Curves and Isotopies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ON Hg-HOMEOMORPHISMS in TOPOLOGICAL SPACES
Proyecciones Vol. 28, No 1, pp. 1—19, May 2009. Universidad Cat´olica del Norte Antofagasta - Chile ON g-HOMEOMORPHISMS IN TOPOLOGICAL SPACES e M. CALDAS UNIVERSIDADE FEDERAL FLUMINENSE, BRASIL S. JAFARI COLLEGE OF VESTSJAELLAND SOUTH, DENMARK N. RAJESH PONNAIYAH RAMAJAYAM COLLEGE, INDIA and M. L. THIVAGAR ARUL ANANDHAR COLLEGE Received : August 2006. Accepted : November 2008 Abstract In this paper, we first introduce a new class of closed map called g-closed map. Moreover, we introduce a new class of homeomor- phism called g-homeomorphism, which are weaker than homeomor- phism.e We prove that gc-homeomorphism and g-homeomorphism are independent.e We also introduce g*-homeomorphisms and prove that the set of all g*-homeomorphisms forms a groupe under the operation of composition of maps. e e 2000 Math. Subject Classification : 54A05, 54C08. Keywords and phrases : g-closed set, g-open set, g-continuous function, g-irresolute map. e e e e 2 M. Caldas, S. Jafari, N. Rajesh and M. L. Thivagar 1. Introduction The notion homeomorphism plays a very important role in topology. By definition, a homeomorphism between two topological spaces X and Y is a 1 bijective map f : X Y when both f and f − are continuous. It is well known that as J¨anich→ [[5], p.13] says correctly: homeomorphisms play the same role in topology that linear isomorphisms play in linear algebra, or that biholomorphic maps play in function theory, or group isomorphisms in group theory, or isometries in Riemannian geometry. In the course of generalizations of the notion of homeomorphism, Maki et al. -
Number Theory
Number Theory Syllabus for the TEMPUS-SEE PhD Course Muharem Avdispahić1 Department of Mathematics, University of Sarajevo Stefan Dodunekov2 Institute of Mathematics and Informatics Bulgarian Academy of Sciences Wolfgang A. Schmid3 University of Graz/Ecole Polytechnique Paris Course goals Number theory has always exhibited a unique feature that some appealing and easily stated problems tend to resist the attempts for solution over very long periods of time. It has influenced and has been influenced by developments in many mathematical disciplines. Several breaktroughs that took place during last decades on one hand and unprecented range of applications on the other, have significantly enlarged the interested mathematical community. The course is designed to provide insights into some areas of modern research in analytic, algebraic and computational/algorithmic number theory. The extent of exposure to advanced themes will depend on the mathematical background of paricipants. Prerequisites Prerequisites vary from one part of the course to another and range from elementary number theory, complex analysis, some Fourier analysis, standard course in algebra (basics of finite group theory commutative rings, ideals, basic Galois theory of fields), to data structures and programming skills. Course modules (20 units each) I. Analytic Number Theory Lecturer: Prof. Dr. Muharem Avdispahić, University of Sarajevo II. Algebraic Number Theory Lecturer: Asso. Prof. Dr. Ivan Chipchakov, IMI, Bulgarian Academy of Sciences III. Computational Number Theory -
07. Homeomorphisms and Embeddings
07. Homeomorphisms and embeddings Homeomorphisms are the isomorphisms in the category of topological spaces and continuous functions. Definition. 1) A function f :(X; τ) ! (Y; σ) is called a homeomorphism between (X; τ) and (Y; σ) if f is bijective, continuous and the inverse function f −1 :(Y; σ) ! (X; τ) is continuous. 2) (X; τ) is called homeomorphic to (Y; σ) if there is a homeomorphism f : X ! Y . Remarks. 1) Being homeomorphic is apparently an equivalence relation on the class of all topological spaces. 2) It is a fundamental task in General Topology to decide whether two spaces are homeomorphic or not. 3) Homeomorphic spaces (X; τ) and (Y; σ) cannot be distinguished with respect to their topological structure because a homeomorphism f : X ! Y not only is a bijection between the elements of X and Y but also yields a bijection between the topologies via O 7! f(O). Hence a property whose definition relies only on set theoretic notions and the concept of an open set holds if and only if it holds in each homeomorphic space. Such properties are called topological properties. For example, ”first countable" is a topological property, whereas the notion of a bounded subset in R is not a topological property. R ! − t Example. The function f : ( 1; 1) with f(t) = 1+jtj is a −1 x homeomorphism, the inverse function is f (x) = 1−|xj . 1 − ! b−a a+b The function g :( 1; 1) (a; b) with g(x) = 2 x + 2 is a homeo- morphism. Therefore all open intervals in R are homeomorphic to each other and homeomorphic to R . -
Topologically Rigid (Surgery/Geodesic Flow/Homeomorphism Group/Marked Leaves/Foliated Control) F
Proc. Natl. Acad. Sci. USA Vol. 86, pp. 3461-3463, May 1989 Mathematics Compact negatively curved manifolds (of dim # 3, 4) are topologically rigid (surgery/geodesic flow/homeomorphism group/marked leaves/foliated control) F. T. FARRELLt AND L. E. JONESt tDepartment of Mathematics, Columbia University, New York, NY 10027; and tDepartment of Mathematics, State University of New York, Stony Brook, NY 11794 Communicated by William Browder, January 27, 1989 (receivedfor review October 20, 1988) ABSTRACT Let M be a complete (connected) Riemannian COROLLARY 1.3. If M and N are both negatively curved, manifold having finite volume and whose sectional curvatures compact (connected) Riemannian manifolds with isomorphic lie in the interval [cl, c2d with -x < cl c2 < 0. Then any fundamental groups, then M and N are homeomorphic proper homotopy equivalence h:N -* M from a topological provided dim M 4 3 and 4. manifold N is properly homotopic to a homeomorphism, Gromov had previously shown (under the hypotheses of provided the dimension of M is >5. In particular, if M and N Corollary 1.3) that the total spaces of the tangent sphere are both compact (connected) negatively curved Riemannian bundles ofM and N are homeomorphic (even when dim M = manifolds with isomorphic fundamental groups, then M and N 3 or 4) by a homeomorphism preserving the orbits of the are homeomorphic provided dim M # 3 and 4. {If both are geodesic flows, and Cheeger had (even earlier) shown that locally symmetric, this is a consequence of Mostow's rigidity the total spaces of the two-frame bundles of M and N are theorem [Mostow, G. -
(X,TX) and (Y,TY ) Is A
Homeomorphisms. A homeomorphism between two topological spaces (X; X ) and (Y; Y ) is a one 1 T T - one correspondence such that f and f − are both continuous. Consequently, for every U X there is V Y such that V = F (U) and 1 2 T 2 T U = f − (V ). Furthermore, since f(U1 U2) = f(U1) f(U2) \ \ and f(U1 U2) = f(U1) f(U2) [ [ this equivalence extends to the structures of the spaces. Example Any open interval in R (with the inherited topology) is homeomorphic to R. One possible function from R to ( 1; 1) is f(x) = tanh x, and by suitable scaling this provides a homeomorphism onto− any finite open interval (a; b). b + a b a f(x) = + − tanh x 2 2 For semi-infinite intervals we can use with f(x) = a + ex from R to (a; ) and x 1 f(x) = b e− from R to ( ; b). − −∞ Since homeomorphism is an equivalence relation, this shows that all open inter- vals in R are homeomorphic. nb The functions chosen above are not unique. On the other hand, no closed interval [a; b] is homeomorphic to R, since such an interval is compact in R, and hence f([a; b]) is compact for any continuous function f. Example 2 The function f(z) = z2 induces a homeomorphism between the complex plane C and a two sheeted Riemann surface, which we can construct piecewise using f. Consider first the half-plane x > 0 C. The function f maps this half plane⊂ onto a complex plane missing the negative real axis. -
A TEXTBOOK of TOPOLOGY Lltld
SEIFERT AND THRELFALL: A TEXTBOOK OF TOPOLOGY lltld SEI FER T: 7'0PO 1.OG 1' 0 I.' 3- Dl M E N SI 0 N A I. FIRERED SPACES This is a volume in PURE AND APPLIED MATHEMATICS A Series of Monographs and Textbooks Editors: SAMUELEILENBERG AND HYMANBASS A list of recent titles in this series appears at the end of this volunie. SEIFERT AND THRELFALL: A TEXTBOOK OF TOPOLOGY H. SEIFERT and W. THRELFALL Translated by Michael A. Goldman und S E I FE R T: TOPOLOGY OF 3-DIMENSIONAL FIBERED SPACES H. SEIFERT Translated by Wolfgang Heil Edited by Joan S. Birman and Julian Eisner @ 1980 ACADEMIC PRESS A Subsidiary of Harcourr Brace Jovanovich, Publishers NEW YORK LONDON TORONTO SYDNEY SAN FRANCISCO COPYRIGHT@ 1980, BY ACADEMICPRESS, INC. ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER. ACADEMIC PRESS, INC. 11 1 Fifth Avenue, New York. New York 10003 United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NWI 7DX Mit Genehmigung des Verlager B. G. Teubner, Stuttgart, veranstaltete, akin autorisierte englische Ubersetzung, der deutschen Originalausgdbe. Library of Congress Cataloging in Publication Data Seifert, Herbert, 1897- Seifert and Threlfall: A textbook of topology. Seifert: Topology of 3-dimensional fibered spaces. (Pure and applied mathematics, a series of mono- graphs and textbooks ; ) Translation of Lehrbuch der Topologic. Bibliography: p. Includes index. 1. -
General Topology
General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry). -
On Generalized Homeomorphisms in Topological Spaces
Divulgaciones Matem´aticasVol. 9 No. 1(2001), pp. 55–63 More on Generalized Homeomorphisms in Topological Spaces M´asSobre Homeomorfismos Generalizados en Espacios Topol´ogicos Miguel Caldas ([email protected]) Departamento de Matem´aticaAplicada Universidade Federal Fluminense-IMUFF Rua M´arioSantos Braga s/n0; CEP:24020-140, Niteroi-RJ. Brasil. Abstract The aim of this paper is to continue the study of generalized home- omorphisms. For this we define three new classes of maps, namely c generalized Λs-open, generalized Λs-homeomorphisms and generalized I Λs-homeomorphisms, by using g:Λs-sets, which are generalizations of semi-open maps and generalizations of homeomorphisms. Key words and phrases: Topological spaces, semi-closed sets, semi- open sets, semi-homeomorphisms, semi-closed maps, irresolute maps. Resumen El objetivo de este trabajo es continuar el estudio de los homeomor- fismos generalizados. Para esto definimos tres nuevas clases de aplica- c ciones, denominadas Λs-abiertas generalizadas, Λs-homeomofismos ge- I neralizados y Λs-homeomorfismos generalizados, haciendo uso de los conjuntos g:Λs, los cuales son generalizaciones de las funciones semi- abiertas y generalizaciones de homeomorfismos. Palabras y frases clave: Espacios topol´ogicos,conjuntos semi-cerra- dos, conjuntos semi-abiertos, semi-homeomorfismos, aplicaciones semi- cerradas, aplicaciones irresolutas. Recibido 2000/10/23. Revisado 2001/03/20. Aceptado 2001/03/29. MSC (2000): Primary 54C10, 54D10. 56 Miguel Caldas 1 Introduction Recently in 1998, as an analogy of Maki [10], -
Lecture 6 HOMOTOPY the Notions of Homotopy and Homotopy Equivalence Are Quite Fundamental in Topology. Homotopy Equivalence of T
Lecture 6 HOMOTOPY The notions of homotopy and homotopy equivalence are quite fundamental in topology. Homotopy equivalence of topological spaces is a weaker equivalence relation than homeomorphism, and homotopy theory studies topological spaces up to this relation (and maps up to homotopy). This theory constitutes the main body of algebraic topology, but we only consider a few of its basic notions here. One of these notions is the Euler characteristic, which is also a homotopy invariant. 6.1. Homotopic Maps Two maps f, g : X ! Y are called homotopic (notation f ' g) if they can be joined by a homotopy, i.e., by a map F : X × [0; 1] ! Y such that F (x; 0) ≡ f(x) and F (x; 1) ≡ g(x) (here ≡ means for all x 2 X). If we change the notation from F (x; t) to Ft(x), we can restate the previous definition by saying that there exists a family fFt(x)g of maps, parametrized by t 2 [0; 1], continiously changing from f ≡ F0 to g ≡ F1. It is easy to prove that f ' f for any f : X ! Y (reflexivity); f ' g =) f ' g for all f, g : X ! Y (symmetry); f ' g and g ' h =) f ' h for all f, g, h: X ! Y (transitivity). For example, to prove transitivity, we obtain a homotopy joining f and h by setting ( F (x; 2t) for 0 ≤ t ≤ 1=2; F (x; t) = 1 F2(x; 2t − 1) for 1=2 ≤ t ≤ 1, where F1, F2 are homotopies joining f and g, g and h, respectively. -
The Selberg Trace Formula & Prime Orbit Theorem
The Selberg Trace Formula & Prime Orbit Theorem Yihan Yuan May 2019 A thesis submitted for the degree of Honours of the Australian National University Declaration The work in this thesis is my own except where otherwise stated. Yihan Yuan Acknowledgements I would like to express my gratitude to my supervisor, Prof.Andrew Hassell, for his dedication to my honours project. Without his inspiring and patient guid- ance, non of this could have be accomplished. I would like also to thank my colleague Kelly Maggs, for his help and encour- agement, so I can work with confidence and delight, even in hard times. Furthermore, I would like to thank my colleague Dean Muir and Diclehan Erdal, for their precious advice about writing styles for this thesis. Finally, I would like to thank my families for their warming support to my study, despite their holding a suspicious attitude about whether I can find a job after graduating as a mathematician. v Abstract The purpose of this thesis is to study the asymptotic property of the primitive length spectrum on compact hyperbolic surface S of genus at least 2, defined as a set with multiplicities: LS = fl(γ): γ is a primitive oriented closed geodesic on Sg: where l(γ) denotes the length of γ. In particular, we will prove the Prime Orbit Theorem. That is, for the counting function of exponential of primitive lengths, defined as l π0(x) = #fl : l 2 LS and e ≤ xg; we have the asymptotic behavior of π0(x): x π (x) ∼ : 0 ln(x) The major tool we will use is the Selberg trace formula, which states the trace of a certain compact self-adjoint operator on L2(S) can be expressed as a sum over conjugacy classes in hyperbolic Fuchsian groups. -
Homeomorphisms Between Topological Manifolds and Analytic Manifolds Author(S): Stewart S
Annals of Mathematics Homeomorphisms Between Topological Manifolds and Analytic Manifolds Author(s): Stewart S. Cairns Source: The Annals of Mathematics, Second Series, Vol. 41, No. 4 (Oct., 1940), pp. 796-808 Published by: Annals of Mathematics Stable URL: http://www.jstor.org/stable/1968860 Accessed: 15/12/2010 04:49 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=annals. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to The Annals of Mathematics. http://www.jstor.org ANNA oFMv ATEMlATQCS Vol. 41, No. -
Topology - Wikipedia, the Free Encyclopedia Page 1 of 7
Topology - Wikipedia, the free encyclopedia Page 1 of 7 Topology From Wikipedia, the free encyclopedia Topology (from the Greek τόπος , “place”, and λόγος , “study”) is a major area of mathematics concerned with properties that are preserved under continuous deformations of objects, such as deformations that involve stretching, but no tearing or gluing. It emerged through the development of concepts from geometry and set theory, such as space, dimension, and transformation. Ideas that are now classified as topological were expressed as early as 1736. Toward the end of the 19th century, a distinct A Möbius strip, an object with only one discipline developed, which was referred to in Latin as the surface and one edge. Such shapes are an geometria situs (“geometry of place”) or analysis situs object of study in topology. (Greek-Latin for “picking apart of place”). This later acquired the modern name of topology. By the middle of the 20 th century, topology had become an important area of study within mathematics. The word topology is used both for the mathematical discipline and for a family of sets with certain properties that are used to define a topological space, a basic object of topology. Of particular importance are homeomorphisms , which can be defined as continuous functions with a continuous inverse. For instance, the function y = x3 is a homeomorphism of the real line. Topology includes many subfields. The most basic and traditional division within topology is point-set topology , which establishes the foundational aspects of topology and investigates concepts inherent to topological spaces (basic examples include compactness and connectedness); algebraic topology , which generally tries to measure degrees of connectivity using algebraic constructs such as homotopy groups and homology; and geometric topology , which primarily studies manifolds and their embeddings (placements) in other manifolds.