Assessment of Functional Connectivity Impairment in Rat Brains

Total Page:16

File Type:pdf, Size:1020Kb

Assessment of Functional Connectivity Impairment in Rat Brains DEGREE PROJECT IN MEDICAL ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2019 Assessment of functional connectivity impairment in rat brains ANDROULA SAVVA KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES IN CHEMISTRY, BIOTECHNOLOGY AND HEALTH Acknowledgements I would like to express my deep gratitude to my supervisor Rodrigo Moreno for trusting me with this project, for providing me with his valuable guidance and for allowing me to take initiatives through the progress of this project. Special thanks are due to my examiner, Professor Örjan Smedby for the insightful comments and suggestions during the development of this thesis. I would also like to thank Daniel Jörgens, PhD student, for his valuable help on the software development of this pipeline and Malin Siegbahn, MD, PhD student, for providing me with her medical expertise and her time contribution. I wish to thank my family and close friends for their support and encouragement through- out this challenging period. Lastly, to Aria, for her patience and support during my studies. Abstract While the rodent model has long been used in brain research, there exists no standardised processing routine that can be employed for analysis and investigation of disease models. The present thesis attempts to investigate a diseased brain model by implementing a collection of scripts, combined with algorithms from existing neuroimaging software, and adapting them to the rodent brain, in an attempt to examine when and how monaural canal atresia affects the functional connectivity of the brain. We show that it is possible to use software tailored to the human brain to pre-process the rodent model. Following conventional pipelines and resting state functional MRI (rs-fMRI)-specific strategies, the developed processing routine implements the most basic steps suggested in literature. On the single-subject level, skull stripping was done using Mialite software, motion correction and distortion correction were based on FMRIB software library (FSL) algorithms and motion artefacts were removed using ICA-based Automatic Removal Of Motion Artifacts (ICA-AROMA). Following denoising, normalisation to standard space, smoothing and temporal filtering, group level analysis was performed. A univariate, hypothesis-driven method and a multivariate, data-driven method were used for group comparison and statistical inference. While seed-based correlation analysis (SCA) did not return any significant results, independent component analysis (ICA) identified two components that show activation in areas of interest. Sammanfattning Djurmodeller med gnagare (råtta och mus) har länge använts i hjärnforskning. Men ännu finns det ingen standardiserad rutin för analys och utvärdering av bilddata från sådana sjuk- domsmodeller. Detta arbete använder en råttmodell av sjukdomen ensidig hörselgångsatresi, som innebär att yttre hörselgången är igensatt på ena sidan. Detta görs genom att mjukvaru- verktyg som utvecklats för att analysera bilddata från magnetkameraundersökning av den mänskliga hjärnan anpassas för att användas på motsvarande bilddata från råtta för att studera hur ensidig hörselgångsatresi påverkar hjärnans funktionella konnektivitet, dvs hur mönstren i hjärnaktivering samvarierar mellan olika delar av hjärnan (rs-fMRI). Vi visar att det är möjligt att använda mjukvara avsedd för människans hjärna för att förbehandla bilder av råtthjärna. Med hjälp av etablerade arbetsflöden och särskilda procedurer för rs-fMRI kunde den utvecklade proceduren implementera de viktigaste stegen i analysen. För varje individ avgränsades hjärnan med programmet Mialite, rörelsekorrigering och korrigering av rumsdis- torsion gjordes med FSL, och rörelseartefakter avlägsnades med ICA-AROMA. Sedan brus tagits bort, och bilddata standardiserats till en standardanatomi och genomgått filtrering i rum och tid, gjordes analys på två grupper, med och utan artificiell hörselgångsatresi. En univariat, hypotesdriven metod och en multivariat, data-driven metod användes för gruppjämförelse och statistisk analys. Frö-baserad korrelationsanalys (SCA) gav inga signifikanta resultat, men oberoende-komponent-analys (ICA) påvisade två anatomiska områden med aktivering relaterad till skillnader mellan grupperna. Table of contents List of figures xi List of abbreviations xiii 1 Introduction1 2 Materials and methods3 2.1 Dataset description . .3 2.1.1 Data acquisition . .3 2.1.2 Data structure . .3 2.1.3 Data format . .4 2.1.4 BIDS organization . .4 2.2 Data preprocessing pipeline . .5 2.2.1 Quality control . .7 2.2.2 Anatomical preprocessing stream . .7 Brain extraction . .8 Bias field correction . .9 Tissue segmentation . .9 Regions of interest (ROI)....................... 10 2.2.3 Functional preprocessing stream . 11 Motion correction . 11 Distortion correction . 11 Multi-stage registration . 12 Spatial filtering . 14 ICA-based cleanup . 14 Highpass temporal filtering . 14 2.3 Statistical analysis . 15 2.3.1 High level design . 15 2.3.2 Dual regression . 16 2.3.3 SCA.................................. 16 2.3.4 Group ICA.............................. 17 3 Results 19 3.1 SCA activation maps . 19 3.2 Group ICA activation maps . 21 x Table of contents 4 Discussion 25 4.1 Appraisal of findings . 25 4.2 Limitations . 27 4.3 Future approaches . 27 4.4 Conclusions . 28 Appendix A State of the art 35 A.1 Magnetic resonance imaging sequences . 35 A.2 The study of functional connectivity . 36 A.2.1 Haemodynamic response and the mechanism of BOLD signal . 37 A.2.2 Brain Networks . 37 A.2.3 Functional connectivity of the resting brain . 38 A.3 Rodent model and the auditory system . 39 A.4 Developed pipelines for fMRI . 41 A.5 Statistical modelling . 45 A.6 Previous research . 47 List of figures 2.1 Revised structure of the dataset . .5 2.2 Flow chart of the rodent data preprocessing pipeline . .6 2.3 Mialite brain mask estimation . .8 2.4 Extracted brain after Mialite . .8 2.5 Bias field correction . .9 2.6 Tissue segmentation masks . 10 2.7 Regions of interest . 10 2.8 Distortion correction . 12 2.9 Multistage registration . 13 2.10 Design matrix . 16 3.1 Left auditory cortex activation cluster for contrast 1 . 20 3.2 Left auditory cortex mean activation for contrast 3 and 4 . 20 3.3 Left cochlear nucleus activation cluster for contrast 1 . 21 3.4 Statistically significant component for contrast 1 as returned by group ICA (gICA)..................................... 22 3.5 Statistically significant component for contrast 2 as returned by gICA... 23 4.1 Effects of susceptibility artefacts on the SCA method . 26 A.1 The human connectome . 38 A.2 Sections of the rodent brain . 40 A.3 Auditory structures of the rodent brain . 40 A.4 Conventional processing routine for fMRI . 42 A.5 FMRIprep workflow . 44 A.6 Resting state specific strategies . 45 List of abbreviations AC auditory cortex ANTs Advanced Normalization Tools BET Brain Extraction Tool BIDS Brain Imaging Data Structure BOLD blood-oxygen-level dependent CCNN connectome convolutional neural network CN cochlear nucleus CSF cerebrospinal fluid DMN default mode network DOF degrees of freedom DW diffusion weighted EEG electroencephalography EPI echo planar imaging FLIRT FMRIB’s Linear Image Registration Tool fMRI functional MRI FNIRT FMRIB’s Non-Linear Image Registration Tool FOV field of view FSL FMRIB software library FWHM full-width half-max gICA group ICA GLM general linear model IC inferior colliculus xiv List of abbreviations ICA independent component analysis ICA-AROMA ICA-based Automatic Removal Of Motion Artifacts ILP inferior-left-posterior INCF International Neuroinformatics Coordinating Facility KERIC Karolinska experimental research and imaging centre LPI left-posterior-inferior MEG magnetoencephalography MELODIC Multivariate Exploratory Linear Optimized Decomposition into Independent Components MGB medial geniculate body MRI magnetic resonance imaging NMR nuclear magnetic resonance PCA principal component analysis RAI right-anterior-inferior RF radio frequency ROI Regions of interest rs-fMRI resting state functional MRI RSFC resting state functional connectivity RSN resting state network SCA seed-based correlation analysis SE-EPI spin echo EPI SOC superior olivary complex TE echo time TR repetition time Chapter 1 Introduction Since the early nineties, when Ogawa et al. [32] and Biswal et al. [12] first introduced the scientific community to the blood-oxygen-level dependent (BOLD) mechanism and the existence of correlated fluctuations in the resting brain respectively, the neuroimaging community has succeeded in characterizing various functional areas of the brain. Rs-fMRI has only recently been used to examine functional connectivity in the auditory system due to inherent limitations. Over the last decade, a substantial amount of publications focused on the auditory structures have surfaced. Cheung et al. [15] demonstrated the feasi- bility of auditory functional MRI (fMRI) in rats, by studying the ascending auditory pathway using task-based fMRI, followed by the examination of sub-cortical binaural processing and sound localization in animal models [27]. Additionally, common resting state networks between humans and rats have been verified [44]. The above mentioned studies examined healthy rodents; understanding the effect that auditory impairments exert to the brain has yet to be investigated. This thesis is a step towards the latter. The purpose of this thesis is twofold; to examine how and when monaural canal atresia affects functional brain connectivity and to
Recommended publications
  • Accurate Segmentation of Brain MR Images
    Accurate segmentation of brain MR images Master of Science Thesis in Biomedical Engineering ANTONIO REYES PORRAS PÉREZ Department of Signals and Systems Division of Biomedical Engineering CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden, 2010 Report No. EX028/2010 Abstract Full brain segmentation has been of significant interest throughout the years. Recently, many research groups worldwide have been looking into development of patient-specific electromagnetic models for dipole source location in EEG. To obtain this model, accurate segmentation of various tissues and sub-cortical structures is thus required. In this project, the performance of three of the most widely used software packages for brain segmentation has been analyzed: FSL, SPM and FreeSurfer. For the analysis, real images from a patient and a set of phantom images have been used in order to evaluate the performance r of each one of these tools. Keywords: dipole source location, brain, patient-specific model, image segmentation, FSL, SPM, FreeSurfer. Acknowledgements To my advisor, Antony, for his guidance through the project. To my partner, Koushyar, for all the days we have spent in the hospital helping each other. To the staff in Sahlgrenska hospital for their collaboration. To MedTech West for this opportunity to learn. Table of contents 1. Introduction ......................................................................................................................................... 1 2. Magnetic resonance imaging ..............................................................................................................
    [Show full text]
  • 1 Structural and Functional Alterations in the Brain Gray Matter
    Structural and functional alterations in the brain gray matter among first-degree relatives of schizophrenia patients: a multimodal meta-analysis of fMRI and VBM studies Running title: Familial risk for schizophrenia and alterations in the brain Aino I. L. Saarinen, PhD1,2,3,*, Sanna Huhtaniska, MD, PhD4, Juho Pudas, MB3, Lassi Björnholm, MD3, Tuomas Jukuri, MD, PhD3, Jussi Tohka, MD, PhD5, Niklas Granö, PhD6, Jennifer H. Barnett, PhD7,8, Vesa Kiviniemi, MD, PhD9,10, Juha Veijola, MD, PhD3,10,11, Mirka Hintsanen, PhD1, Johannes Lieslehto, MD, PhD 12 1 Research Unit of Psychology, University of Oulu, Finland 2 Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland 3 Research Unit of Clinical Neuroscience, Department of Psychiatry, University of Oulu, Finland 4 Center for Life Course Health Research, University of Oulu, Finland 5 A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland 6 Helsinki University Hospital, Department of Adolescent Psychiatry, Finland 7 Cambridge Cognition, Cambridge, UK 8 Department of Psychiatry, University of Cambridge, Cambridge, UK 9 Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland 10 Department of Psychiatry, Oulu University Hospital, Oulu, Finland 11 Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland 12 Section for Neurodiagnostic Applications, Department of Psychiatry, Ludwig Maximilian University, Nussbaumstrasse 7, 80336 Munich, Bavaria, * Corresponding author: Aino Saarinen. Department of Psychology and Logopedics, Faculty of Medicine, Haartmaninkatu 3, P.O. Box 21, 00014 University of Helsinki, Finland. E-mail: [email protected], Tel.: +35844 307 1204. 1 Abstract Objective: Schizophrenia has one of the highest heritability estimates in psychiatry, but the genetically- based underlying neuropathology has mainly remained unclear.
    [Show full text]
  • Simultaneous PET/MRI for Connectivity Mapping: Quantitative Methods in Clinical Setting
    UNIVERSITY OF PADOVA Department of Information Engineering Ph.D. School on Information Engineering Curriculum: Bioengineering - Cycle: XXX Simultaneous PET/MRI for Connectivity Mapping: Quantitative Methods in Clinical Setting Headmaster of the School: Prof. Andrea NEVIANI Supervisor: Prof. Alessandra BERTOLDO PhD. Candidate: Eng. Erica SILVESTRI 2018 iii University of Padova Abstract Ph.D. School on Information Engineering Simultaneous PET/MRI for Connectivity Mapping: Quantitative Methods in Clinical Setting by Eng. Erica SILVESTRI In recent years, the study of brain connectivity has received growing inter- est from neuroscience field, from a point of view both of analysis of patho- logical condition and of a healthy brain. Hybrid PET/MRI scanners are promising tools to study this complex phenomenon. This thesis presents a general framework for the acquisition and analysis of simultaneous multi- modal PET/MRI imaging data to study brain connectivity in a clinical set- ting. Several aspects are faced ranging from the planning of an acquisition protocol consistent with clinical constraint to the off-line PET image recon- struction, from the selection and implementation of methods for quantifying the acquired data to the development of methodologies to combine the com- plementary informations obtained with the two modalities. The developed analysis framework was applied to two different studies, a first conducted on patients affected by Parkinson’s Disease and dementia, and a second one on high grade gliomas, as proof of concept evaluation that the pipeline can be extended in clinical settings. v Università degli Studi di Padova Sommario Scuola di Dottorato in Ingegneria dell’Informazione Acquisizioni simultanee PET/MR per lo studio della connettività: metodi quantitativi in ambito clinico di Ing.
    [Show full text]
  • An Introduction to Image Analysis Using Imagej
    An introduction to image analysis using ImageJ Mark Willett, Imaging and Microscopy Centre, Biological Sciences, University of Southampton. Pete Johnson, Biophotonics lab, Institute for Life Sciences University of Southampton. 1 “Raw Images, regardless of their aesthetics, are generally qualitative and therefore may have limited scientific use”. “We may need to apply quantitative methods to extrapolate meaningful information from images”. 2 Examples of statistics that can be extracted from image sets . Intensities (FRET, channel intensity ratios, target expression levels, phosphorylation etc). Object counts e.g. Number of cells or intracellular foci in an image. Branch counts and orientations in branching structures. Polarisations and directionality . Colocalisation of markers between channels that may be suggestive of structure or multiple target interactions. Object Clustering . Object Tracking in live imaging data. 3 Regardless of the image analysis software package or code that you use….. • ImageJ, Fiji, Matlab, Volocity and IMARIS apps. • Java and Python coding languages. ….image analysis comprises of a workflow of predefined functions which can be native, user programmed, downloaded as plugins or even used between apps. This is much like a flow diagram or computer code. 4 Here’s one example of an image analysis workflow: Apply ROI Choose Make Acquisition Processing to original measurement measurements image type(s) Thresholding Save to ROI manager Make binary mask Make ROI from binary using “Create selection” Calculate x̄, Repeat n Chart data SD, TTEST times and interpret and Δ 5 A few example Functions that can inserted into an image analysis workflow. You can mix and match them to achieve the analysis that you want.
    [Show full text]
  • Bio-Formats Documentation Release 4.4.9
    Bio-Formats Documentation Release 4.4.9 The Open Microscopy Environment October 15, 2013 CONTENTS I About Bio-Formats 2 1 Why Java? 4 2 Bio-Formats metadata processing 5 3 Help 6 3.1 Reporting a bug ................................................... 6 3.2 Troubleshooting ................................................... 7 4 Bio-Formats versions 9 4.1 Version history .................................................... 9 II User Information 23 5 Using Bio-Formats with ImageJ and Fiji 24 5.1 ImageJ ........................................................ 24 5.2 Fiji .......................................................... 25 5.3 Bio-Formats features in ImageJ and Fiji ....................................... 26 5.4 Installing Bio-Formats in ImageJ .......................................... 26 5.5 Using Bio-Formats to load images into ImageJ ................................... 28 5.6 Managing memory in ImageJ/Fiji using Bio-Formats ................................ 32 5.7 Upgrading the Bio-Formats importer for ImageJ to the latest trunk build ...................... 34 6 OMERO 39 7 Image server applications 40 7.1 BISQUE ....................................................... 40 7.2 OME Server ..................................................... 40 8 Libraries and scripting applications 43 8.1 Command line tools ................................................. 43 8.2 FARSIGHT ...................................................... 44 8.3 i3dcore ........................................................ 44 8.4 ImgLib .......................................................
    [Show full text]
  • Official Program
    OFFICIAL PROGRAM ___________________________________________________________________ Generously Sponsored by: TABLE OF CONTENTS SCHEDULE 3 KEYNOTE SPEAKERS 5 BREAKOUT SESSIONS 7 ORAL PRESENTATIONS 11 POSTER SESSION 1 (ORGANIZED BY POSTER NUMBER) 13 POSTER SESSION 2 (ORGANIZED BY POSTER NUMBER) 16 ABSTRACTS – ORAL PRESENTATIONS 19 ABSTRACTS – POSTER SESSION 1 44 ABSTRACTS – POSTER SESSION 2 91 SEMSS ORGANIZING COMMITTEE 135 LIGHT HALL & CAMPUS MAPS 136 SEMSS encourages open and honest intellectual debate as part of a welcoming and inclusive atmosphere at every conference. SEMSS asks each participant to foster rigorous analysis of all science presented or discussed in a manner respectful to all conferees. To help maintain an open and respectful community of scientists, SEMSS does not tolerate illegal or inappropriate behavior at any conference site, including violations of applicable laws pertaining to sale or consumption of alcohol, destruction of property, or harassment of any kind, including sexual harassment. SEMSS condemns inappropriate or suggestive acts or comments that demean another person by reason of his or her gender, gender identity or expression, race, religion, ethnicity, age or disability or that are unwelcome or offensive to other members of the community or their guests. * *Adapted from the language of Gordon Research Conferences 2 SEMSS 2018 SCHEDULE SATURDAY, NOVEMEBER 10, 2018 _____________________________________________________________________________________ REGISTRATION 12:30 – 1:00 PM Location: Light Hall, North
    [Show full text]
  • A Simple Rapid Process for Semi-Automated Brain Extraction from Magnetic Resonance Images of the Whole Mouse Head
    Accepted Manuscript Title: A simple rapid process for semi-automated brain extraction from magnetic resonance images of the whole mouse head Author: Adam Delora Aaron Gonzales Christopher S. Medina Adam Mitchell Abdul Faheem Mohed Russell E. Jacobs Elaine L. Bearer PII: S0165-0270(15)00370-2 DOI: http://dx.doi.org/doi:10.1016/j.jneumeth.2015.09.031 Reference: NSM 7360 To appear in: Journal of Neuroscience Methods Received date: 10-8-2015 Revised date: 28-9-2015 Accepted date: 30-9-2015 Please cite this article as: Delora A, Gonzales A, Medina CS, Mitchell A, Mohed AF, Jacobs RE, Bearer EL, A simple rapid process for semi-automated brain extraction from magnetic resonance images of the whole mouse head, Journal of Neuroscience Methods (2015), http://dx.doi.org/10.1016/j.jneumeth.2015.09.031 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Graphical Abstract (for review) Accepted Manuscript Page 1 of 27 A simple rapid process for semi-automated brain extraction from magnetic resonance images of the whole mouse head Delora, Gonzales, Medina, Mitchell, Mohed, Jacobs and Bearer Highlights • We present a new software tool for automated mouse brain extraction • The new software tool is rapid and applies to any MR dataset • We validate the output by comparing with manual extraction (the gold standard) • Brain extraction with this tool preserves individual volume, and improves alignments Accepted Manuscript Page 2 of 27 Fast automated skull-stripping Delora et al.
    [Show full text]
  • Ilastik: Interactive Machine Learning for (Bio)Image Analysis
    ilastik: interactive machine learning for (bio)image analysis Stuart Berg1, Dominik Kutra2,3, Thorben Kroeger2, Christoph N. Straehle2, Bernhard X. Kausler2, Carsten Haubold2, Martin Schiegg2, Janez Ales2, Thorsten Beier2, Markus Rudy2, Kemal Eren2, Jaime I Cervantes2, Buote Xu2, Fynn Beuttenmueller2,3, Adrian Wolny2, Chong Zhang2, Ullrich Koethe2, Fred A. Hamprecht2, , and Anna Kreshuk2,3, 1HHMI Janelia Research Campus, Ashburn, Virginia, USA 2HCI/IWR, Heidelberg University, Heidelberg, Germany 3European Molecular Biology Laboratory, Heidelberg, Germany We present ilastik, an easy-to-use interactive tool that brings are computed and passed on to a powerful nonlinear algo- machine-learning-based (bio)image analysis to end users with- rithm (‘the classifier’), which operates in the feature space. out substantial computational expertise. It contains pre-defined Based on examples of correct class assignment provided by workflows for image segmentation, object classification, count- the user, it builds a decision surface in feature space and ing and tracking. Users adapt the workflows to the problem at projects the class assignment back to pixels and objects. In hand by interactively providing sparse training annotations for other words, users can parametrize such workflows just by a nonlinear classifier. ilastik can process data in up to five di- providing the training data for algorithm supervision. Freed mensions (3D, time and number of channels). Its computational back end runs operations on-demand wherever possible, allow- from the necessity to understand intricate algorithm details, ing for interactive prediction on data larger than RAM. Once users can thus steer the analysis by their domain expertise. the classifiers are trained, ilastik workflows can be applied to Algorithm parametrization through user supervision (‘learn- new data from the command line without further user interac- ing from training data’) is the defining feature of supervised tion.
    [Show full text]
  • Modelling of the Effects of Entrainment Defects on Mechanical Properties in Al-Si-Mg Alloy Castings
    MODELLING OF THE EFFECTS OF ENTRAINMENT DEFECTS ON MECHANICAL PROPERTIES IN AL-SI-MG ALLOY CASTINGS By YANG YUE A dissertation submitted to University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Metallurgy and Materials University of Birmingham June 2014 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Liquid aluminium alloy is highly reactive with the surrounding atmosphere and therefore, surface films, predominantly surface oxide films, easily form on the free surface of the melt. Previous researches have highlighted that surface turbulence in liquid aluminium during the mould-filling process could result in the fold-in of the surface oxide films into the bulk liquid, and this would consequently generate entrainment defects, such as double oxide films and entrapped bubbles in the solidified casting. The formation mechanisms of these defects and their detrimental e↵ects on both mechani- cal properties and reproducibility of properties of casting have been studied over the past two decades. However, the behaviour of entrainment defects in the liquid metal and their evolution during the casting process are still unclear, and the distribution of these defects in casting remains difficult to predict.
    [Show full text]
  • Designing GPU-Accelerated Image Data Flow Graphs for CLIJ2 and Clesperanto and Deployment to Imagej, Fiji, Icy, Matlab, Qupath, Python, Napari and C++
    Designing GPU-accelerated Image Data Flow Graphs for CLIJ2 and clEsperanto and deployment to ImageJ, Fiji, Icy, Matlab, QuPath, Python, Napari and C++ Tutors: Robert Haase ([email protected]) Stephane´ Rigaud ([email protected]) Session 1: 2020-12-01 16:00 UTC – 2020-12-01 20:00 UTC Session 2: 2020-12-02 09:00 UTC – 2020-12-02 13:00 UTC Designing GPU-accelerated Image Data Flow Graphs for CLIJ2 and clEsperanto and deployment to ImageJ, Fiji, Icy, Matlab, QuPath, Python, Napari and C++ Robert Haase123, Stéphane Rigaud4 1 Center for Systems Biology Dresden 2 Max Planck Institute for Molecular Cell Biology and Genetics Dresden 3 Physics of Life Cluster of Excellence, TU Dresden 4 Image Analysis Hub, C2RT, Institut Pasteur, Paris Abstract The current rise of graphics processing units (GPUs) in the context of image processing boosts the need for accessible tools for building GPU-accelerated image analysis workflows. Typically, designing data analysis procedures utilizing GPUs involves coding skills and knowledge of GPU-specific programming languages such as the Open Computing Language (OpenCL) [1]. For facilitating end-user access to modern computing hardware such as GPUs, the CLIJ platform [2] was developed and documented in detail [3, 4]. It targets programming beginners through an abstraction layer that allows to call GPU- accelerated image processing operations without the need for learning a new programming language such as OpenCL. To further lower the entrance bounden, a recently introduced a graphical user interface for the Fiji platform [5] utilizes an image data flow graph for designing image processing workflows interactively on screen [6].
    [Show full text]
  • FIB-SEM) Tomography Hui Yuan, B Van De Moortele, Thierry Epicier
    Accurate post-mortem alignment for Focused Ion Beam and Scanning Electron Microscopy (FIB-SEM) tomography Hui Yuan, B van de Moortele, Thierry Epicier To cite this version: Hui Yuan, B van de Moortele, Thierry Epicier. Accurate post-mortem alignment for Focused Ion Beam and Scanning Electron Microscopy (FIB-SEM) tomography. 2020. hal-03024445 HAL Id: hal-03024445 https://hal.archives-ouvertes.fr/hal-03024445 Preprint submitted on 25 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accurate post-mortem alignment for Focused Ion Beam and Scanning Electron Microscopy (FIB-SEM) tomography H. Yuan1, 2*, B. Van de Moortele2, T. Epicier1,3 § 1. Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon1, MATEIS, umr CNRS 5510, 69621 Villeurbanne Cedex, France 2. Université de Lyon, ENS-Lyon, LGLTPE, umr CNRS 5276, 69364 Lyon 07, France 3. Université de Lyon, Université Claude Bernard Lyon1, IRCELYON, umr CNRS 5256, 69626 Villeurbanne Cedex, France Abstract: Drifts in the three directions (X, Y, Z) during the FIB-SEM slice-and-view tomography is an important issue in 3D-FIB experiments which may induce significant inaccuracies in the subsequent volume reconstruction and further quantification of morphological volume parameters of the sample microstructure.
    [Show full text]
  • Image Analysis Software Options for Use at Home
    Image Analysis Software Options for Use at Home Supported Software (CALMN and MAGIC) FIJI (Fiji is just image J) https://fiji.sc/ Open source (Free) software. Compatible with Window, Mac, Linux. Minimal requirement on computer specs and easy to learn. Online tutorial for self-learning: https://imagej.net/Using_Fiji Bitplane Imaris This is an analysis software offered in the facility, which has a high requirement of computer specs. To use Imaris at home, here are a few options: • Imaris has a basic “Viewer” that can be downloaded and used for free. There are recommended minimum system requirements, but looking at small data sets should be possible on most computers. This is a great way to look at images and share imaging with your colleagues and lab members. Click here to download the FREE Imaris Viewer and see the system recommendations. • The CALMN and MAGIC facilities also have access to a very limited number of satellite licenses that can be accessed off site. This software can run on PC or Mac, minimum system requirements can be found here. If you have access to computer that meets the minimum requirements and would like to use one of these licenses, please contact Kaye Thomas or Yurong Gao directly. Depending on the number of requests, we will make a schedule for using the software, most likely for 2-3 days at a time. Nikon NIS-Elements This is the software used for image acquisition on the new Nikon confocal microscope. It also has many image analysis tools. • Nikon offers free Viewer is available for both Windows and Mac systems here.
    [Show full text]