Subgroups of Almost Finitely Presented Groups
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Abelian Subgroups of Finitely Generated Metabelian
J. Group Theory 16 (2013), 695–705 DOI 10.1515/jgt-2013-0011 © de Gruyter 2013 On abelian subgroups of finitely generated metabelian groups Vahagn H. Mikaelian and Alexander Y. Olshanskii Communicated by John S. Wilson To Professor Gilbert Baumslag to his 80th birthday Abstract. In this note we introduce the class of H-groups (or Hall groups) related to the class of B-groups defined by P. Hall in the 1950s. Establishing some basic properties of Hall groups we use them to obtain results concerning embeddings of abelian groups. In particular, we give an explicit classification of all abelian groups that can occur as subgroups in finitely generated metabelian groups. Hall groups allow us to give a negative answer to G. Baumslag’s conjecture of 1990 on the cardinality of the set of isomorphism classes for abelian subgroups in finitely generated metabelian groups. 1 Introduction The subject of our note goes back to the paper of P. Hall [7], which established the properties of abelian normal subgroups in finitely generated metabelian and abelian-by-polycyclic groups. Let B be the class of all abelian groups B, where B is an abelian normal subgroup of some finitely generated group G with polycyclic quotient G=B. It is proved in [7, Lemmas 8 and 5.2] that B H, where the class H of countable abelian groups can be defined as follows (in the present paper, we will call the groups from H Hall groups). By definition, H H if 2 (1) H is a (finite or) countable abelian group, (2) H T K; where T is a bounded torsion group (i.e., the orders of all ele- D ˚ ments in T are bounded), K is torsion-free, (3) K has a free abelian subgroup F such that K=F is a torsion group with trivial p-subgroups for all primes except for the members of a finite set .K/. -
Finitely Generated Groups Are Universal
Finitely Generated Groups Are Universal Matthew Harrison-Trainor Meng-Che Ho December 1, 2017 Abstract Universality has been an important concept in computable structure theory. A class C of structures is universal if, informally, for any structure, of any kind, there is a structure in C with the same computability-theoretic properties as the given structure. Many classes such as graphs, groups, and fields are known to be universal. This paper is about the class of finitely generated groups. Because finitely generated structures are relatively simple, the class of finitely generated groups has no hope of being universal. We show that finitely generated groups are as universal as possible, given that they are finitely generated: for every finitely generated structure, there is a finitely generated group which has the same computability-theoretic properties. The same is not true for finitely generated fields. We apply the results of this investigation to quasi Scott sentences. 1 Introduction Whenever we have a structure with interesting computability-theoretic properties, it is natural to ask whether such examples can be found within particular classes. While one could try to adapt the proof within the new class, it is often simpler to try and code the original structure into a structure in the given class. It has long been known that for certain classes, such as graphs, this is always possible. Hirschfeldt, Khoussainov, Shore, and Slinko [HKSS02] proved that classes of graphs, partial orderings, lattices, integral domains, and 2-step nilpotent groups are \complete with respect to degree spectra of nontrivial structures, effective dimensions, expansion by constants, and degree spectra of relations". -
An Ascending Hnn Extension
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 134, Number 11, November 2006, Pages 3131–3136 S 0002-9939(06)08398-5 Article electronically published on May 18, 2006 AN ASCENDING HNN EXTENSION OF A FREE GROUP INSIDE SL2 C DANNY CALEGARI AND NATHAN M. DUNFIELD (Communicated by Ronald A. Fintushel) Abstract. We give an example of a subgroup of SL2 C which is a strictly ascending HNN extension of a non-abelian finitely generated free group F .In particular, we exhibit a free group F in SL2 C of rank 6 which is conjugate to a proper subgroup of itself. This answers positively a question of Drutu and Sapir (2005). The main ingredient in our construction is a specific finite volume (non-compact) hyperbolic 3-manifold M which is a surface bundle over the circle. In particular, most of F comes from the fundamental group of a surface fiber. A key feature of M is that there is an element of π1(M)inSL2 C with an eigenvalue which is the square root of a rational integer. We also use the Bass-Serre tree of a field with a discrete valuation to show that the group F we construct is actually free. 1. Introduction Suppose φ: F → F is an injective homomorphism from a group F to itself. The associated HNN extension H = G, t tgt−1 = φ(g)forg ∈ G is said to be ascending; this extension is called strictly ascending if φ is not onto. In [DS], Drutu and Sapir give examples of residually finite 1-relator groups which are not linear; that is, they do not embed in GLnK for any field K and dimension n. -
Bounded Depth Ascending HNN Extensions and Π1-Semistability at ∞ Arxiv:1709.09140V1
Bounded Depth Ascending HNN Extensions and π1-Semistability at 1 Michael Mihalik June 29, 2021 Abstract A 1-ended finitely presented group has semistable fundamental group at 1 if it acts geometrically on some (equivalently any) simply connected and locally finite complex X with the property that any two proper rays in X are properly homotopic. If G has semistable fun- damental group at 1 then one can unambiguously define the funda- mental group at 1 for G. The problem, asking if all finitely presented groups have semistable fundamental group at 1 has been studied for over 40 years. If G is an ascending HNN extension of a finitely pre- sented group then indeed, G has semistable fundamental group at 1, but since the early 1980's it has been suggested that the finitely pre- sented groups that are ascending HNN extensions of finitely generated groups may include a group with non-semistable fundamental group at 1. Ascending HNN extensions naturally break into two classes, those with bounded depth and those with unbounded depth. Our main theorem shows that bounded depth finitely presented ascending HNN extensions of finitely generated groups have semistable fundamental group at 1. Semistability is equivalent to two weaker asymptotic con- arXiv:1709.09140v1 [math.GR] 26 Sep 2017 ditions on the group holding simultaneously. We show one of these conditions holds for all ascending HNN extensions, regardless of depth. We give a technique for constructing ascending HNN extensions with unbounded depth. This work focuses attention on a class of groups that may contain a group with non-semistable fundamental group at 1. -
Combinatorial Group Theory
Combinatorial Group Theory Charles F. Miller III March 5, 2002 Abstract These notes were prepared for use by the participants in the Workshop on Algebra, Geometry and Topology held at the Australian National University, 22 January to 9 February, 1996. They have subsequently been updated for use by students in the subject 620-421 Combinatorial Group Theory at the University of Melbourne. Copyright 1996-2002 by C. F. Miller. Contents 1 Free groups and presentations 3 1.1 Free groups . 3 1.2 Presentations by generators and relations . 7 1.3 Dehn’s fundamental problems . 9 1.4 Homomorphisms . 10 1.5 Presentations and fundamental groups . 12 1.6 Tietze transformations . 14 1.7 Extraction principles . 15 2 Construction of new groups 17 2.1 Direct products . 17 2.2 Free products . 19 2.3 Free products with amalgamation . 21 2.4 HNN extensions . 24 3 Properties, embeddings and examples 27 3.1 Countable groups embed in 2-generator groups . 27 3.2 Non-finite presentability of subgroups . 29 3.3 Hopfian and residually finite groups . 31 4 Subgroup Theory 35 4.1 Subgroups of Free Groups . 35 4.1.1 The general case . 35 4.1.2 Finitely generated subgroups of free groups . 35 4.2 Subgroups of presented groups . 41 4.3 Subgroups of free products . 43 4.4 Groups acting on trees . 44 5 Decision Problems 45 5.1 The word and conjugacy problems . 45 5.2 Higman’s embedding theorem . 51 1 5.3 The isomorphism problem and recognizing properties . 52 2 Chapter 1 Free groups and presentations In introductory courses on abstract algebra one is likely to encounter the dihedral group D3 consisting of the rigid motions of an equilateral triangle onto itself. -
Decomposing Some Finitely Generated Groups Into Free Products With
Decomposing some finitely generated groups into free products with amalgamation 1 V.V. Benyash-Krivets Introduction . We shall say that a group G is a non-trivial free product with amalgamation if ¡ ¡ G = G1 A G2, where G1 = A = G2 (see [1]). Wall [2] has posed the following question: Which one-relator groups are non-trivial free products with amalgamation? £ Let G = ¢ g , . , g R = = R = 1 be a group with m generators and n 1 m | 1 · · · n relations such that def G = m n ¤ 2. It is proved in [4] that G is a non-trivial − free product with amalgamation. In particular, if G is a group with m ¤ 3 generators and one relation, then G is a non-trivial free product with amalgamation. A case of groups with two generators and one relation is more complicated. For example, the free −1 −1 £ abelian group G = ¢ a, b [a, b] = 1 of rank 2, where [a, b] = aba b , obviously, is | not a non-trivial free product with amalgamation. Other examples are given by groups −1 n £ Gn = ¢ a, b aba = b . For any n, the group Gn is solvable and using results from [3], | ¡ it is easy to show that for n = 1 the group G is not decomposable into a non-trivial − n free product with amalgamation. The following conjecture was stated in [4]. m £ ¤ Conjecture 1 Let G = ¢ a, b R (a, b) = 1 , m 2, be a group with two generators | and one relation with torsion. Then G is a non-trivial free product with amalgamation. -
Beyond Serre's" Trees" in Two Directions: $\Lambda $--Trees And
Beyond Serre’s “Trees” in two directions: Λ–trees and products of trees Olga Kharlampovich,∗ Alina Vdovina† October 31, 2017 Abstract Serre [125] laid down the fundamentals of the theory of groups acting on simplicial trees. In particular, Bass-Serre theory makes it possible to extract information about the structure of a group from its action on a simplicial tree. Serre’s original motivation was to understand the structure of certain algebraic groups whose Bruhat–Tits buildings are trees. In this survey we will discuss the following generalizations of ideas from [125]: the theory of isometric group actions on Λ-trees and the theory of lattices in the product of trees where we describe in more detail results on arithmetic groups acting on a product of trees. 1 Introduction Serre [125] laid down the fundamentals of the theory of groups acting on sim- plicial trees. The book [125] consists of two parts. The first part describes the basics of what is now called Bass-Serre theory. This theory makes it possi- ble to extract information about the structure of a group from its action on a simplicial tree. Serre’s original motivation was to understand the structure of certain algebraic groups whose Bruhat–Tits buildings are trees. These groups are considered in the second part of the book. Bass-Serre theory states that a group acting on a tree can be decomposed arXiv:1710.10306v1 [math.GR] 27 Oct 2017 (splits) as a free product with amalgamation or an HNN extension. Such a group can be represented as a fundamental group of a graph of groups. -
Torsion, Torsion Length and Finitely Presented Groups 11
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo TORSION, TORSION LENGTH AND FINITELY PRESENTED GROUPS MAURICE CHIODO AND RISHI VYAS Abstract. We show that a construction by Aanderaa and Cohen used in their proof of the Higman Embedding Theorem preserves torsion length. We give a new construction showing that every finitely presented group is the quotient of some C′(1~6) finitely presented group by the subgroup generated by its torsion elements. We use these results to show there is a finitely presented group with infinite torsion length which is C′(1~6), and thus word-hyperbolic and virtually torsion-free. 1. Introduction It is well known that the set of torsion elements in a group G, Tor G , is not necessarily a subgroup. One can, of course, consider the subgroup Tor1 G generated by the set of torsion elements in G: this subgroup is always normal( ) in G. ( ) The subgroup Tor1 G has been studied in the literature, with a particular focus on its structure in the context of 1-relator groups. For example, suppose G is presented by a 1-relator( ) presentation P with cyclically reduced relator Rk where R is not a proper power, and let r denote the image of R in G. Karrass, Magnus, and Solitar proved ([17, Theorem 3]) that r has order k and that every torsion element in G is a conjugate of some power of r; a more general statement can be found in [22, Theorem 6]. As immediate corollaries, we see that Tor1 G is precisely the normal closure of r, and that G Tor1 G is torsion-free. -
Compressed Word Problems in HNN-Extensions and Amalgamated Products
Compressed word problems in HNN-extensions and amalgamated products Niko Haubold and Markus Lohrey Institut f¨ur Informatik, Universit¨atLeipzig {haubold,lohrey}@informatik.uni-leipzig.de Abstract. It is shown that the compressed word problem for an HNN- −1 extension hH,t | t at = ϕ(a)(a ∈ A)i with A finite is polynomial time Turing-reducible to the compressed word problem for the base group H. An analogous result for amalgamated free products is shown as well. 1 Introduction Since it was introduced by Dehn in 1910, the word problem for groups has emerged to a fundamental computational problem linking group theory, topol- ogy, mathematical logic, and computer science. The word problem for a finitely generated group G asks, whether a given word over the generators of G represents the identity of G, see Section 2 for more details. Dehn proved the decidability of the word problem for surface groups. On the other hand, 50 years after the appearance of Dehn’s work, Novikov and independently Boone proved the exis- tence of a finitely presented group with undecidable word problem, see [10] for references. However, many natural classes of groups with decidable word prob- lem are known, as for instance finitely generated linear groups, automatic groups and one-relator groups. With the rise of computational complexity theory, also the complexity of the word problem became an active research area. This devel- opment has gained further attention by potential applications of combinatorial group theory for secure cryptographic systems [11]. In order to prove upper bounds on the complexity of the word problem for a group G, a “compressed” variant of the word problem for G was introduced in [6, 7, 14]. -
Lecture 4, Geometric and Asymptotic Group Theory
Preliminaries Presentations of groups Finitely generated groups viewed as metric spaces Quasi-isometry Limit groups Free actions Lecture 4, Geometric and asymptotic group theory Olga Kharlampovich NYC, Sep 16 1 / 32 Preliminaries Presentations of groups Finitely generated groups viewed as metric spaces Homomorphisms of groups Quasi-isometry Limit groups Free actions The universal property of free groups allows one to describe arbitrary groups in terms of generators and relators. Let G be a group with a generating set S. By the universal property of free groups there exists a homomorphism ': F (S) ! G such that '(s) = s for s 2 S. It follows that ' is onto, so by the first isomorphism theorem G ' F (S)=ker('): In this event ker(') is viewed as the set of relators of G, and a group word w 2 ker(') is called a relator of G in generators S. If a subset R ⊂ ker(') generates ker(') as a normal subgroup of F (S) then it is termed a set of defining relations of G relative to S. 2 / 32 Preliminaries Presentations of groups Finitely generated groups viewed as metric spaces Homomorphisms of groups Quasi-isometry Limit groups Free actions The pair hS j Ri is called a presentation of G, it determines G uniquely up to isomorphism. The presentation hS j Ri is finite if both sets S and R are finite. A group is finitely presented if it has at least one finite presentation. Presentations provide a universal method to describe groups. Example of finite presentations 1 G = hs1;:::; sn j [si ; sj ]; 81 ≤ i < j ≤ ni is the free abelian group of rank n. -
Arxiv:1711.08410V2
LATTICE ENVELOPES URI BADER, ALEX FURMAN, AND ROMAN SAUER Abstract. We introduce a class of countable groups by some abstract group- theoretic conditions. It includes linear groups with finite amenable radical and finitely generated residually finite groups with some non-vanishing ℓ2- Betti numbers that are not virtually a product of two infinite groups. Further, it includes acylindrically hyperbolic groups. For any group Γ in this class we determine the general structure of the possible lattice embeddings of Γ, i.e. of all compactly generated, locally compact groups that contain Γ as a lattice. This leads to a precise description of possible non-uniform lattice embeddings of groups in this class. Further applications include the determination of possi- ble lattice embeddings of fundamental groups of closed manifolds with pinched negative curvature. 1. Introduction 1.1. Motivation and background. Let G be a locally compact second countable group, hereafter denoted lcsc1. Such a group carries a left-invariant Radon measure unique up to scalar multiple, known as the Haar measure. A subgroup Γ < G is a lattice if it is discrete, and G/Γ carries a finite G-invariant measure; equivalently, if the Γ-action on G admits a Borel fundamental domain of finite Haar measure. If G/Γ is compact, one says that Γ is a uniform lattice, otherwise Γ is a non- uniform lattice. The inclusion Γ ֒→ G is called a lattice embedding. We shall also say that G is a lattice envelope of Γ. The classical examples of lattices come from geometry and arithmetic. Starting from a locally symmetric manifold M of finite volume, we obtain a lattice embedding π1(M) ֒→ Isom(M˜ ) of its fundamental group into the isometry group of its universal covering via the action by deck transformations. -
Covering Spaces and the Fundamental Group
FUNDAMENTAL GROUPS AND COVERING SPACES NICK SALTER, SUBHADIP CHOWDHURY 1. Preamble The following exercises are intended to introduce you to some of the basic ideas in algebraic topology, namely the fundamental group and covering spaces. Exercises marked with a (B) are basic and fundamental. If you are new to the subject, your time will probably be best spent digesting the (B) exercises. If you have some familiarity with the material, you are under no obligation to attempt the (B) exercises, but you should at least convince yourself that you know how to do them. If you are looking to focus on specific ideas and techniques, I've made some attempt to label exercises with the sorts of ideas involved. 2. Two extremely important theorems If you get nothing else out of your quarter of algebraic topology, you should know and understand the following two theorems. The exercises on this sheet (mostly) exclusively rely on them, along with the ability to reason spatially and geometrically. Theorem 2.1 (Seifert-van Kampen). Let X be a topological space and assume that X = U[V with U; V ⊂ X open such that U \ V is path connected and let x0 2 U \ V . We consider the commutative diagram π1(U; x0) i1∗ j1∗ π1(U \ V; x0) π1(X; x0) i2∗ j2∗ π1(V; x0) where all maps are induced by the inclusions. Then for any group H and any group homomor- phisms φ1 : π1(U; x0) ! H and φ2 : π1(V; x0) ! H such that φ1i1∗ = φ2i2∗; Date: September 20, 2015. 1 2 NICK SALTER, SUBHADIP CHOWDHURY there exists a unique group homomorphism φ : π1(X; x0) ! H such that φ1 = φj1∗, φ2 = φj2∗.