Exploring the Dynamics of Near-Surface Solar Convection with Helioseismology Written by Benjamin J

Total Page:16

File Type:pdf, Size:1020Kb

Exploring the Dynamics of Near-Surface Solar Convection with Helioseismology Written by Benjamin J Exploring the Dynamics of Near-Surface Solar Convection with Helioseismology by Benjamin J. Greer B.S., Carnegie Mellon University, 2010 M.S., University of Colorado, 2012 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Astrophysical and Planetary Sciences 2015 This thesis entitled: Exploring the Dynamics of Near-Surface Solar Convection with Helioseismology written by Benjamin J. Greer has been approved for the Department of Astrophysical and Planetary Sciences Prof. Bradley Hindman Prof. Juri Toomre Prof. Mark Rast Prof. Benjamin Brown Prof. Keith Julien Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Greer, Benjamin J. (Ph.D., Astrophysics) Exploring the Dynamics of Near-Surface Solar Convection with Helioseismology Thesis directed by Prof. Bradley Hindman I present a new implementation of local helioseismology along with observations of near-surface solar convection made with this method. The upper 5% of the solar radius (35 Mm) is known as the Near-Surface Shear Layer (NSSL) and is characterized by strong rotational shear. While the physical origin of this layer remains unknown, current theories point to convective motions playing an important role. In this thesis I investigate the properties of convection in the NSSL using a newly-developed high-resolution ring-diagram analysis. I present measurements of the speeds and spatial scales of near-surface flows and from these infer that the degree of rotational constraint on convective flows varies significantly across this layer. In-depth analysis of the convective patterns reveals the pervasive influence of coherent downflow plumes generated at the photosphere. These structures link the convective pattern of supergranulation seen in surface observations with the deeper motions found within the NSSL and further hint at the importance of rotation in this layer. These observations of transient, small-scale convective motions are enabled by the use of improved local helioseismic techniques. Local helioseismology relies on observations of the solar wavefield to produce measurements of plasma flows beneath the surface. In general, this has the capability to map out the subsurface convective flows in three-dimensions, but is often limited in accuracy, resolution, and depth range by the specifics of the analysis procedure. Here, I focus on a particular implementation of local helioseismology called ring-diagram analysis that involves analyzing small patches of the solar surface to build up three-dimensional maps. I will present a new analysis scheme for ring-diagram helioseismology that produces maps of the subsurface flow fields with higher fidelity and vastly higher resolution than previously possible. This is achieved through a combination of novel tools including a robust nonlinear fitting procedure and a highly efficient linear inversion technique. I present these new methods and demonstrate how they enable a new class of high-resolution helioseismic observations. The scientific results made possible with these methods display the power of the new techniques and aid our understanding of near-surface solar dynamics. iv Acknowledgements I would like to thank my advisor Brad Hindman for providing guidance and continually urging me to write things down. Thanks to his dedication and patience, I have learned to be a better scientist. I would also like to thank Juri Toomre for explaining the big picture and asking the big questions. His encouragement has lead me to new and exciting areas of research. I thank Douglas Gough for the suggestion which initiated the expansion of my work into high-resolution helioseismology. Finally, I gratefully acknowledge the University of Colorado’s George Ellery Hale Graduate Student Fellowship, which has supported my scientific endeavors for a large fraction of my graduate career. v Contents Chapter 1 Introduction 1 1.1 Overview of Solar Dynamics . ...... 1 1.2 Near-Surface Convection . ...... 4 1.2.1 Supergranules . ... 6 1.2.2 Convective Amplitudes . ... 8 1.3 Observing the Solar Interior . ....... 8 1.3.1 Global Helioseismology . ....... 10 1.3.2 LocalHelioseismology ............................. ....... 11 1.3.3 Scientific Results from Local Helioseismology . ........ 14 1.4 Thesis Overview . 17 2 Helioseismic Ring-Diagram Methods 19 2.1 Overview of Standard Processing Steps . 20 2.2 Photospheric Observations of the Solar Wavefield . ...... 23 2.2.1 DopplergramData .................................. 23 2.2.2 TileTracking ................................... ...... 24 2.2.3 TileApodization ................................. ...... 25 2.2.4 TileSets........................................ 27 2.3 Representation in Spectral Space . ..... 30 vi 2.3.1 Flow-Induced Perturbation to the Wavefield . 30 2.3.2 Perturbations to the Power Spectrum . 31 2.4 Measuring Shifts in Spectral Power . ...... 32 2.4.1 Sensitivity Kernels . 37 2.5 High-Resolution Data Sets and Their Properties . ....... 38 3 Multi-Ridge Fitting 42 3.1 Introduction....................................... ....... 43 3.2 FittingMethods ...................................... ..... 45 3.2.1 Single-Ridge Fitting (SRF) . 45 3.2.2 Multi-RidgeFitting(MRF) . ...... 47 3.3 Comparison....................................... ....... 49 3.3.1 High Phase-Speed Modes . 50 3.3.2 Approaching the Solar Limb . 52 3.3.3 Frequency Shift Accuracy . 57 3.3.4 Post-Processing of Frequency Shift Measurements . 61 3.4 Discussion........................................ ....... 66 3.4.1 Improvements in Depth for Inversions . ...... 66 3.4.2 Spatial Variability and General Implications . ........ 67 4 Helioseismic Inversions 69 4.1 Introduction....................................... ....... 69 4.2 Mathematical Background . ....... 72 4.2.1 Frequency Shift Measurements . 72 4.2.2 Methods of Solution . 73 4.3 One-Dimensional Depth Inversions . 81 4.3.1 TwoBoxKernels..................................... 81 4.3.2 Solar Wave Mode Kernels . 84 vii 4.3.3 Summary of Depth Inversion Behavior . ..... 88 4.4 Horizontal Inversions with Spatial Invariance . ............. 88 4.4.1 Solution in Spectral Space . 90 4.4.2 Regularization Tuning . 92 4.5 Three-Dimensional Helioseismic Inversions with MORDI . ......... 94 4.5.1 Multi-Dimensional Localization . ....... 97 4.5.2 Regularization Tuning . 98 4.5.3 Selected Averaging Kernels . 106 4.5.4 Conclusions....................................... 108 5 Convective Amplitudes and Rotational Influence 110 5.1 Introduction....................................... ....... 111 5.2 Methods............................................ 114 5.2.1 Measurement Procedure . 114 5.2.2 Inversions...................................... 115 5.3 Convective Amplitudes . 118 5.4 RossbyNumber...................................... 120 5.5 Discussion........................................ ....... 123 5.5.1 Comparison of Convective Amplitudes . 123 5.5.2 Rotational Influence on Convective Motions . 126 6 Imaging Supergranular Flows in the Near-Surface Shear Layer 129 6.1 Introduction....................................... ....... 129 6.1.1 Supergranulation.................................. 129 6.1.2 Near-Surface Shear Layer . 133 6.2 Matching to Independent Observations . 134 6.2.1 Direct Doppler Imaging . 137 6.2.2 Advection of Magnetic Field . 137 viii 6.2.3 RotationRate .................................. 139 6.3 Propagation of Convective Patterns . ........... 142 6.3.1 Structure Similarity . 148 6.3.2 Inferred Vertical Velocities . 150 6.4 Discussion........................................ ....... 152 6.4.1 Self-Consistent Flow Fields . 152 6.4.2 Supergranular Flows and Surface-Driven Convection . 153 6.4.3 Rotational Influence on Convection in the NSSL . 155 7 Conclusions and Future Directions 158 7.1 Thesis Conclusions . 158 7.1.1 Improvements to Ring-Diagram Helioseismology . ......... 158 7.1.2 Properties of Near-Surface Solar Convection . ....... 159 7.1.3 Influence of Rotation on Convection . 160 7.2 Future Directions in High-Resolution Ring-Diagram Analysis . ........... 161 7.2.1 Spatial Extent of Analysis Regions . ....... 161 7.2.2 HorizontalResolution ............................. ....... 162 Bibliography 164 Appendix A Center-to-Limb Velocity Systematic 173 A.1 Introduction....................................... ....... 173 A.2 Temporally-Averaged Frequency Shift Data . 174 A.3 Fitting Procedure . 175 A.4 Results&Analysis ................................... ....... 177 A.5 Discussion & Conclusions . 178 ix B Averaging Kernels for Three-Dimensional OLA Inversion 181 C Code Listing 186 x Tables Table 2.1 List of analysis periods used in this thesis. ........... 40 Figures Figure 1.1 Observations of solar granulation and magnetic activity . ............. 2 1.2 Fundamental observations from global helioseismology . ........... 2 1.3 Magnetic butterfly diagram . ..... 3 1.4 Solar simulations of global dynamics and magnetic structure . .......... 5 1.5 Direct Doppler imaging of supergranulation . ......... 6 1.6 Images of the Sun captured by SDO . 10 1.7 Ring diagrams from a 16◦ tile. ................................... 13 1.8 Meridional flow measured with time-distance helioseismology . ........ 15 1.9 Large-scale subsurface flows from ring-diagram analysis . .......... 16 2.1 Steps involved in ring-diagram helioseismology . .........
Recommended publications
  • A Bayesian Estimation of the Helioseismic Solar Age (Research Note)
    A&A 580, A130 (2015) Astronomy DOI: 10.1051/0004-6361/201526419 & c ESO 2015 Astrophysics A Bayesian estimation of the helioseismic solar age (Research Note) A. Bonanno1 and H.-E. Fröhlich2 1 INAF, Osservatorio Astrofisico di Catania, via S. Sofia, 78, 95123 Catania, Italy e-mail: [email protected] 2 Leibniz Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany Received 27 April 2015 / Accepted 9 July 2015 ABSTRACT Context. The helioseismic determination of the solar age has been a subject of several studies because it provides us with an indepen- dent estimation of the age of the solar system. Aims. We present the Bayesian estimates of the helioseismic age of the Sun, which are determined by means of calibrated solar models that employ different equations of state and nuclear reaction rates. Methods. We use 17 frequency separation ratios r02(n) = (νn,l = 0 −νn−1,l = 2)/(νn,l = 1 −νn−1,l = 1) from 8640 days of low- BiSON frequen- cies and consider three likelihood functions that depend on the handling of the errors of these r02(n) ratios. Moreover, we employ the 2010 CODATA recommended values for Newton’s constant, solar mass, and radius to calibrate a large grid of solar models spanning a conceivable range of solar ages. Results. It is shown that the most constrained posterior distribution of the solar age for models employing Irwin EOS with NACRE reaction rates leads to t = 4.587 ± 0.007 Gyr, while models employing the Irwin EOS and Adelberger, et al. (2011, Rev.
    [Show full text]
  • From the Heliosphere Into the Sun Programme Book Incuding All
    511th WE-Heraeus-Seminar From the Heliosphere into the Sun –SailingagainsttheWind– Programme book incuding all abstracts Physikzentrum Bad Honnef, Germany January 31 – February 3, 2012 http://www.mps.mpg.de/meetings/heliocorona/ From the Heliosphere into the Sun A meeting dedicated to the progress of our understanding of the solar wind and the corona in the light of the upcoming Solar Orbiter mission This meeting is dedicated to the processes in the solar wind and corona in the light of the upcoming Solar Orbiter mission. Over the last three decades there has been astonishing progress in our understanding of the solar corona and the inner heliosphere driven by remote-sensing and in-situ observations. This period of time has seen the first high-resolution X-ray and EUV observations of the corona and the first detailed measurements of the ion and electron velocity distribution functions in the inner heliosphere. Today we know that we have to treat the corona and the wind as one single object, which calls for a mission that is fully designed to investigate the interwoven processes all the way from the solar surface to the heliosphere. The meeting will provide a forum to review the advances over the last decades, relate them to our current understanding and to discuss future directions. We will concentrate one day on in- situ observations and related models of the inner heliosphere, and spend another day on remote sensing observations and modeling of the corona – always with an eye on the symbiotic nature of the two. On the third day we will direct our view towards the future.
    [Show full text]
  • Events in the Heliosphere Fjjtuuo- If During the Present Sunspot Cycle S
    A Simulation Study of Two Major "Events in the Heliosphere fJjtUUO- if During the Present Sunspot Cycle S.-I. Akasofu1, W. Fillius2, Wei Sun1*3, C. Fry1 and M. Dryer4 J-Geophysicai l Institute and Department of Space Physics and Atmospheric Sciences. University of Alaska-Fairbanks Fairbanks, Alaska 99701 ^University of California, San Diego La Jplla, California 92093 •> On leave from Institute of Geophysics * Academia Sinica . Beijing, China 4Space Environment Laboratory, NOAA Boulder, Colorado 80303 Abstract The two major disturbances in the heliosphere during the present sunspot cycle, the event of June - August, 1982 and the event of April - June, 1978, are simulated by the method developed by Hakamada and Akasofu (1982). Specifically, we attempt to simulate effects of six major flares from three active regions in June and July, 1982 and April and May, 1978. A comparison, of the results with the solar wind observations at Pioneer 12 (~ 0.8 au), • - • -• ISEE-3 (•* 1 au), Pioneer 11 (~ 7-13 au) and Pioneer 10 (~ 16-28 au) suggests that some major flares occurred behind the disk of the sun during the two periods. Our method provides qualitatively some information as to how such a series of intense solar flares can greatly disturb both the inner and outer heliospheres. A long lasting effect on cosmic rays is discussed in conjunction with the disturbed heliosphere. fNaS&-CB-1769«3) A SIHDLallCB S10DY OF THO N86-29756 MiJOB EVENTS IN TEE HELIOSPBEEE DDBING THE PRESENT SOHSP01 CYCLE (Alaska Oniv. Fairbanks.) 48 p CSCL 03B Dncla. £v 1. Introduction The months of June and July, 1982 and of April and May, 1978 were two of the* most active periods of the sun during the present solar cycle.
    [Show full text]
  • Helioseismology and Asteroseismology: Oscillations from Space
    Helioseismology and Asteroseismology: Oscillations from Space W. Dean Pesnell Project Scientist Solar Dynamics Observatory ¤ What are variable stars? ¤ How do we observe variable stars? ¤ Interpreting the observations ¤ Results from the Sun by MDI & HMI ¤ Other stars (Kepler, CoRoT, and MOST) What are Variable Stars? MASPG, College Park, MD, May 2014 Pulsating stars in the H-R diagram Variable stars cover the H-R diagram. Their periods tend to be short going to the lower left and long going toward the upper right. Many variable stars lie along a line where a resonant radiative instability called the κ-γ effect pumps the oscillation. κ-γ driving MASPG, College Park, MD, May 2014 Figures from J. Christensen-Dalsgaard Pulsating Star Classes Name log P ΔmV Comments (days) Cepheids 1.1 0.9 Radial, distance indicator RR Lyrae -0.3 0.9 Radial, distance indicator Type II Cepheids -1.0 0.6 Radial, confusers β Cephei -0.7 0.1 Multi-mode, opacity δ Scuti -1.1 <0.9 Nonradial DAV, ZZ Ceti -2.5 0.12 g modes, most common DBV, DOV -2.5 0.1 g modes 5 PNNV -2.5 0.05 g modes, very hot (Teff ~ 10 K) Sun -2.6 0.01% p modes See GCVS Variability Types at http://www.sai.msu.su/groups/cluster/gcvs/gcvs/iii/vartype.txt MASPG, College Park, MD, May 2014 What makes them oscillate? Many variants of the κ-γ effect, a resonant interaction of the oscillation with the luminosity of the star. The nuclear reactions in the convective core of massive stars may limit the maximum mass of a star.
    [Show full text]
  • Helioseismology, Solar Models and Solar Neutrinos
    Helioseismology, solar models and solar neutrinos G. Fiorentini Dipartimento di Fisica, Universit´adi Ferrara and INFN-Ferrara Via Paradiso 12, I-44100 Ferrara, Italy E-mail: fi[email protected] and B. Ricci Dipartimento di Fisica, Universit´adi Ferrara and INFN-Ferrara Via Paradiso 12, I-44100 Ferrara, Italy E-mail: [email protected] ABSTRACT We review recent advances concerning helioseismology, solar models and solar neutrinos. Particularly we shall address the following points: i) helioseismic tests of recent SSMs; ii)the accuracy of the helioseismic determination of the sound speed near the solar center; iii)predictions of neutrino fluxes based on helioseismology, (almost) independent of SSMs; iv)helioseismic tests of exotic solar models. 1. Introduction Without any doubt, in the last few years helioseismology has changed the per- spective of standard solar models (SSM). Before the advent of helioseismic data a solar model had essentially three free parameters (initial helium and metal abundances, Yin and Zin, and the mixing length coefficient α) and produced three numbers that could be directly measured: the present radius, luminosity and heavy element content of the photosphere. In itself this was not a big accomplishment and confidence in the SSMs actually relied on the success of the stellar evoulution theory in describing many and more complex evolutionary phases in good agreement with observational data. arXiv:astro-ph/9905341v1 26 May 1999 Helioseismology has added important data on the solar structure which provide se- vere constraint and tests of SSM calculations. For instance, helioseismology accurately determines the depth of the convective zone Rb, the sound speed at the transition radius between the convective and radiative transfer cb, as well as the photospheric helium abundance Yph.
    [Show full text]
  • WENDELSTEIN Solar Observatory
    WENDELSTEIN Solar Observatory Daily drawings of solar features for the years 1947-1987 are available. These lovely images give a composite picture of various solar phenomena, including the solar coronal intensity, the bright Calcium plages, and the filaments and prominences, as well as sunspots. Many stations contributed data to this effort. For example, during the period April-June 1969, stations contributing Hydrogen-alpha images included Anacapri, Athens, Burbank, Catania, Freiburg, Haleakala, Kodaikanal, Sacramento Peak, Teheran, Tonantzintla, and Wendelstein. Those contributing Calcium K3 line images include Anacapri, Arcetri, Catania, Kodaikanal, Manila, Rome, and Wendelstein. Those contributing solar corona 530.3 nm data include Mt. Norikura, Pic du Midi, Sacramento Peak, and Wendelstein. North is at the top. East is on the left. A Stonyhurst disk with the correct Bo angle is used. The times of the different observations are indicated on the left side. Solar flare events are also listed, including begin and end times and position. Times that are underlined are certain. Times without underlines are uncertain. Coronal intensities are marked in numerical form every five degrees around the solar disk. On the disk’s edge, prominences appear in red. On the disk, the filaments are drawn in black, the calcium plage borders are drawn in blue, sunspots are in black, and something (?) is drawn in green. The sunspot Zurich classifications A, B, C, D, E, F, G, H, and J are indicated. To the right of the drawing are listed the positions and Zurich class of sunspots. .
    [Show full text]
  • Arxiv:1707.00411V1
    Solar Physics DOI: 10.1007/•••••-•••-•••-••••-• Long-term Variations in the Intensity of Plages and Networks as Observed in Kodaikanal Ca-K Digitized Data Muthu Priyal1 · Jagdev Singh2 · Ravindra B2 · Rathina S. K3 c Springer •••• Abstract In our previous article (Priyal et al., Solar Phys., 289, 127) we have discussed the details of observations and methodology adopted to analyze the Ca-K spectroheliograms obtained at Kodaikanal Observatory (KO) to study the variation of Ca-K plage areas, enhanced network (EN) and active network (AN) for the three solar cycles, namely 19, 20, and 21. Now, we have derived the areas of chromospheric features using KO Ca-K spectroheliograms to study the long term variations of solar cycles between 14 and 21. The comparison of the derived plage areas from the data obtained at KO observatory for the period 1906 – 1985 with that of MWO, NSO for the period 1965 – 2002, earlier measurements made by Tlatov, Pevtsov, and Singh (2009, Solar Phys., 255, 239) for KO data and the SIDC sunspot numbers shows a good correlation. Uniformity of the data obtained with the same instrument remaining with the same specifications provided a unique opportunity to study long term intensity variations in plages and network regions. Therefore, we have investigated the variation of intensity contrast of these features with time at a temporal resolution of 6-months assum- ing the quiet background chromosphere remains unchanged during the period of 1906 – 2005 and found that average intensity of AN, representing the changes in small scale activity over solar surface, varies with solar cycle being less during the minimum phase.
    [Show full text]
  • Exploring the Sun-Heliosphere Connection Solar Orbiter
    SOLAR ORBITER Solar Orbiter Exploring the Sun-Heliosphere Connection Daniel Müller Solar Orbiter Project Scientist www.esa.int European Space Agency Solar Orbiter Exploring the Sun-Heliosphere Connection Solar Orbiter! • First medium-class mission of ESA’s Cosmic Vision 2015-2025 programme, implemented jointly with NASA! Ulysses • Dedicated payload of 10 remote-sensing and" in-situ instruments measuring from the photosphere into the solar wind Talk Outline! SOHO • Science Objectives! Solar Orbiter • Mission Overview! • Spacecraft & Payload! • Science Operations & Synergies Solar Orbiter Exploring the Sun-Heliosphere Connection High-latitude Observations Science Objectives How does the Sun create and control the Heliosphere – and why does solar Perihelion activity change with time ? Observations ! • What drives the solar wind and where does the coronal magnetic field originate? • How do solar transients drive heliospheric variability? • How do solar eruptions produce energetic particle radiation that fills the heliosphere? • How does the solar dynamo work and drive connections between the Sun and the heliosphere? Mission overview: Müller et al., Solar Physics 285 (2013) High-latitude Observations Solar Orbiter Exploring the Sun-Heliosphere Connection High-latitude Observations Mission Summary Launch: July 2017 (Backup: Oct 2018) Cruise Phase: 3 years Nominal Mission: 3.5 years Perihelion Observations Extended Mission: 2.5 years Orbit: 0.28–0.91 AU (P=150-180 days) Out-of-Ecliptic View: Multiple gravity assists with Venus to increase inclination
    [Show full text]
  • Local Helioseismology of Magnetic Activity
    Local Helioseismology of Magnetic Activity A thesis submitted for the degree of: Doctor of Philosophy by Hamed Moradi B. Sc. (Hons), B. Com Centre for Stellar and Planetary Astrophysics School of Mathematical Sciences Monash University Australia February 12, 2009 Contents 1 Introduction 1 1.1 Helioseismology............................... 2 1.2 Local Helioseismology Diagnostic Tools . .... 6 1.2.1 Time-distance Helioseismology . 6 1.2.2 Helioseismic Holography . 12 1.3 Helioseismology of Sunspots and Active Regions . ..... 14 1.3.1 Sunspots .............................. 14 1.3.2 SunspotSeismology . 17 1.3.3 ForwardModelling . 21 1.4 SolarFlareSeismology........................... 26 1.4.1 Solar Flare Observations . 27 1.4.2 Seismic Emission From Solar Flares . 33 1.5 BasisforthisResearch........................... 35 2 Modelling Magneto-Acoustic Ray Propagation In A Toy Sunspot 41 2.1 Introduction................................. 43 2.2 TheMHSSunspotModel ......................... 44 2.3 MHD Ray-Path Calculations . 48 2.4 The2DRay-PathSimulations. 51 2.4.1 TheComputationalMethod. 51 2.4.2 Travel-Time and Skip-Distance Perturbations . 53 2.4.3 Binned Travel-Time Perturbation Profiles . 58 2.4.4 Comparison With Observations . 59 2.4.5 Isolating the Thermal Component of Travel Time Perturbations 61 2.5 SummaryandDiscussion . .. .. .. .. .. .. .. 63 i CONTENTS 3 The Role of Strong Magnetic Fields on Helioseismic Wave Propaga- tion 67 3.1 Surface-FocusMeasurements . 70 3.1.1 Introduction ............................ 70 3.1.2 TheMHSSunspotModel . 71 3.1.3 MHD Wave-Field Simulations . 73 3.1.4 MHD Ray-Path Simulations . 75 3.1.5 Modelling Surface-Focus Travel-Time Inhomogeneities . 76 3.1.6 TheTravelTimeProfiles . 77 3.1.7 SummaryandDiscussion . 82 3.2 Deep-FocusMeasurements.
    [Show full text]
  • 1 Helioseismology: Observations and Space Missions
    1 Helioseismology: Observations and Space Missions P. L. Pall´e1;2, T. Appourchaux3, J. Christensen-Dalsgaard4 & R. A. Garc´ıa5 1Instituto de Astrof´ısicade Canarias, 38205 La Laguna, Tenerife, Spain 2Universidad de La Laguna, Dpto de Astrof´ısica,38206 Tenerife, Spain 3Univ. Paris-Sud, Institut d'Astrophysique Spatiale, UMR 8617, CNRS, B^atiment 121, 91405 Orsay Cedex, France 4Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark 5Laboratoire AIM, CEA/DSM { CNRS - Univ. Paris Diderot { IRFU/SAp, Centre de Saclay, 91191 Gif-sur-Yvette Cedex, France 1.1 Introduction The great success of Helioseismology resides in the remarkable progress achieved in the understanding of the structure and dynamics of the solar interior. This success mainly relies on the ability to conceive, implement, and operate specific instrumen- tation with enough sensitivity to detect and measure small fluctuations (in velocity and/or intensity) on the solar surface that are well below one meter per second or a few parts per million. Furthermore the limitation of the ground observations imposing the day-night cycle (thus a periodic discontinuity in the observations) was overcome with the deployment of ground-based networks {properly placed at different longitudes all over the Earth{ allowing longer and continuous observations of the Sun and consequently increasing their duty cycles. In this chapter, we start by a short historical overview of helioseismology. Then we describe the different techniques used to do helioseismic analyses along with a description of the main instrumental concepts. We in particular focus on the arXiv:1802.00674v1 [astro-ph.SR] 2 Feb 2018 instruments that have been operating long enough to study the solar magnetic activity.
    [Show full text]
  • What Are 'Faculae'?
    New Solar Physics with Solar-B Mission ASP Conference Series, Vol. 369, 2007 K. Shibata, S. Nagata, and T. Sakurai What are ‘Faculae’? Thomas E. Berger, Alan M. Title, Theodore D. Tarbell Lockheed Martin Solar and Astophysics Laboratory, Bldg. 252, 3251 Hanover St., Palo Alto, CA 94304, USA Luc Rouppe van der Voort Institute of Theoretical Astrophysics, University of Oslo, Norway Mats G. L¨ofdahl, G¨oran B. Scharmer Institute for Solar Physics of the Royal Swedish Academy of Sciences, AlbaNova University Center, SE-10691 Stockholm, Sweden Abstract. We present very high resolution filtergram and magnetogram ob- servations of solar faculae taken at the Swedish 1-meter Solar Telescope (SST) on La Palma. Three datasets with average line-of-sight angles of 16, 34, and 53 degrees are analyzed. The average radial extent of faculae is at least 400 km. In addition we find that contrast versus magnetic flux density is nearly constant for faculae at a given disk position. These facts and the high resolution images and movies reveal that faculae are not the interiors of small flux tubes - they are granules seen through the transparency caused by groups of magnetic ele- ments or micropores “in front of” the granules. Previous results which show a strong dependency of facular contrast on magnetic flux density were caused by bin-averaging of lower resolution data leading to a mixture of the signal from bright facular walls and the associated intergranular lanes and micropores. The findings are relevant to studies of total solar irradiance (TSI) that use facular contrast as a function of disk position and magnetic field in order to model the increase in TSI with increasing sunspot activity.
    [Show full text]
  • Statistical Signatures of Nanoflare Activity. I. Monte Carlo Simulations and Parameter Space Exploration
    Statistical Signatures of Nanoflare Activity. I. Monte Carlo Simulations and Parameter Space Exploration Jess, D., Dillon, C., Kirk, M., Reale, F., Mathioudakis, M., Grant, S., Christian, D., Keys, P., Sayamanthula, K., & Houston, S. (2019). Statistical Signatures of Nanoflare Activity. I. Monte Carlo Simulations and Parameter Space Exploration. The Astrophysical Journal, 871, [133]. https://doi.org/10.3847/1538-4357/aaf8ae Published in: The Astrophysical Journal Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2018 American Astronomical Society. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:04. Oct. 2021 DRAFT VERSION DECEMBER 15, 2018 Typeset using LATEX twocolumn style in AASTeX62 Statistical Signatures of Nanoflare Activity. I. Monte Carlo Simulations and Parameter Space Exploration D.
    [Show full text]