pharmaceutics Article Timing of Novel Drug 1A-116 to Circadian Rhythms Improves Therapeutic Effects against Glioblastoma Laura Lucía Trebucq 1, Georgina Alexandra Cardama 2, Pablo Lorenzano Menna 2, Diego Andrés Golombek 1 , Juan José Chiesa 1,*,† and Luciano Marpegan 3,*,† 1 Laboratorio de Cronobiología, Universidad Nacional de Quilmes-CONICET, Bernal 1876, Buenos Aires, Argentina;
[email protected] (L.L.T.);
[email protected] (D.A.G.) 2 Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes-CONICET, Bernal 1876, Buenos Aires, Argentina;
[email protected] (G.A.C.);
[email protected] (P.L.M.) 3 Departamento de Física Médica, Comisión Nacional de Energía Atómica, Bariloche 8400, Río Negro, Argentina * Correspondence:
[email protected] (J.J.C.);
[email protected] (L.M.) † These authors contributed equally to this work. Abstract: The Ras homologous family of small guanosine triphosphate-binding enzymes (GTPases) is critical for cell migration and proliferation. The novel drug 1A-116 blocks the interaction site of the Ras-related C3 botulinum toxin substrate 1 (RAC1) GTPase with some of its guanine exchange factors (GEFs), such as T-cell lymphoma invasion and metastasis 1 (TIAM1), inhibiting cell motility and proliferation. Knowledge of circadian regulation of targets can improve chemotherapy in glioblastoma. Thus, circadian regulation in the efficacy of 1A-116 was studied in LN229 human Citation: Trebucq, L.L.; glioblastoma cells and tumor-bearing nude mice. Methods. Wild-type LN229 and BMAL1-deficient Cardama, G.A.; Lorenzano Menna, P.; (i.e., lacking a functional circadian clock) LN229E1 cells were assessed for rhythms in TIAM1, BMAL1, Golombek, D.A.; Chiesa, J.J.; and period circadian protein homolog 1 (PER1), as well as Tiam1, Bmal1, and Rac1 mRNA levels.