Growth, Development, and Survival of Nosema Pyrausta-Infected European Corn Borers (Lepidoptera: Crambidae) Reared on Meridic Diet and Cry1ab B

Total Page:16

File Type:pdf, Size:1020Kb

Growth, Development, and Survival of Nosema Pyrausta-Infected European Corn Borers (Lepidoptera: Crambidae) Reared on Meridic Diet and Cry1ab B Entomology Publications Entomology 2004 Growth, Development, and Survival of Nosema pyrausta-Infected European Corn Borers (Lepidoptera: Crambidae) Reared on Meridic Diet and Cry1Ab B. J. Reardon Iowa State University Richard L. Hellmich Iowa State University, [email protected] Douglas V. Sumerford United States Department of Agriculture Leslie C. Lewis Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/ent_pubs Part of the Entomology Commons, and the Plant Breeding and Genetics Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ ent_pubs/92. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Entomology at Iowa State University Digital Repository. It has been accepted for inclusion in Entomology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Growth, Development, and Survival of Nosema pyrausta-Infected European Corn Borers (Lepidoptera: Crambidae) Reared on Meridic Diet and Cry1Ab Abstract Transgenic corn, Zea mays L., hybrids expressing crystal protein endotoxin genes fromBacillus thuringiensis Berliner are an increasingly popular tactic for managing the European corn borer, Ostrinia nubilalis (Hübner), in North America. O. nubilalis populations also are often vulnerable to the ubiquitous entomopathogenic microsporidium Nosema pyrausta(Paillot). We examined the effect of feeding meridic diet incorporated with purified Cry1Ab on growth, development, and survival of Nosema-infected and uninfected neonate O. nubilalis. Infected larvae developed more slowly than uninfected larvae. Increasing the concentration of Cry1Ab in diet reduced larval development, and this effect was amplified by microsporidiosis. Infected larvae weighed significantly less than uninfected larvae. The er lationship among Nosema infection, Cry1Ab concentration, and larval weight was fitted to an exponential function. The CL 50 of infected larvae was one- third that of uninfected larvae, indicating that infected larvae are more vulnerable to toxin. This work has implications for resistance management of O. nubilalis and demonstrates that it is important to determine whether N. pyrausta is present when testing susceptibility of larvae to transgenic corn hybrids. Keywords Ostrinia nubilalis, Nosema pyrausta, Bt, corn Disciplines Entomology | Plant Breeding and Genetics Comments This article is from Journal of Economic Entomology; 97 (2004); 1198-1201; doi: 10.1603/ 0022-0493-97.4.1198 Rights Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The onc tent of this document is not copyrighted. This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/ent_pubs/92 Growth, Development, and Survival of Nosema pyrausta-Infected European Corn Borers (Lepidoptera: Crambidae) Reared on Meridic Diet and Cry1Ab Author(s): B. J. Reardon , R. L. Hellmich , D. V. Sumerford , and L. C. Lewis Source: Journal of Economic Entomology, 97(4):1198-1201. 2004. Published By: Entomological Society of America DOI: http://dx.doi.org/10.1603/0022-0493-97.4.1198 URL: http://www.bioone.org/doi/full/10.1603/0022-0493-97.4.1198 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. BIOLOGICAL AND MICROBIAL CONTROL Growth, Development, and Survival of Nosema pyrausta-Infected European Corn Borers (Lepidoptera: Crambidae) Reared on Meridic Diet and Cry1Ab B. J. REARDON, R. L. HELLMICH, D. V. SUMERFORD, AND L. C. LEWIS Corn Insects and Crop Genetics Research Unit, USDAÐARS, Genetics Laboratory, Iowa State University, Ames, IA 50011 J. Econ. Entomol. 97(4): 1198Ð1201 (2004) ABSTRACT Transgenic corn, Zea mays L., hybrids expressing crystal protein endotoxin genes from Bacillus thuringiensis Berliner are an increasingly popular tactic for managing the European corn borer, Ostrinia nubilalis (Hu¨ bner), in North America. O. nubilalis populations also are often vulnerable to the ubiquitous entomopathogenic microsporidium Nosema pyrausta (Paillot). We examined the effect of feeding meridic diet incorporated with puriÞed Cry1Ab on growth, development, and survival of Nosema-infected and uninfected neonate O. nubilalis. Infected larvae developed more slowly than uninfected larvae. Increasing the concentration of Cry1Ab in diet reduced larval development, and this effect was ampliÞed by microsporidiosis. Infected larvae weighed signiÞcantly less than uninfected larvae. The relationship among Nosema infection, Cry1Ab concentration, and larval weight was Þtted to an exponential function. The LC50 of infected larvae was one-third that of uninfected larvae, indicating that infected larvae are more vulnerable to toxin. This work has implications for resistance management of O. nubilalis and demonstrates that it is important to determine whether N. pyrausta is present when testing susceptibility of larvae to transgenic corn hybrids. KEY WORDS Ostrinia nubilalis, Nosema pyrausta, Bt, corn THE EUROPEAN CORN BORER, Ostrinia nubilalis (Hu¨ b- Cry1Aa, Cry1Ab, Cry1Ac, and others (Rukmini et al. ner), is estimated to have entered the United States 2000, Huang et al. 2002) that may maximize the toxicity from Europe between 1909 and 1914 (Smith 1920, of this Bt preparation to O. nubilalis (Mohd-Salleh and Fracker and Fluke 1926). Since its arrival, O. nubilalis Lewis 1982). In contrast to insecticidal sprays for O. has established itself as a major pest of corn, Zea mays nubilalis, gene transfer technology currently uses one or L. (Cyperales: Poaceae). Rice (1994) suggested that a few genes, including the cry1Ab crystal protein endo- yield loss due to O. nubilalis may reach 81.5 bushels toxin gene (Pilcher et al. 2002). It is, therefore, important per hectare. Genetically modiÞed corn hybrids that to assess the interactions of O. nubilalis, N. pyrausta, and express crystal protein endotoxin genes from Bacillus Cry1Ab. The objective of this research was to examine thuringiensis Berliner (Bacillales: Bacillaceae) (Bt) for the effect of puriÞed Cry1Ab on growth, development, the control of O. nubilalis have been available com- and survival of Nosema-infected and uninfected O. nu- mercially since 1996 (Koziel et al. 1993) and are an bilalis. increasingly popular management tactic (Pilcher et al. Materials and Methods 2002). However, development of resistance by pestif- erous Lepidoptera may reduce the duration of efÞca- Insect and Pathogen Cultures. Adult O. nubilalis cious use of transgenic technology. collected during the summer of 2002 from light traps Nosema pyrausta (Paillot) (Microspora: Nosemati- were used to establish a colony at the Corn Insects and dae) is probably the most chronically detrimental, nat- Crop Genetics Research Unit, Ames, IA. To ensure urally occurring pathogen of O. nubilalis in the United that the colony was Nosema-free, eggs were heat- States (Lewis and Lynch 1978). A ubiquitous microspo- treated (Raun 1961). Moths were reared following ridium, N. pyrausta reduces egg hatch, developmental procedures similar to Guthrie et al. (1965). rate, fecundity, and life span of O. nubilalis (Zimmack N. pyrausta spores were isolated from Þeld-col- and Brindley 1957, Windels et al. 1976). Pierce et al. lected O. nubilalis in 2002. Infected larvae were ho- (2001) examined the interactions of Dipel ES (a spray mogenized in a glass tissue grinder with 10ϫ phos- formulation of Bt), N. pyrausta, and O. nubilalis, and they phate-buffered saline (PBS), and the homogenate was concluded that the susceptibility of O. nubilalis to Dipel Þltered through cheesecloth. Aureomycin (50 mg/ml ES increased when infected with N. pyrausta. Dipel ES, solution) was added to solution to inhibit microbial however, contains bacterial spores and several differ- growth. The concentration of spores was determined ent endotoxins active against Lepidoptera, including by using a hemocytometer (Levy, Horsham, PA) un- August 2004 REARDON ET AL.: GROWTH,DEVELOPMENT, AND SURVIVAL OF EUROPEAN CORN BORER 1199 der 400ϫ phase contrast microscopy. The suspension option of the SAS procedure PROC FREQ, SAS In- was frozen at Ϫ20ЊC when not in use. stitute 1988). Instar data were pooled over replications PuriÞed trypsin activated Cry1Ab (HPLC chromato- because visual inspection of the data failed to indicate gram-demonstrated purity) was obtained from Dr. M. a trend temporally. Carey (see Acknowledgments). The toxin was activated The inßuences of Nosema infection,
Recommended publications
  • Distribution, Epidemiological Characteristics and Control Methods of the Pathogen Nosema Ceranae Fries in Honey Bees Apis Mellifera L
    Arch Med Vet 47, 129-138 (2015) REVIEW Distribution, epidemiological characteristics and control methods of the pathogen Nosema ceranae Fries in honey bees Apis mellifera L. (Hymenoptera, Apidae) Distribución, características epidemiológicas y métodos de control del patógeno Nosema ceranae Fries en abejas Apis mellifera L. (Hymenoptera, Apidae) X Aranedaa*, M Cumianb, D Moralesa aAgronomy School, Natural Resources Faculty, Universidad Católica de Temuco, Temuco, Chile. bAgriculture and Livestock Service (SAG), Coyhaique, Chile. RESUMEN El parásito microsporidio Nosema ceranae, hasta hace algunos años fue considerado como patógeno de Apis cerana solamente, sin embargo en el último tiempo se ha demostrado que puede afectar con gran virulencia a Apis mellifera. Por esta razón, ha sido denunciado como un agente patógeno activo en la desaparición de las colonias de abejas en el mundo, infectando a todos los miembros de la colonia. Es importante mencionar que las abejas son ampliamente utilizadas para la polinización y la producción de miel, de ahí su importancia en la agricultura, además de desempeñar un papel ecológico importante en la polinización de las plantas donde un tercio de los cultivos de alimentos son polinizados por abejas, al igual que muchas plantas consumidas por animales. En este contexto, esta revisión pretende resumir la información generada por diferentes autores con relación a distribución geográfica, características morfológicas y genéticas, sintomatología y métodos de control que se realizan en aquellos países donde está presente N. ceranae, de manera de tener mayores herramientas para enfrentar la lucha contra esta nueva enfermedad apícola. Palabras clave: parásito, microsporidio, Apis mellifera, Nosema ceranae. SUMMARY Up until a few years ago, the microsporidian parasite Nosema ceranae was considered to be a pathogen of Apis cerana exclusively; however, only recently it has shown to be very virulent to Apis mellifera.
    [Show full text]
  • Biology of the Smartweed Borer, Pyrausta Ainsi/Iei Heinrich1
    BIOLOGY OF THE SMARTWEED BORER, PYRAUSTA AINSI/IEI HEINRICH1 By GEORGE G. AINSLIE, Entomological Assistant, and W. B. CARTWRIGHT, Scientific Assistant, Cereal and Forage Insect Investigations, Bureau of Entomology, United States Department of Agriculture INTRODUCTION The attention of the senior author was first called to the smartweed borer in 1912, when hibernating larvae were found in cornstalks at Frank- lin, Tenn. The economic status of this insect was undetermined at that time, but field and rearing records made in Tennessee and neighboring States since then have indicated that it is of no importance as a pest. At present, however, it is of considerable interest because of its similarity, both in habits and appearance, to the European corn borer (Pyrausta nubilalis Hübner). Until recently, also, it has been confused with another similar species, P. penitalis Grote, which feeds on lotus; and the purpose, in part, of this paper is to rectify this error. Although Dr. E. Mosher (7, p. 264)2 recorded differences of structure and the present authors found distinct variations in habit between the insect under discussion and the true Pyrausta penitalis, the former was first definitely recognized as an undescribed species by Mr. Carl Heinrich (ó) of the Bureau of Entomology. Mr. Heinrich gives in detail the morphological characters separating the species nubilalis, penitalis, and ainsliei in all stages. Chittenden (1) has well summarized all the avail- able records of the smartweed and lotus borers, although he was not aware that two species were included. DISTRIBUTION AND HOST PLANTS The smartweed borer is known to occur in Massachusetts, New York, Pennsylvania, Ohio, and Illinois; and the writers have taken it at numer- ous points in Tennessee and Kentucky and at Clemson College, S.
    [Show full text]
  • Prevalence of Nosema Species in a Feral Honey Bee Population: a 20-Year Survey Juliana Rangel, Kristen Baum, William L
    Prevalence of Nosema species in a feral honey bee population: a 20-year survey Juliana Rangel, Kristen Baum, William L. Rubink, Robert N. Coulson, J. Spencer Johnston, Brenna E. Traver To cite this version: Juliana Rangel, Kristen Baum, William L. Rubink, Robert N. Coulson, J. Spencer Johnston, et al.. Prevalence of Nosema species in a feral honey bee population: a 20-year survey. Apidologie, Springer Verlag, 2016, 47 (4), pp.561-571. 10.1007/s13592-015-0401-y. hal-01532328 HAL Id: hal-01532328 https://hal.archives-ouvertes.fr/hal-01532328 Submitted on 2 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2016) 47:561–571 Original article * INRA, DIB and Springer-Verlag France, 2015 DOI: 10.1007/s13592-015-0401-y Prevalence of Nosema species in a feral honey bee population: a 20-year survey 1 2 3 4 Juliana RANGEL , Kristen BAUM , William L. RUBINK , Robert N. COULSON , 1 5 J. Spencer JOHNSTON , Brenna E. TRAVER 1Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843-2475, USA 2Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK 74078, USA 3P.O.
    [Show full text]
  • Screening of Differentially Expressed Microsporidia Genes From
    insects Article Screening of Differentially Expressed Microsporidia Genes from Nosema ceranae Infected Honey Bees by Suppression Subtractive Hybridization 1, 1 2 1, 3, , Zih-Ting Chang y, Chong-Yu Ko , Ming-Ren Yen , Yue-Wen Chen * and Yu-Shin Nai * y 1 Department of Biotechnology and Animal Science, National Ilan University, No. 1, Sec. 1, Shen Nung Road, Ilan 26047, Taiwan; [email protected] (Z.-T.C.); [email protected] (C.-Y.K.) 2 Genomics Research Center, Academia Sinica, No. 128, Academia Road, Sec. 2, Nankang District, Taipei 115, Taiwan; [email protected] 3 Department of Entomology, National Chung Hsing University, No. 145, Xingda Road, Taichung 402, Taiwan * Correspondence: [email protected] (Y.-W.C.); [email protected] (Y.-S.N.) These authors contributed equally to this work. y Received: 21 February 2020; Accepted: 18 March 2020; Published: 22 March 2020 Abstract: The microsporidium Nosema ceranae is a high prevalent parasite of the European honey bee (Apis mellifera). This parasite is spreading across the world into its novel host. The developmental process, and some mechanisms of N. ceranae-infected honey bees, has been studied thoroughly; however, few studies have been carried out in the mechanism of gene expression in N. ceranae during the infection process. We therefore performed the suppressive subtractive hybridization (SSH) approach to investigate the candidate genes of N. ceranae during its infection process. All 96 clones of infected (forward) and non-infected (reverse) library were dipped onto the membrane for hybridization. A total of 112 differentially expressed sequence tags (ESTs) had been sequenced.
    [Show full text]
  • Download Download
    UNIVERSITY THOUGHT doi:10.5937/univtho7-15336 Publication in Natural Sciences, Vol. 7, No. 2, 2017, pp. 1-27. Original Scientific Paper A CONTRIBUTION TO KNOWLEDGE OF THE BALKAN LEPIDOPTERA. SOME PYRALOIDEA (LEPIDOPTERA: CRAMBIDAE & PYRALIDAE) ENCOUNTERED RECENTLY IN SOUTHERN SERBIA, MONTENEGRO, THE REPUBLIC OF MACEDONIA AND ALBANIA COLIN W. PLANT1*, STOYAN BESHKOV2, PREDRAG JAKŠIĆ3, ANA NAHIRNIĆ2 114 West Road, Bishops Stortford, Hertfordshire, CM23 3QP, England 2National Museum of Natural History, Sofia, Bulgaria 3Faculty of Natural Science and Mathematics, University of Priština, Kosovska Mitrovica, Serbia ABSTRACT Pyraloidea (Lepidoptera: Crambidae & Pyralidae) were sampled in the territories of southern Serbia, Montenegro, the Former Yugoslav Republic of Macedonia and Albania on a total of 53 occasions during 2014, 2016 and 2017. A total of 173 species is reported here, comprising 97 Crambidae and 76 Pyralidae. Based upon published data, 29 species appear to be new to the fauna of Serbia, 5 species are new to the fauna of Macedonia and 37 are new to the fauna of Albania. The data are discussed. Keywords: Faunistics, Serbia, Montenegro, Republic of Macedonia, Albania, Pyraloidea, Pyralidae, Crambidae. of light trap. Some sites were visited on more than one occasion; INTRODUCTION others were sampled once only. Pyraloidea (Lepidoptera: Crambidae and Pyralidae) have As a by-product of this work, all remaining material from been examined in detail in the neighbouring territory of the the traps was returned to Sofia where Dr Boyan Zlatkov was Republic of Bulgaria and the results have been published by one given the opportunity to extract the Tortricoidea. The remaining of us (Plant, 2016). That work presented data for the 386 species material was retained and sent by post to England after the end of and 3 additional subspecies known from that country.
    [Show full text]
  • Aufruf Zur Mitarbeit Meldung Der Pyraustinae-Daten Aus Dem Arbeitsgebiet 56 Aufruf Zur Mitarbeit
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Melanargia - Nachrichten der Arbeitsgemeinschaft Rheinisch- Westfälischer Lepidopterologen e.V. Jahr/Year: 2009 Band/Volume: 21 Autor(en)/Author(s): Kinkler Helmut, Mörtter Rolf Artikel/Article: Aufruf zur Mitarbeit Meldung der Pyraustinae-Daten aus dem Arbeitsgebiet 56 Aufruf zur Mitarbeit Meldung der Pyraustinae-Daten aus dem Arbeitsgebiet Nachdem der Band 14 unserer Lepidopterenfauna mit Daten zu den Familien Pyralidae und Crambidae erschienen ist, soll nun der Band 15 mit der Crambi- dae-Unterfamilie Pyraustinae folgen. Wer seine Daten zu dieser Unterfamilie noch nicht gemeldet hat, sollte dies bitte umgehend an eine der beiden unten stehenden Adressen tun. Im einzelnen sind dies folgende Arten (nach KARSHOLT & RAZOWSKI 1996): 6531 Udea ferrugalis 6623 Sitochroa palealis 6533 Udea fulvalis 6624 Sitochroa verticalis 6537 Udea institalis 6629 Perinephela lancealis 6538 Udea lutealis 6631 Phlyctaenia coronata 6539 Udea elutalis 6632 Phlyctaenia stachydalis 6541 Udea prunalis 6633 Phlyctaenia perlucidalis 6556 Udea decrepitalis 6638 Algedonia terrealis 6557 Udea olivalis 6643 Psammotis pulveralis 6559 Udea hamalis 6647 Ostrinia palustralis 6561 Paracorsia repandalis 6649 Ostrinia nubilalis 6563 Opsibotys fuscalis 6652 Ebulea crocealis 6566 Loxostege turbidalis 6655 Anania verbascalis 6568 Loxostege deliblatica 6656 Anania funebris 6574 Loxostege aeruginalis 6658 Eurrhypara hortulata 6577 Loxostege
    [Show full text]
  • Nosema Pyrausta: Its Biology, History, and Potential Role in a Landscape of Transgenic Insecticidal Crops
    Biological Control 48 (2009) 223–231 Contents lists available at ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Review Nosema pyrausta: Its biology, history, and potential role in a landscape of transgenic insecticidal crops Leslie C. Lewis a,*, Denny J. Bruck b, Jarrad R. Prasifka a,1, Earle S. Raun c a USDA-ARS, Corn Insects and Crop Genetics Research Unit, Genetics Laboratory, Ames, IA 50011, USA b USDA-ARS, Horticultural Crops Research Unit, 3420 N.W. Orchard Avenue, Corvallis, OR 97330, USA c Pest Management Company, 3036 Prairie Rd., Lincoln, NE 68506, USA article info abstract Article history: Nosema pyrausta, an entomopathogenic microsporidium, is an important population regulator of the Received 22 August 2008 European corn borer, Ostrinia nubilalis. This manuscript is a review of research on the relationships Accepted 10 October 2008 between N. pyrausta and O. nubilalis. N. pyrausta was described from O. nubilalis in Hungary in 1927 Available online 19 October 2008 and from O. nubilalis in IA in 1950. It affects the basic biology of O. nubilalis by slowing larval devel- opment, reducing percentage pupation, and decreasing adult longevity, oviposition and fecundity. Keywords: Infections are maintained in a population by vertical and horizontal transmission. Success of vertical Microsporidia transmission depends on intensity of infection. Horizontal transmission is dependent on stage of lar- Ostrinia nubilalis val development at time of infection, quantity of inoculum, and host density. Abiotic and biotic fac- Biological control Nosema pyrausta tors coupled with N. pyrausta usually have an additive effect in decreasing the fitness of O. nubilalis, i.e., cold temperatures reduce fecundity and increase larval mortality, host plant resistance reduces the number of larvae per plant.
    [Show full text]
  • Targeting the Honey Bee Gut Parasite Nosema Ceranae with Sirna Positively Affects Gut Bacteria Qiang Huang1* and Jay D
    Huang and Evans BMC Microbiology (2020) 20:258 https://doi.org/10.1186/s12866-020-01939-9 RESEARCH ARTICLE Open Access Targeting the honey bee gut parasite Nosema ceranae with siRNA positively affects gut bacteria Qiang Huang1* and Jay D. Evans2* Abstract Background: Gut microbial communities can contribute positively and negatively to host health. So far, eight core bacterial taxonomic clusters have been reported in honey bees. These bacteria are involved in host metabolism and defenses. Nosema ceranae is a gut intracellular parasite of honey bees which destroys epithelial cells and gut tissue integrity. Studies have shown protective impacts of honey bee gut microbiota towards N. ceranae infection. However, the impacts of N. ceranae on the relative abundance of honey bee gut microbiota remains unclear, and has been confounded during prior infection assays which resulted in the co-inoculation of bacteria during Nosema challenges. We used a novel method, the suppression of N. ceranae with specific siRNAs, to measure the impacts of Nosema on the gut microbiome. Results: Suppressing N. ceranae led to significant positive effects on microbial abundance. Nevertheless, 15 bacterial taxa, including three core taxa, were negatively correlated with N. ceranae levels. In particular, one co- regulated group of 7 bacteria was significantly negatively correlated with N. ceranae levels. Conclusions: N. ceranae are negatively correlated with the abundance of 15 identified bacteria. Our results provide insights into interactions between gut microbes and N. ceranae during infection. Keywords: Honey bee, Nosema ceranae, Metatranscriptomics, Bacteria, siRNA Background to impact honey bee metabolism and immune responses Animals evolve with their associated microorganisms as towards infections, altering disease susceptibility [4–8].
    [Show full text]
  • Preliminary Work on the Moth Fauna (Lepidoptera: Heterocera) of Kazdağı National Park – II (Turkey)
    Preliminary work on the moth fauna (Lepidoptera: Heterocera) of Kazdağı National Park – II (Turkey) Selma Seven Abstract. In this study, moth specimens collected from Kazdağı National Park are evaluated and 32 taxa belonging to 12 families are identified. All of the species have been recorded for the first time from Kazdağı National Park. Syndemis musculana (Hübner, [1799]), known from Turkey with uncertain locality record, has been recorded with an exact locality for the first time. The distribution in Turkey of Pancalia schwarzella (Fabricius, 1798) and Eudonia mercurella (Linnaeus, 1758) are discussed. Pyrausta ostrinalis (Hübner, 1796) is recorded for the first time for the Turkish Crambidae fauna. Samenvatting. Voorlopig studie van de nachtvlinderfauna (Lepidoptera: Heterocera) van het Kazdağı Nationaalpark – II (Turkije) In deze studie worden de 32 Heterocera-taxa uit 12 families, verzameld in het Kazdağı Nationaalpark, besproken. Al deze soorten worden voor het eerst uit dit gebied vermeld. Syndemis musculana (Hübner, [1799]), voordien bekend uit Turkije zonder enige vindplaats, wordt hier voor het eerst met een duidelijke lokaliteit vermeld. De verspreiding in Turkije van Pancalia schwarzella (Fabricius, 1798) en Eudonia mercurella (Linnaeus, 1758) wordt besproken. Pyrausta ostrinalis (Hübner, 1796) wordt hier voor het eerst uit Turkije vermeld. Résumé. Etude préliminaire des hétérocères (Lepidoptera: Heterocera) du Parque National de Kazdağı – II (Turquie) Dans cette étude les 32 taxa d'hétérocères appartenant à 12 familles, capturés dans le Parque National de Kazdağı, sont discutés. Toutes ces espèces sont mentionnées pour la première fois de ce parque. Syndemis musculana (Hübner, [1799]), auparavant seulement connu de Turquie sans localité précise, est mentionné ici pour la première fois avec certitude.
    [Show full text]
  • Moths of Trinity River National Wildlife Refuge
    U.S. FishFish & & Wildlife Wildlife Service Service Moths of Trinity River National Wildlife Refuge Established in 1994, the 25,000-acre Givira arbeloides Trinity River National Wildlife Refuge Prionoxystus robiniae is a remnant of what was once a much Carpenterworm Moth larger, frequently flooded, bottomland hardwood forest. You are still able to Crambid Snout Moths (Crambidae) view vast expanses of ridge and swale Achyra rantalis floodplain features, numerous bayous, Garden Webworm Moth oxbow lakes, and cypress/tupelo swamps Aethiophysa invisalis along the Trinity River. It is one of Argyria lacteella only 14 priority-one bottomland sites Milky Urola Moth identified for protection in the Texas Carectocultus perstrialis Bottomland Protection Plan. Texas is Reed-boring Crambid Moth home to an estimated 4,000 species of Chalcoela iphitalis moths. Most of the nearly 400 species of Sooty-winged Chalcoela moths listed below were photographed Chrysendeton medicinalis around the security lights at the Refuge Bold Medicine Moth Headquarters building located adjacent Colomychus talis to a bottomland hardwood forest. Many Distinguished Colomychus more moths are not even attracted to Conchylodes ovulalis lights, so additional surveys will need Zebra Conchylodes to be conducted to document those Crambus agitatellus species. These forests also support a Double-banded Grass-veneer wide diversity of mammals, reptiles, Crambus satrapellus amphibians, and fish with many feeding Crocidophora tuberculalis on moths or their larvae. Pale-winged Crocidophora Moth Desmia funeralis For more information, visit our website: Grape leaf-folder www.fws.gov/southwest Desmia subdivisalis Diacme elealis Contact the Refuge staff if you should Paler Diacme Moth find an unlisted or rare species during Diastictis fracturalis your visit and provide a description.
    [Show full text]
  • Moths Count Newsletter 2014
    Moths Count Ne wsl etter 2014 Seven years of success! The National Moth Recording Scheme (NMRS) is going from strength to strength; over the past year we have received a minimum of 1.4 million new moth records. We have been sent data refreshes from 87 vice- counties; they include records up to 2011 and in some cases 2012 and 2013 records. The Moths Count team are extremely grateful to the network of County Moth Recorders for their continued support of the NMRS. There are now 17,054,891 moth records in the NMRS. However, we still have a substantial number of the refreshed datasets to import, so the total number of records is likely to increase significantly. Many thanks to everyone who contributes to the NMRS by sending their records to the network of County Moth Recorders, record collators & Local Record Centres, who then undertake the vital work of collating, verifying and submitting records to the NMRS. The Large Yellow Underwing is the most recorded species in the NMRS accounting for 2.4% of all observations, followed by Heart and Dart and Dark Arches which both account for 1.5% of records. Cinnabar (R. Scopes) We have recently upgraded the NMRS server and moved At the start of the year, we announced the plans for the the NMRS database onto it. This investment in new hardware Macro-moth Atlas for Britain and Ireland , which we aim to is part of Butterfly Conservation’s commitment to the publish in 2018. We have always intended to produce an long-term sustainability of the NMRS.
    [Show full text]
  • Nosema Disease
    TB 1569/4/78 CoPs. ^'P' I NOSEMA DISEASE ITS CONTROL IN HONEY BEE COLONIES IN COOPERATION WITH WISCONSIN AGRICULTURAL EXPERIMENT STATION ^c* c::» CO UNITED STATES TECHNICAL PREPARED BY DEPARTMENT OF BULLETIN SCIENCE AND AGRICULTURE NUMBER 1569 EDUCATION ADMINISTRATION On.January 24, 1978, four USDA agencies—Agricultural Research Service (ARS), Cooperative State Research Service (CSRS), Extension Service (ES), and the National Agricultural Library (NAL)—merged to become a new organization, the Science and Education Administration (SEA), U.S. Department of Agriculture. This publication was prepared by the Science and Education Adminis- tration's Federal Research staff, which was formerly the Agricultural Research Service. For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock No. 001-000-03769-2 ABSTRACT Moeller, F. E.1978. Nosema Disease—Its Control in Honey Bee Col- onies. U.S. Department of Agriculture Technical Bulletin No 1569. A serious disease of adult honey bees, nosema, caused by Nosema apis Zander, retards colony devel- opment, thus affecting pollination, honey production, and package bee production. It is a major cause of queen supersedure in package bee colonies. Control consists of encouraging brood emergence, winter flight, and such chemotherapy as Fumidil B (fumagillin). Package colonies treated with Fumidil B produced 45 percent more honey than untreated colonies. Thirteen years of nosema disease study on 200 colonies show the seasonal fluctuations in infection levels and the advan- tage of chemotherapy when conditions warrant. This technical bulletin summarizes the studies and present knowledge on nosema controls stimulated by the Joint United States-Canada Nosema Disease Com- mittee.
    [Show full text]