Dicistrovirus–Host Molecular Interactions Reid Warsaba†, Jibin Sadasivan† and Eric Jan*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Trabajo Fin De Grado Biotecnología
FACULTAD DE CIENCIA Y TECNOLOGÍA. LEIOA TRABAJO FIN DE GRADO BIOTECNOLOGÍA CLONACIÓN, EXPRESIÓN Y PURIFICACIÓN DE LA PROTEÍNA VIRAL VP4 DE TRIATOMA VIRUS Alumno: Goikolea Egia, Julen Fecha: Junio 2014 Director: Curso Académico: Dr. Diego Marcelo Guérin Aguilar 2013/14 ÍNDICE 1. INTRODUCCIÓN Y OBJETIVOS ........................................................................ 1 1.1. Ausencia de la proteína viral VP4 en la estructura cristalográfica de la cápside ............................................................................................................. 4 1.2. Viroporinas .................................................................................................... 5 1.3. Mecanismos de acción de proteínas con actividad permeabilizadora de membrana ........................................................................................................ 8 1.4. Objetivos ........................................................................................................ 11 2. DESARROLLO ..................................................................................................... 12 2.1. Materiales y Métodos ...................................................................................... 12 2.1.1. Purificación de TrV .............................................................................. 12 2.1.2. Extracción del ARN ............................................................................. 12 2.1.3. Clonaje de VP4-pET28a ...................................................................... -
Virology Journal Biomed Central
Virology Journal BioMed Central Research Open Access The use of RNA-dependent RNA polymerase for the taxonomic assignment of Picorna-like viruses (order Picornavirales) infecting Apis mellifera L. populations Andrea C Baker* and Declan C Schroeder Address: Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK Email: Andrea C Baker* - [email protected]; Declan C Schroeder - [email protected] * Corresponding author Published: 22 January 2008 Received: 19 November 2007 Accepted: 22 January 2008 Virology Journal 2008, 5:10 doi:10.1186/1743-422X-5-10 This article is available from: http://www.virologyj.com/content/5/1/10 © 2008 Baker and Schroeder; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Single-stranded RNA viruses, infectious to the European honeybee, Apis mellifera L. are known to reside at low levels in colonies, with typically no apparent signs of infection observed in the honeybees. Reverse transcription-PCR (RT-PCR) of regions of the RNA-dependent RNA polymerase (RdRp) is often used to diagnose their presence in apiaries and also to classify the type of virus detected. Results: Analysis of RdRp conserved domains was undertaken on members of the newly defined order, the Picornavirales; focusing in particular on the amino acid residues and motifs known to be conserved. Consensus sequences were compiled using partial and complete honeybee virus sequences published to date. -
Data Mining Cdnas Reveals Three New Single Stranded RNA Viruses in Nasonia (Hymenoptera: Pteromalidae)
Insect Molecular Biology Insect Molecular Biology (2010), 19 (Suppl. 1), 99–107 doi: 10.1111/j.1365-2583.2009.00934.x Data mining cDNAs reveals three new single stranded RNA viruses in Nasonia (Hymenoptera: Pteromalidae) D. C. S. G. Oliveira*, W. B. Hunter†, J. Ng*, Small viruses with a positive-sense single-stranded C. A. Desjardins*, P. M. Dang‡ and J. H. Werren* RNA (ssRNA) genome, and no DNA stage, are known as *Department of Biology, University of Rochester, picornaviruses (infecting vertebrates) or picorna-like Rochester, NY, USA; †United States Department of viruses (infecting non-vertebrates). Recently, the order Agriculture, Agricultural Research Service, US Picornavirales was formally characterized to include most, Horticultural Research Laboratory, Fort Pierce, FL, USA; but not all, ssRNA viruses (Le Gall et al., 2008). Among and ‡United States Department of Agriculture, other typical characteristics – e.g. a small icosahedral Agricultural Research Service, NPRU, Dawson, GA, capsid with a pseudo-T = 3 symmetry and a 7–12 kb USA genome made of one or two RNA segments – the Picor- navirales genome encodes a polyprotein with a replication Abstractimb_934 99..108 module that includes a helicase, a protease, and an RNA- dependent RNA polymerase (RdRp), in this order (see Le We report three novel small RNA viruses uncovered Gall et al., 2008 for details). Pathogenicity of the infections from cDNA libraries from parasitoid wasps in the can vary broadly from devastating epidemics to appar- genus Nasonia. The genome of this kind of virus ently persistent commensal infections. Several human Ј is a positive-sense single-stranded RNA with a 3 diseases, from hepatitis A to the common cold (e.g. -
Epidemiology of White Spot Syndrome Virus in the Daggerblade Grass Shrimp (Palaemonetes Pugio) and the Gulf Sand Fiddler Crab (Uca Panacea)
The University of Southern Mississippi The Aquila Digital Community Dissertations Fall 12-2016 Epidemiology of White Spot Syndrome Virus in the Daggerblade Grass Shrimp (Palaemonetes pugio) and the Gulf Sand Fiddler Crab (Uca panacea) Muhammad University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/dissertations Part of the Animal Diseases Commons, Disease Modeling Commons, Epidemiology Commons, Virology Commons, and the Virus Diseases Commons Recommended Citation Muhammad, "Epidemiology of White Spot Syndrome Virus in the Daggerblade Grass Shrimp (Palaemonetes pugio) and the Gulf Sand Fiddler Crab (Uca panacea)" (2016). Dissertations. 895. https://aquila.usm.edu/dissertations/895 This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. EPIDEMIOLOGY OF WHITE SPOT SYNDROME VIRUS IN THE DAGGERBLADE GRASS SHRIMP (PALAEMONETES PUGIO) AND THE GULF SAND FIDDLER CRAB (UCA PANACEA) by Muhammad A Dissertation Submitted to the Graduate School and the School of Ocean Science and Technology at The University of Southern Mississippi in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Approved: ________________________________________________ Dr. Jeffrey M. Lotz, Committee Chair Professor, Ocean Science and Technology ________________________________________________ Dr. Darrell J. Grimes, Committee Member Professor, Ocean Science and Technology ________________________________________________ Dr. Wei Wu, Committee Member Associate Professor, Ocean Science and Technology ________________________________________________ Dr. Reginald B. Blaylock, Committee Member Associate Research Professor, Ocean Science and Technology ________________________________________________ Dr. Karen S. Coats Dean of the Graduate School December 2016 COPYRIGHT BY Muhammad* 2016 Published by the Graduate School *U.S. -
Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris Spelaea)
viruses Article Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris spelaea) Ian H Mendenhall 1,* , Dolyce Low Hong Wen 1,2, Jayanthi Jayakumar 1, Vithiagaran Gunalan 3, Linfa Wang 1 , Sebastian Mauer-Stroh 3,4 , Yvonne C.F. Su 1 and Gavin J.D. Smith 1,5,6 1 Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; [email protected] (D.L.H.W.); [email protected] (J.J.); [email protected] (L.W.); [email protected] (Y.C.F.S.) [email protected] (G.J.D.S.) 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore 3 Bioinformatics Institute, Agency for Science, Technology and Research, Singapore 138671, Singapore; [email protected] (V.G.); [email protected] (S.M.-S.) 4 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore 5 SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore 6 Duke Global Health Institute, Duke University, Durham, NC 27710, USA * Correspondence: [email protected] Received: 30 January 2019; Accepted: 7 March 2019; Published: 12 March 2019 Abstract: Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India and southern China, however, little is known about their involvement in virus transmission. -
Capsid Protein Identification and Analysis of Mature Triatoma
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Virology 409 (2011) 91–101 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro Capsid protein identification and analysis of mature Triatoma virus (TrV) virions and naturally occurring empty particles Jon Agirre a,c, Kerman Aloria b, Jesus M. Arizmendi c, Ibón Iloro d, Félix Elortza d, Rubén Sánchez-Eugenia a,h, Gerardo A. Marti e, Emmanuelle Neumann f, Félix A. Rey g, Diego M.A. Guérin a,c,h,⁎ a Unidad de Biofísica (CSIC-UPV/EHU), Barrio Sarriena S/N, 48940, Leioa, Bizkaia, Spain b Servicio General de Proteómica (SGIker), Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain c Departamento de Bioquímica y Biologia Molecular, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain d CIC-BioGUNE, Proteomic plataform, CIBERehd, Proteored, Parque Tecnológico Bizkaia, Ed800, 48160 Derio, Bizkaia, Spain e Centro de Estudios Parasitológicos y de Vectores (CEPAVE) and Centro Regional de Investigaciones Científicas y Transferencia Tecnológicas La Rioja (CRILAR), 2#584 (1900) La Plata, Argentina f Laboratoire de Microscopie Electronique Structurale, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075 CEA–CNRS–UJF, 41, rue Jules Horowitz, F-38027 Grenoble, Cedex 1, France g Unité de Virologie Structurale, CNRS URA 3015, Départment de Virologie, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France h Fundación Biofísica Bizkaia, B Sarriena S/N, 48940 Leioa, Bizkaia, Spain article info abstract Article history: Triatoma virus (TrV) is a non-enveloped +ssRNA virus belonging to the insect virus family Dicistroviridae. -
Metagenomic Assessment of Adventitious Viruses in Commercial Bovine Sera
Biologicals 47 (2017) 64e68 Contents lists available at ScienceDirect Biologicals journal homepage: www.elsevier.com/locate/biologicals Metagenomic assessment of adventitious viruses in commercial bovine sera * Kathy Toohey-Kurth a, b, Samuel D. Sibley a, Tony L. Goldberg a, c, a University of Wisconsin-Madison, Department of Pathobiological Sciences, 1656 Linden Drive, Madison, WI 53706, USA b Wisconsin Veterinary Diagnostic Laboratory, 445 Easterday Lane, Madison, WI 53706, USA c University of Wisconsin-Madison Global Health Institute, 1300 University Avenue, Madison, WI 53706, USA article info abstract Article history: Animal serum is an essential supplement for cell culture media. Contamination of animal serum with Received 22 September 2016 adventitious viruses has led to major regulatory action and product recalls. We used metagenomic Received in revised form methods to detect and characterize viral contaminants in 26 bovine serum samples from 12 manufac- 19 October 2016 turers. Across samples, we detected sequences with homology to 20 viruses at depths of up to 50,000 Accepted 20 October 2016 viral reads per million. The viruses detected represented nine viral families plus four taxonomically Available online 31 March 2017 unassigned viruses and had both RNA genomes and DNA genomes. Sequences ranged from 28% to 96% similar at the amino acid level to viruses in the GenBank database. The number of viruses varied from Keywords: Serum zero to 11 among samples and from one to 11 among suppliers, with only one product from one supplier “ ” Contamination being entirely clean. For one common adventitious virus, bovine viral diarrhea virus (BVDV), abun- Virus dance estimates calculated from metagenomic data (viral reads per million) closely corresponded to Ct Diagnostics values from quantitative real-time reverse transcription polymerase chain reaction (rtq-PCR), with Metagenomics metagenomics being approximately as sensitive as rtq-PCR. -
In Triatoma Infestans Known That the Entry of One Microorganism Favours the Entry of Another (Heteroptera : Reduviidae) from the Gran Chaco
Journal of Invertebrate Pathology 150 (2017) 101–105 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Can Triatoma virus inhibit infection of Trypanosoma cruzi (Chagas, 1909) in T Triatoma infestans (Klug)? A cross infection and co-infection study ⁎ Gerardo Aníbal Martia,d, , Paula Ragoneb, Agustín Balsalobrea,d, Soledad Ceccarellia,d, María Laura Susevicha,d, Patricio Diosqueb, María Gabriela Echeverríac,d, Jorge Eduardo Rabinovicha,d a Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT-La Plata-CONICET-UNLP), Boulevard 120 e/61 y 62, 1900 La Plata, Argentina b Unidad de Epidemiología Molecular del Instituto de Patología Experimental, Facultad de Ciencias de la Salud, Universidad Nacional de Salta, Salta, Argentina c Cátedra de Virología, Facultad de Ciencias Veterinarias (UNLP), 60 y 118, 1900 La Plata, Argentina d CCT-La Plata, 8#1467, 1900 La Plata, Argentina ARTICLE INFO ABSTRACT Keywords: Triatoma virus occurs infecting Triatominae in the wild (Argentina) and in insectaries (Brazil). Pathogenicity of Associated microorganisms Triatoma virus has been demonstrated in laboratory; accidental infections in insectaries produce high insect Dicistroviridae mortality. When more than one microorganism enters the same host, the biological interaction among them Protozoan differs greatly depending on the nature and the infection order of the co-existing species of microorganisms. We studied the possible interactions between Triatoma virus (TrV) and Trypanosoma cruzi (the etiological agent of Chagas disease) in three different situations: (i) when Triatoma virus is inoculated into an insect host (Triatoma infestans) previously infected with T. cruzi, (ii) when T. cruzi is inoculated into T. -
A Novel Cripavirus of an Ectoparasitoid Wasp Increases Pupal Duration and Fecundity of the Wasp’S Drosophila Melanogaster Host
The ISME Journal https://doi.org/10.1038/s41396-021-01005-w ARTICLE A novel cripavirus of an ectoparasitoid wasp increases pupal duration and fecundity of the wasp’s Drosophila melanogaster host 1 1 1 1 1 1 2 3 Jiao Zhang ● Fei Wang ● Bo Yuan ● Lei Yang ● Yi Yang ● Qi Fang ● Jens H. Kuhn ● Qisheng Song ● Gongyin Ye 1 Received: 14 October 2020 / Revised: 21 April 2021 / Accepted: 30 April 2021 © The Author(s) 2021. This article is published with open access Abstract We identified a 9332-nucleotide-long novel picornaviral genome sequence in the transcriptome of an agriculturally important parasitoid wasp (Pachycrepoideus vindemmiae (Rondani, 1875)). The genome of the novel virus, Rondani’swaspvirus1(RoWV- 1), contains two long open reading frames encoding a nonstructural and a structural protein, respectively, and is 3’-polyadenylated. Phylogenetic analyses firmly place RoWV-1 into the dicistrovirid genus Cripavirus. We detected RoWV-1 in various tissues and life stages of the parasitoid wasp, with the highest virus load measured in the larval digestive tract. We demonstrate that RoWV-1 is transmitted horizontally from infected to uninfected wasps but not vertically to wasp offspring. Comparison of several important 1234567890();,: 1234567890();,: biological parameters between the infected and uninfected wasps indicates that RoWV-1 does not have obvious detrimental effects on wasps. We further demonstrate that RoWV-1 also infects Drosophila melanogaster (Meigen, 1830), the hosts of the pupal ectoparasitoid wasps, and thereby increases its pupal developmental duration and fecundity, but decreases the eclosion rate. Together, these results suggest that RoWV-1 may have a potential benefit to the wasp by increasing not only the number of potential wasp hosts but also the developmental time of the hosts to ensure proper development of wasp offspring. -
Reovirus and the Host Integrated Stress Response: on the Frontlines of the Battle to Survive
viruses Review Reovirus and the Host Integrated Stress Response: On the Frontlines of the Battle to Survive Luke D. Bussiere and Cathy L. Miller * Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-515-294-4797 Abstract: Cells are continually exposed to stressful events, which are overcome by the activation of a number of genetic pathways. The integrated stress response (ISR) is a large component of the overall cellular response to stress, which ultimately functions through the phosphorylation of the alpha subunit of eukaryotic initiation factor-2 (eIF2α) to inhibit the energy-taxing process of translation. This response is instrumental in the inhibition of viral infection and contributes to evolution in viruses. Mammalian orthoreovirus (MRV), an oncolytic virus that has shown promise in over 30 phase I–III clinical trials, has been shown to induce multiple arms within the ISR pathway, but it successfully evades, modulates, or subverts each cellular attempt to inhibit viral translation. MRV has not yet received Food and Drug Administration (FDA) approval for general use in the clinic; therefore, researchers continue to study virus interactions with host cells to identify circumstances where MRV effectiveness in tumor killing can be improved. In this review, we will discuss the ISR, MRV modulation of the ISR, and discuss ways in which MRV interaction with the ISR may increase the effectiveness of cancer therapeutics whose modes of action are altered by the ISR. Keywords: mammalian orthoreovirus; integrated stress response; eIF2α; translation initiation; Citation: Bussiere, L.D.; Miller, C.L. -
Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person -
Evolution of Viral Proteins Originated De Novo by Overprinting Weak Purifying Selection
Evolution of Viral Proteins Originated De Novo by Overprinting Niv Sabath,*,1,2 Andreas Wagner,1,2,3 and David Karlin4 1Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland 2The Swiss Institute of Bioinformatics, Basel, Switzerland 3The Santa Fe Institute, Santa Fe, New Mexico 4Oxford University, South Parks Road, Oxford, United Kingdom *Corresponding author: E-mail: [email protected]. Associate editor: Daniel Falush Abstract Downloaded from https://academic.oup.com/mbe/article-abstract/29/12/3767/1006311 by guest on 09 October 2018 New protein-coding genes can originate either through modification of existing genes or de novo. Recently, the importance of de Research article novo origination has been recognized in eukaryotes, although eukaryotic genes originated de novo are relatively rare and difficult to identify. In contrast, viruses contain many de novo genes, namely those in which an existing gene has been “overprinted” by a new open reading frame, a process that generates a new protein-coding gene overlapping the ancestral gene. We analyzed the evolution of 12 experimentally validated viral genes that originated de novo and estimated their relative ages. We found that young de novo genes have a different codon usage from the rest of the genome. They evolve rapidly and are under positive or weak purifying selection. Thus, young de novo genes might have strain-specific functions, or no function, and would be difficult to detect using current genome annotation methods that rely on the sequence signature of purifying selection. In contrast to youngdenovogenes,olderdenovogeneshaveacodonusagethatissimilartotherestofthegenome.Theyevolveslowlyand are under stronger purifying selection. Some of the oldest de novo genes evolve under stronger selection pressure than the ancestral gene they overlap, suggesting an evolutionary tug of war between the ancestral and the de novo gene.