Figure 1 A collection of lines whose parametric equations are given as above. Circles Let r > 0 and let x0 and y0 be real numbers. Then the parametric equations determining the circle of radius r centered at (x0; y0) are: x(t) = r cos t + x 0 ; 0 < t < 2π: (1) y(t) = r sin t + y0 To get a circular arc instead of the full circle, restrict the t-values in (1) to t1 < t < t2. 1 1 1 2 3 4 5 2 3 4 5 (3,-1) -1 -1 (3,-1) -2 -2 -3 -3 (a) 0 ≤ t ≤ 2π (b) π=4 ≤ t ≤ 7π=6 Figure 2 The circle x(t) = 2 cos t + 3, y(t) = 2 sin t − 1 and a circular arc thereof. Note that the center is at (3; 1).
    [Show full text]
  • Polynomial Curves and Surfaces
    Polynomial Curves and Surfaces Chandrajit Bajaj and Andrew Gillette September 8, 2010 Contents 1 What is an Algebraic Curve or Surface? 2 1.1 Algebraic Curves . .3 1.2 Algebraic Surfaces . .3 2 Singularities and Extreme Points 4 2.1 Singularities and Genus . .4 2.2 Parameterizing with a Pencil of Lines . .6 2.3 Parameterizing with a Pencil of Curves . .7 2.4 Algebraic Space Curves . .8 2.5 Faithful Parameterizations . .9 3 Triangulation and Display 10 4 Polynomial and Power Basis 10 5 Power Series and Puiseux Expansions 11 5.1 Weierstrass Factorization . 11 5.2 Hensel Lifting . 11 6 Derivatives, Tangents, Curvatures 12 6.1 Curvature Computations . 12 6.1.1 Curvature Formulas . 12 6.1.2 Derivation . 13 7 Converting Between Implicit and Parametric Forms 20 7.1 Parameterization of Curves . 21 7.1.1 Parameterizing with lines . 24 7.1.2 Parameterizing with Higher Degree Curves . 26 7.1.3 Parameterization of conic, cubic plane curves . 30 7.2 Parameterization of Algebraic Space Curves . 30 7.3 Automatic Parametrization of Degree 2 Curves and Surfaces . 33 7.3.1 Conics . 34 7.3.2 Rational Fields . 36 7.4 Automatic Parametrization of Degree 3 Curves and Surfaces . 37 7.4.1 Cubics . 38 7.4.2 Cubicoids . 40 7.5 Parameterizations of Real Cubic Surfaces . 42 7.5.1 Real and Rational Points on Cubic Surfaces . 44 7.5.2 Algebraic Reduction . 45 1 7.5.3 Parameterizations without Real Skew Lines . 49 7.5.4 Classification and Straight Lines from Parametric Equations . 52 7.5.5 Parameterization of general algebraic plane curves by A-splines .
    [Show full text]
  • Lecture 1: Explicit, Implicit and Parametric Equations
    4.0 3.5 f(x+h) 3.0 Q 2.5 2.0 Lecture 1: 1.5 Explicit, Implicit and 1.0 Parametric Equations 0.5 f(x) P -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.5 1.0 1.5 2.0 2.5 3.0 3.5 x x+h -0.5 -1.0 Chapter 1 – Functions and Equations Chapter 1: Functions and Equations LECTURE TOPIC 0 GEOMETRY EXPRESSIONS™ WARM-UP 1 EXPLICIT, IMPLICIT AND PARAMETRIC EQUATIONS 2 A SHORT ATLAS OF CURVES 3 SYSTEMS OF EQUATIONS 4 INVERTIBILITY, UNIQUENESS AND CLOSURE Lecture 1 – Explicit, Implicit and Parametric Equations 2 Learning Calculus with Geometry Expressions™ Calculus Inspiration Louis Eric Wasserman used a novel approach for attacking the Clay Math Prize of P vs. NP. He examined problem complexity. Louis calculated the least number of gates needed to compute explicit functions using only AND and OR, the basic atoms of computation. He produced a characterization of P, a class of problems that can be solved in by computer in polynomial time. He also likes ultimate Frisbee™. 3 Chapter 1 – Functions and Equations EXPLICIT FUNCTIONS Mathematicians like Louis use the term “explicit function” to express the idea that we have one dependent variable on the left-hand side of an equation, and all the independent variables and constants on the right-hand side of the equation. For example, the equation of a line is: Where m is the slope and b is the y-intercept. Explicit functions GENERATE y values from x values.
    [Show full text]
  • Plotting Circles and Ellipses Parametrically Example 1: the Unit Circle
    Lesson 1 Plotting Circles and Ellipses Parametrically Example 1: The Unit Circle Let's compare traditional and parametric equations for the unit circle : Traditional : Parametric : x22 y 1 x(t) cos(t) y(t) sin(t) P(t) cos(t),sin(t) t is called a parameter 0 t 2 You can see that the parametric equation satisfies the traditional equation by substituting one into the other: x22 y 1 (cos(t))22 (sin(t)) 1 11 Created by Christopher Grattoni. All rights reserved. Example 2: Circle of Radius r Let's compare traditional and parametric equations for a circle of radius r centeredTraditional at the : origin : Parametric : 2 2 2 x y r x(t) r cos(t) y(t) r sin(t) P(t) r cos(t),sin(t) 0 t 2 Orientation: Counterclockwise Think of this as dilating the unit circle by a factor of r. Created by Christopher Grattoni. All rights reserved. Example 3: Recentering the Circle Let's compare traditional and parametric equations for a circle of radius r centeredTraditional at (h,k) : : Parametric : 2 2 2 (x h) (y k) r x(t) r cos(t) h y(t) r sin(t) k P(t) r cos(t),sin(t) (h,k) 0 t 2 Think of this as dilating the unit circle by a factor of r and translating by the point (h,k). Let's add the orientation: Created by Christopher Grattoni. All rights reserved. Example 4: Ellipses Let's compare traditional and parametric equations for an ellipse centeredTraditional at (h,k) : : Parametric : 2 2 xh yk x(t) acos(t) h 1 ab y(t) bsin(t) k P(t) acos(t),bsin(t) (h,k) 0 t 2 Think of this as dilating the unit circle by a factor of "a" in the x-direction, a factor of "b" in the y-direction, and translated by the Created by Christopherpoint Grattoni.
    [Show full text]
  • Parametric Curves in the Plane
    Parametric Curves in the Plane Purpose The purpose of this lab is to introduce you to curve computations using Maple for para- metric curves and vector-valued functions in the plane. Background By parametric curve in the plane, we mean a pair of equations x = f(t) and y = g(t) for t in some interval I. A vector-valued function in the plane is a function r(t) that associates a vector in the plane with each value of t in its domain. Such a vector valued function can always be written in component form as follows, r(t) = f(t)i + g(t)j where f and g are functions defined on some interval I. From our definition of a para- metric curve, it should be clear that you can always associate a parametric curve with a vector-valued function by just considering the curve traced out by the head of the vector. Defining parametric curves and vector valued functions simply in Maple The easiest way to define a vector function or a parametric curve is to use the Maple list notaion with square brackets[]. Strictly speaking, this does not define something that Maple recognizes as a vector, but it will work with all of the commands you need for this lab. >f:=t->[2*cos(t),2*sin(t)]; You can evaluate this function at any value of t in the usual way. >f(0); This is how to access a single component. You would use f(t)[2] to get the second component. >f(t)[1] Plotting and animating curves in the plane The ParamPlot command is in the CalcP package so you have to load it first.
    [Show full text]
  • Radius-Of-Curvature.Pdf
    CHAPTER 5 CURVATURE AND RADIUS OF CURVATURE 5.1 Introduction: Curvature is a numerical measure of bending of the curve. At a particular point on the curve , a tangent can be drawn. Let this line makes an angle Ψ with positive x- axis. Then curvature is defined as the magnitude of rate of change of Ψ with respect to the arc length s. Ψ Curvature at P = It is obvious that smaller circle bends more sharply than larger circle and thus smaller circle has a larger curvature. Radius of curvature is the reciprocal of curvature and it is denoted by ρ. 5.2 Radius of curvature of Cartesian curve: ρ = = (When tangent is parallel to x – axis) ρ = (When tangent is parallel to y – axis) Radius of curvature of parametric curve: ρ = , where and – Example 1 Find the radius of curvature at any pt of the cycloid , – Solution: Page | 1 – and Now ρ = = – = = =2 Example 2 Show that the radius of curvature at any point of the curve ( x = a cos3 , y = a sin3 ) is equal to three times the lenth of the perpendicular from the origin to the tangent. Solution : – – – = – 3a [–2 cos + ] 2 3 = 6 a cos sin – 3a cos = Now = – = Page | 2 = – – = – – = = 3a sin …….(1) The equation of the tangent at any point on the curve is 3 3 y – a sin = – tan (x – a cos ) x sin + y cos – a sin cos = 0 ……..(2) The length of the perpendicular from the origin to the tangent (2) is – p = = a sin cos ……..(3) Hence from (1) & (3), = 3p Example 3 If & ' are the radii of curvature at the extremities of two conjugate diameters of the ellipse = 1 prove that Solution: Parametric equation of the ellipse is x = a cos , y=b sin = – a sin , = b cos = – a cos , = – b sin The radius of curvature at any point of the ellipse is given by = = – – – – – Page | 3 = ……(1) For the radius of curvature at the extremity of other conjugate diameter is obtained by replacing by + in (1).
    [Show full text]
  • Math 123: Calculus on Parametric Curves
    Math 123: Calculus on Parametric Curves Ryan Blair CSU Long Beach Tuesday April 26, 2016 Ryan Blair (CSULB) Math 123: Calculus on Parametric Curves Tuesday April 26, 2016 1 / 7 Outline 1 Parametric Curves 2 Derivatives of parametric curves Ryan Blair (CSULB) Math 123: Calculus on Parametric Curves Tuesday April 26, 2016 2 / 7 Example: Find the parametric equation for the unit circle in the plane. Example: Find the parametric equation for the portion of the circle of radius R in the 3rd quadrant. Give the terminal point and the initial point. Example: All graphs of functions in can be represented as a parametric curve. Parametric Curves Parametric Curves Curves in the plane that are not graphs of functions can often be represented by parametric curves. Definition A parametric curve in the xy-plane is given by x = f (t) and y = g(t) for t 2 [a; b]. Ryan Blair (CSULB) Math 123: Calculus on Parametric Curves Tuesday April 26, 2016 3 / 7 Example: Find the parametric equation for the portion of the circle of radius R in the 3rd quadrant. Give the terminal point and the initial point. Example: All graphs of functions in can be represented as a parametric curve. Parametric Curves Parametric Curves Curves in the plane that are not graphs of functions can often be represented by parametric curves. Definition A parametric curve in the xy-plane is given by x = f (t) and y = g(t) for t 2 [a; b]. Example: Find the parametric equation for the unit circle in the plane. Ryan Blair (CSULB) Math 123: Calculus on Parametric Curves Tuesday April 26, 2016 3 / 7 Example: All graphs of functions in can be represented as a parametric curve.
    [Show full text]
  • Calculus 2 Tutor Worksheet 12 Surface Area of Revolution In
    Calculus 2 Tutor Worksheet 12 Surface Area of Revolution in Parametric Equations Worksheet for Calculus 2 Tutor, Section 12: Surface Area of Revolution in Parametric Equations 1. For the function given by the parametric equation x = t; y = 1: (a) Find the surface area of f rotated about the x-axis as t goes from t = 0 to t = 1; (b) Find the surface area of f rotated about the x-axis as t goes from t = 0 to t = T for any T > 0; (c) What is the Cartesian equation for this function? (d) What is the surface of rotation in geometric terms? Compare the results of the above questions to the geometric formula for the surface area of this shape. c 2018 MathTutorDVD.com 1 2. For the function given by the parametric equation x = t; y = 2t + 1: (a) Find the surface area of f rotated about the x-axis as t goes from t = 0 to t = 1; (b) Find the surface area of f rotated about the x-axis as t goes from t = 0 to t = T for any T > 0; (c) What is the Cartesian equation for this function? (d) What is the surface of rotation in geometric terms? Compare the results of the above questions to the geometric formula for the surface area of this shape. 3. For the function given by the parametric equation x = 2t + 1; y = t: (a) Find the surface area of f rotated about the x-axis as t goes from t = 0 to t = 1; c 2018 MathTutorDVD.com 2 (b) Find the surface area of f rotated about the x-axis as t goes from t = 0 to t = T for any T > 0; (c) What is the Cartesian equation for this function? (d) What is this function in geometric terms? Compare the results of the above ques- tions to the geometric formula for the surface area of this shape.
    [Show full text]
  • Differential Geometry
    ALAGAPPA UNIVERSITY [Accredited with ’A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle and Graded as Category–I University by MHRD-UGC] (A State University Established by the Government of Tamilnadu) KARAIKUDI – 630 003 DIRECTORATE OF DISTANCE EDUCATION III - SEMESTER M.Sc.(MATHEMATICS) 311 31 DIFFERENTIAL GEOMETRY Copy Right Reserved For Private use only Author: Dr. M. Mullai, Assistant Professor (DDE), Department of Mathematics, Alagappa University, Karaikudi “The Copyright shall be vested with Alagappa University” All rights reserved. No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the Alagappa University, Karaikudi, Tamil Nadu. SYLLABI-BOOK MAPPING TABLE DIFFERENTIAL GEOMETRY SYLLABI Mapping in Book UNIT -I INTRODUCTORY REMARK ABOUT SPACE CURVES 1-12 13-29 UNIT- II CURVATURE AND TORSION OF A CURVE 30-48 UNIT -III CONTACT BETWEEN CURVES AND SURFACES . 49-53 UNIT -IV INTRINSIC EQUATIONS 54-57 UNIT V BLOCK II: HELICES, HELICOIDS AND FAMILIES OF CURVES UNIT -V HELICES 58-68 UNIT VI CURVES ON SURFACES UNIT -VII HELICOIDS 69-80 SYLLABI Mapping in Book 81-87 UNIT -VIII FAMILIES OF CURVES BLOCK-III: GEODESIC PARALLELS AND GEODESIC 88-108 CURVATURES UNIT -IX GEODESICS 109-111 UNIT- X GEODESIC PARALLELS 112-130 UNIT- XI GEODESIC
    [Show full text]