Pharmaceuticals, Biologics and Biopharmaceuticals

Total Page:16

File Type:pdf, Size:1020Kb

Pharmaceuticals, Biologics and Biopharmaceuticals BIOPHARMACEUTICALS BIOCHEMISTRY AND BIOTECHNOLOGY Second Edition Gary Walsh Industrial Biochemistry Programme CES Department University of Limerick, Ireland BIOPHARMACEUTICALS BIOCHEMISTRY AND BIOTECHNOLOGY Second Edition BIOPHARMACEUTICALS BIOCHEMISTRY AND BIOTECHNOLOGY Second Edition Gary Walsh Industrial Biochemistry Programme CES Department University of Limerick, Ireland First Edition 1998 u John Wiley & Sons, Ltd Copyright u 2003 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (+44) 1243 779777 E-mail (for orders and customer service enquiries): [email protected] Visit our Home Page on www.wileyeurope.com or www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to [email protected], or faxed to (+44) 1243 770620. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought. Other Wiley Editorial Offices John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809 John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1 Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library ISBN 0 470 84326 8 (ppc) ISBN 0 470 84327 6 (pbk) Typeset by Dobbie Typesetting Ltd, Tavistock, Devon Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wilts This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production. I dedicate this book to my beautiful son Shane, born during the revision of Chapter 6. I include his photograph in the hope that a Hollywood producer, looking for a child film star, will spot it and immediately offer to make us suitably rich. In the future, I also hope to use it to embarrass him during his teenage years, by showing it to all his cool, sophisticated friends. Contents Preface xvii Chapter 1 Pharmaceuticals, biologics and biopharmaceuticals 1 Introduction to pharmaceutical products 1 Biopharmaceuticals and pharmaceutical biotechnology 1 History of the pharmaceutical industry 3 The age of biopharmaceuticals 5 Biopharmaceuticals: current status and future prospects 8 Traditional pharmaceuticals of biological origin 12 Pharmaceuticals of animal origin 13 The sex hormones 14 The androgens 14 Oestrogens 15 Progesterone and progestogens 17 Corticosteroids 19 Catecholamines 21 Prostaglandins 23 Pharmaceutical substances of plant origin 27 Alkaloids 28 Atropine and scopalamine 28 Morphine and cocaine 29 Additional plant alkaloids 30 Ergot alkaloids 30 Flavonoids, xanthines and terpenoids 30 Cardiac glycosides and coumarins 33 Aspirin 33 Pharmaceutical substances of microbial origin 33 The macrolides and ansamycins 38 Peptide and other antibiotics 39 Conclusion 39 Further reading 40 Chapter 2 The drug development process 43 Drug discovery 44 The impact of genomics and related technologies upon drug discovery 45 viii CONTENTS Gene chips 47 Proteomics 49 Structural genomics 50 Pharmacogenetics 51 Plants as a source of drugs 52 Microbial drugs 53 Rational drug design 54 Combinatorial approaches to drug discovery 56 Initial product characterization 57 Patenting 57 What is a patent and what is patentable? 57 Patent types 62 The patent application 63 Patenting in biotechnology 64 Delivery of biopharmaceuticals 66 Oral delivery systems 66 Pulmonary delivery 67 Nasal, transmucosal and transdermal delivery systems 68 Pre-clinical trials 69 Pharmacokinetics and pharmacodynamics 69 Toxicity studies 71 Reproductive toxicity and teratogenicity 71 Mutagenicity, carcinogenicity and other tests 72 Clinical trials 73 Clinical trial design 75 Trial size and study population 75 Randomized control studies 76 Additional trial designs 76 The role and remit of regulatory authorities 78 The Food and Drug Administration 78 The investigational new drug application 80 The new drug application 82 European regulations 84 National regulatory authorities 84 The EMEA and the new EU drug approval systems 85 The centralized procedure 86 Mutual recognition 88 Drug registration in Japan 88 World harmonization of drug approvals 89 Conclusion 89 Further reading 89 Chapter 3 The drug manufacturing process 93 International pharmacopoeia 93 Martindale, the Extra Pharmacopoeia 94 Guides to good manufacturing practice 94 CONTENTS ix The manufacturing facility 97 Clean rooms 98 Cleaning, decontamination and sanitation (CDS) 101 CDS of the general manufacturing area 102 CDS of process equipment 102 Water for biopharmaceutical processing 104 Generation of purified water and water for injections (WFI) 105 Distribution system for WFI 107 Documentation 109 Specifications 110 Manufacturing formulae, processing and packaging instructions 110 Records 111 Generation of manufacturing records 111 Sources of biopharmaceuticals 112 E. coli as a source of recombinant, therapeutic proteins 112 Expression of recombinant proteins in animal cell culture systems 116 Additional production systems: yeasts 116 Fungal production systems 117 Transgenic animals 118 Transgenic plants 122 Insect cell-based systems 123 Production of final product 124 Cell banking systems 127 Upstream processing 128 Microbial cell fermentation 129 Mammalian cell culture systems 133 Downstream processing 134 Final product formulation 140 Some influences that can alter the biological activity of proteins 142 Proteolytic degradation 143 Protein deamidation 144 Oxidation and disulphide exchange 145 Alteration of glycoprotein glycosylation patterns 147 Stabilizing excipients used in final product formulations 150 Final product fill 153 Freeze-drying 155 Labelling and packing 158 Analysis of the final product 159 Protein-based contaminants 159 Removal of altered forms of the protein of interest from the product stream 160 Product potency 161 Determination of protein concentration 163 Detection of protein-based product impurities 164 Capillary electrophoresis 166 High-pressure liquid chromatography (HPLC) 167 Mass spectrometry 168 Immunological approaches to detection of contaminants 168 x CONTENTS Amino acid analysis 169 Peptide mapping 170 N-terminal sequencing 171 Analysis of secondary and tertiary structure 173 Endotoxin and other pyrogenic contaminants 173 Endotoxin, the molecule 174 Pyrogen detection 176 DNA 179 Microbial and viral contaminants 180 Viral assays 181 Miscellaneous contaminants 182 Validation studies 183 Further reading 185 Chapter 4 The cytokines — the interferon family 189 Cytokines 189 Cytokine receptors 194 Cytokines as biopharmaceuticals 195 The interferons 196 The biochemistry of interferon-a 197 Interferon-b 198 Interferon-g 198 Interferon signal transduction 198 The interferon receptors 199 The JAK–STAT pathway 199 The interferon JAK–STAT pathway 202 The biological effects of interferons 203 The eIF-2a protein kinase system 207 Interferon biotechnology 207 Production and medical uses of IFN-a 210 Medical uses of IFN-b 213 Medical applications of IFN-g 214 Interferon toxicity 216 Additional interferons 218 Conclusion 219 Further reading 219 Chapter 5 Cytokines: interleukins and tumour necrosis factor 223 Interleukin-2 (IL-2) 225 IL-2 production 228 IL-2 and cancer treatment 228 IL-2 and infectious diseases 230 Safety issues 231 Inhibition of IL-2 activity 231 CONTENTS xi Interleukin-1 (IL-1) 232 The biological activities of IL-1 233 IL-1 biotechnology 234 Interleukin-3: biochemistry and biotechnology 235 Interleukin-4 236 Interleukin-6 238 Interleukin-11 240 Interleukin-5 241 Interleukin-12 244 Tumour necrosis factors (TNFs) 246 TNF biochemistry 246 Biological activities of TNF-a 247 Immunity and inflammation 248 TNF receptors 249 TNF: therapeutic aspects 250 Further reading 252 Chapter 6 Haemopoietic growth factors 255 The interleukins as haemopoietic growth factors 257 Granulocyte colony stimulating factor (G-CSF) 258 Macrophage colony-stimulating factor (M-CSF) 259 Granulocyte-macrophage colony stimulating factor (GM-CSF) 259 Clinical application of CSFs 261 Leukaemia inhibitory factor (LIF) 263 Erythropoietin (EPO) 264 The EPO receptor and signal transduction 267 Regulation of EPO production 267 Therapeutic applications of EPO 268 Chronic disease and cancer chemotherapy 271 Additional non-renal applications 272 Tolerability
Recommended publications
  • Biopharmaceutical Sector Update: Market Outlook for 2021
    Biopharmaceutical Sector Update Market Outlook for 2021 January 11, 2021 © 2021. All rights reserved. Securities offered in the United States are offered through Torreya Capital LLC, Member FINRA/SIPC. In Europe such services are offered through Torreya Partners (Europe) LLP, which is authorized and regulated by the UK Financial Conduct Authority. Table of Contents An Extraordinary Year: Top 10 Biopharma Events of 2020 4 Biopharma Sector Outlook for 2021 20 The Evolving World of Biotech Company Formation 26 Implications of the U.S. Election on the Biopharma Sector 31 Update on Covid-19, Capital Markets and M&A Activity 39 About Torreya 50 Key Topics in This Update In this report we discuss three topics that are front of mind in our industry: We have lived through an Given the exceptional performance of the biopharma extraordinary year for the #1 market in 2020, what does 2021 hold? biopharmaceutical industry. Given excellent protection data on two COVID-19 vaccines we now appear It appears likely that with widespread vaccination, #2 the COVID-19 pandemic will recede in 2021. What to be at the beginning of the end of does this imply for the biopharma sector? the COVID-19 pandemic. A “return to normalcy” appears possible in 2021 despite a very challenging situation What are the implications of the U.S. political #3 situation for the global biopharmaceutical sector? at present with the pandemic. 3 An Extraordinary Year: Top 10 Biopharma Events of 2020 4 Event #1 COVID-19 Vaccines Portend a New Normal The FDA has approved two COVID-19 vaccines as of Jan 2021 and more vaccine approvals are likely.
    [Show full text]
  • The Future for Biosensors in Biopharmaceutical Production
    Pharmaceutical Commentary BRACEWELL & POLIZZI The future for biosensors in biopharmaceutical production 2 Commentary The future for biosensors in biopharmaceutical production Pharm. Bioprocess. Keywords: bioprocess monitoring • bioprocess control • in-vivo biosensor • PAT Daniel G Bracewell*,1 • synthetic biology & Karen M Polizzi2 1The Advanced Centre for Biochemical Engineering, Department of Biochemical A defining feature of bioprocesses is the need straightforward. This is not to say there have Engineering, University College London, for measurement, monitoring and control; in not been significant successes: Torrington Place, London, WC1E 7JE, UK the context of biopharmaceuticals this need 2Department of Life Sciences & Centre • The world’s diabetic population depends is further heightened by the absolute require- for Synthetic Biology & Innovation, on blood glucose measurements to admin- Imperial College London, London, UK ment to ensure the quality of the product [1] . ister insulin based on an amperometric *Author for correspondence: This is evidenced by the size of bioanalytical based biosensor technology (enzyme elec- [email protected] endeavor found within the R&D programs trodes). This represents the largest single of the major biopharmaceutical companies biosensor application in terms of numbers and the supplier industry that caters for this of devices and market size; instrumentation need. It is a need that grows at a pace reflected in the initiatives involv- • Optical biosensors, largely surface plas- ing the regulatory authorities such as PAT mon resonance (BIAcore) has become central to the larger vision of QbD. At the the default method to directly mea- core of these attempts to improve biophar- sure protein–protein interactions in the maceutical production is the need for rapid, laboratory.
    [Show full text]
  • Biopharmaceutical Notes
    An Overview of the BioPharmaceutical Products and Market By Paul DiMarco, Vice President, Global Commercial Program, BioSpectra Inc. Table of Contents INTRODUCTION: ........................................................................................................................................ 2 History ....................................................................................................................................................... 2 Background information ........................................................................................................................... 3 Defining biological products ..................................................................................................................... 4 Small vs. Large Molecule Regulation and Registration in the USA and EU ............................................... 6 Controversial Regulatory Concepts: ......................................................................................................... 7 Extrapolation: ........................................................................................................................................ 7 Switching: .............................................................................................................................................. 8 Interchangeability: ................................................................................................................................ 9 Harmonization: ....................................................................................................................................
    [Show full text]
  • Advances in BIOPHARMACEUTICAL TECHNOLOGY in CHINA New Second Edition!
    Establish China partnerships Create Effective Strategies to EXPAND YOUR GLOBAL REACH! Advances in BIOPHARMACEUTICAL TECHNOLOGY in CHINA New Second Edition! A great opportunity exists in working with Chinese companies to establish scientific and business partnerships, and to create effective strategies. However, success in Asia in the new millennium will require changes in partnerships between Western and Asian companies. Every company faces the question “What should our China strategy be?” This volume, a co-publication of the Society for Industrial BY THE NUMBERS Microbiology and Biotechnology and BioPlan Associates, Inc., provides an overview of the biopharmaceutical industry, ● 102 Internationally and the state of technology in China. Recognized Authors ● 21 Peer-Reviewers Readers will be able to: ● 1,139 Pages 1. Assess the state of biopharmaceutical development in China ● 70 Translated Chapters 2. Understand general business practices ● 5 Case Studies and China Briefs 3. Analyze business opportunities and identify potential partners ● 200+ Tables and Figures A peer-reviewed, ready reference for all aspects of ● 300+ References biopharmaceuticals in China, including an understanding of the ● Over 2,000 Index Entries China biopharma current situation, and future opportunities. Readers receive a comprehensive assessment of the state-of-the- This authoritative, peer-reviewed study industry, trends, and analysis. Information on all types of organizations is produced in collaboration with the involved in biopharma in China, whether they
    [Show full text]
  • Biotechnology and Society Syllabus
    Nanyang Technological University Humanities and Social Sciences Semester 1, AY2017-2018 HH3010 Biotechnology and Society Syllabus Subject Description This subject will introduce students to selected research and commercial applications of modern biotechnology in order to discuss the broader social, ethical, risk, and regulatory issues that arise from them. A range of topics will be covered in this subject, including genetic engineering, cloning, stem cell research, the production of pharmaceuticals, the human genome project, genetic testing, assisted reproductive technologies, and synthetic biology. Students will consider debates that have taken place in the wider community about ownership, commercialisation, identity, governance, animal welfare, human well-being, and expertise in relation to these applications of modern biotechnology. Prerequisites: Nil Academic Units: 3 Teaching Staff Hallam Stevens Office: HSS-05-07 Email: [email protected] Attendance Requirements Students are expected to attend one two hour lecture and one one-hour tutorial once per week: Lectures: Wednesdays 12.30-2.30pm (LHS Lecture Theatre) Tutorials: Wednesdays 3.30pm-4.30pm OR 4.30pm-5.30pm OR 5.30-6.30pm (LHS TR+45) Tutorials begin in Week 2 and run through to Week 13 (except for weeks 7 and 9). You are required to attend at least eight of these tutorials. If you attend fewer than 8 tutorials you will get zero for your participation and discussion grade 1 (20% of your overall grade). This includes any excused absences (eg. medical reasons still count as “missed” tutorials). Medical certificates are not a get out of jail free card. Missing a seminar without an MC will mean an automatic zero for any attendance and participation marks awarded for that week.
    [Show full text]
  • How Scientist/Founders Lead Successful Biopharmaceutical
    Antioch University AURA - Antioch University Repository and Archive Student & Alumni Scholarship, including Dissertations & Theses Dissertations & Theses 2008 How Scientist/Founders Lead Successful Biopharmaceutical Organizations: A Study of Three Companies Lynn Johnson Langer Antioch University - PhD Program in Leadership and Change Follow this and additional works at: http://aura.antioch.edu/etds Part of the Business Administration, Management, and Operations Commons, Medicine and Health Sciences Commons, and the Organizational Behavior and Theory Commons Recommended Citation Langer, Lynn Johnson, "How Scientist/Founders Lead Successful Biopharmaceutical Organizations: A Study of Three Companies" (2008). Dissertations & Theses. 138. http://aura.antioch.edu/etds/138 This Dissertation is brought to you for free and open access by the Student & Alumni Scholarship, including Dissertations & Theses at AURA - Antioch University Repository and Archive. It has been accepted for inclusion in Dissertations & Theses by an authorized administrator of AURA - Antioch University Repository and Archive. For more information, please contact [email protected], [email protected]. HOW SCIENTIST/FOUNDERS LEAD SUCCESSFUL BIOPHARMACEUTICAL ORGANIZATIONS: A STUDY OF THREE COMPANIES Lynn Johnson Langer A DISSERTATION Submitted to the Ph.D. in Leadership & Change Program of Antioch University in partial fulfillment of the requirements for the degree of Doctor of Philosophy May, 2008 This is to certify that the dissertation entitled: HOW SCIENTIST/FOUNDERS
    [Show full text]
  • The Economic Impact of the US Biopharmaceutical
    THE ECONOMIC IMPACT OF THE U.S. BIOPHARMACEUTICAL INDUSTRY: 2017 National and State Estimates DECEMBER 2019 TEConomy Partners, LLC is a global leader in research, analysis, and strategy for innovation-driven economic development. Today we’re helping nations, states, regions, universities, and industries blueprint their future and translate knowledge into prosperity. The Pharmaceutical Research and Manufacturers of America (PhRMA) represents the country’s leading innovative pharmaceutical research and biotechnology companies, which are devoted to developing medicines that allow patients to live longer, healthier, and more productive lives. PhRMA companies are leading the way in the search for new treatments and cures. TEConomy Partners, LLC (TEConomy) endeavors at all times to produce work of the highest quality, consistent with our contract commitments. However, because of the research and/or experimental nature of this work, the client undertakes the sole responsibility for the consequence of any use or misuse of, or inability to use, any information or result obtained from TEConomy, and TEConomy, its partners, or employees have no legal liability for the accuracy, adequacy, or efficacy thereof. TABLE OF CONTENTS Executive Summary ......................................................................................................1 Introduction: An Industry Defined by Innovation .................................................... 3 The Broad Scope and Scale of the Biopharmaceutical Industry ............................5 Defining the
    [Show full text]
  • Biopharmaceutical Release Testing
    Biopharmaceutical Release Testing To support your commercial product and clinical trial material release testing needs, Eurofins BioPharma Product Testing offers the capacity and breadth of capabilities to test your formulated bulk, final product or in-process materials in a timely manner. We test materials against specifications for identity, purity, potency, impurities, physical properties and safety under strict cGMP compliance, and we customize individual programs to streamline lab documentation and reporting for the most efficient and quality-focused data deliverable possible. Our multi-shift laboratory operations are designed to provide extensive capacity for larger volume release programs, as well as flexibility for smaller programs in a manner that allows for aggressive cycle times. Our release testing services are backed by an outstanding scientific approach to problem solving and extensive expertise in Method Development and Validation. Why Choose Eurofins BioPharma Product Testing? • We have in-depth experience working with every Potency/Bioassay Services type of modality and have the flexibility and extensive • Development and validation of cell-based bioassays instrument capacity within our team to meet the using multiple formats, including absorbance, ever-changing demands of production schedules fluorescence, time-resolved fluorescence and and timelines. luminescence as well as binding and competitive ELISAs. • We are a center of excellence for development, optimization, and transfer of in vitro bioassays for • Assay optimization to eliminate sources of variability potency. and ensure consistent performance for QC release. • Our breadth of capabilities allows us to perform • Multiple software packages available for data all testing of even the most complex conjugated analysis, including Softmax Pro and StatLIA.
    [Show full text]
  • 2019 FDA Biopharmaceutical Approvals: a Record Year for Follow-On Products, but Is Innovation Lagging? Bioplan Associates, Inc
    Confidential White Paper – Not for Distribution 2019 FDA Biopharmaceutical Approvals: A Record Year for Follow-on Products, But is Innovation Lagging? BioPlan Associates, Inc. January 2020 Introduction Although 2019 was overall a good year for biopharmaceutical product approvals, there was a lower percentage of approvals for fully new, innovative products compared with prior years. This may indicate problems with recent years’ pharmaceutical industry increased investment in biopharmaceutical vs. drug R&D, with a relative increase in resulting innovative product approvals not showing up yet. It may be too early to make conclusions regarding the extent of this pipeline trend, but the record portion of follow-on product approvals (63% of approvals) can be viewed as positive or negative for the industry. Biopharmaceuticals are here defined as prescription therapeutic products containing active agents manufactured using biotechnology methods, i.e., using living organisms (1). Figure 1 shows the numbers of recombinant and non-recombinant biopharmaceuticals approved by FDA since 1981, when the first recombinant protein received approval. Total biopharmaceutical approvals have increased over the years while remaining steady in the past few years. Figure 1: Numbers of Recombinant and Non-Recombinant Biopharmaceuticals Approved by FDA, 1981-2019 ©2020 BioPlan Associates, Inc, 2275 Research Blvd., Ste. 500, Rockville, MD 20850 (301) 921-5979 Page: 1 Confidential White Paper – Not for Distribution Approvals in 2019 In Table 1 we present approvals during 2019. Several oligonucleotide therapeutics, both antisense and RNAi, also received approval, but these are synthetically manufactured drugs and not considered biopharmaceuticals. Other products not included as biopharmaceuticals include medical devices, allergenic extract products, and diagnostics that receive biologics (BLA) approvals.
    [Show full text]
  • The Biopharmaceutical Industry Is Leading the Way in Developing
    The biopharmaceutical industry is leading the way in developing vaccines and treatments for COVID-19 The rapid spread of the novel coronavirus across the globe is a major public health threat for all, with profound health, social and economic impacts around the world. As a science-driven industry that aims to address some of the world’s biggest healthcare challenges, the research-based biopharmaceutical industry is uniquely positioned to respond rapidly to COVID-19. It has deep scientific knowledge gained from decades of experience working on developing solutions for combatting a range of infectious diseases such as MERS, SARS, Ebola and influenza, as well as experience working with health authorities and regulators to find a fast-tracked approach to bringing safe and effective medicines to market for patients. Biopharmaceutical companies are committed to developing solutions to help diagnose, treat and prevent COVID-19. Sharing the novel COVID-19 virus sequence helped to galvanise the research community The rapid virus sequencing by the scientific community enabled researchers to characterize and begin to understand the new threat posed by COVID-19. Biopharmaceutical companies with potentially relevant knowhow were thereby enabled to get their scientists to check their R&D libraries for potential assets that could fight coronaviruses. “Open Access” data-sharing channels are the backbone to securing a response capacity and have proven their worth with influenza networks. This speedy sharing of the novel coronavirus pathogen sequence was instrumental in galvanising global collaboration with the private and public sector: a pre-requisite for timely development of vaccines and treatments. The Global Initiative on Sharing All Influenza Data or GISAID Initiative, an open access platform partly funded by the private sector, played a critical role in sharing the first genome sequences of the novel coronavirus and centralizing their collection.
    [Show full text]
  • Edinburgh Research Explorer
    Edinburgh Research Explorer Genetically engineering milk Citation for published version: Whitelaw, CBA, Joshi, A, Kumar, S, Lillico, SG & Proudfoot, C 2016, 'Genetically engineering milk', Journal of Dairy Research, vol. 83, no. 1, pp. 3-11. https://doi.org/10.1017/S0022029916000017 Digital Object Identifier (DOI): 10.1017/S0022029916000017 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Journal of Dairy Research General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 25. Sep. 2021 Short title: Genetically engineering milk Genetically engineering milk C. Bruce A. Whitelaw1,*, Akshay Joshi1, Satish Kumar2, Simon G. Lillico1 and Chris Proudfoot1. The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush CamPus, Midlothian EH25 9RG, UK1 Centre for Cellular and Molecular Biology, Hyderabad, India2 * For correspondence: [email protected] Received 22nd December 2015 and accepted for Publication 1st January 2016 It has been thirty years since the first genetically engineered animal with altered milk composition was rePorted.
    [Show full text]
  • Innovation in Pharmaceutical Biotechnology: Comparing National Innovation Systems at the Sectoral Level – Isbn-92-64-01403-9 ©Oecd 2006 10 – Executive Summary
    EXECUTIVE SUMMARY – 9 Executive Summary Innovation policies and sectoral innovation systems Biotechnology has become the driving force of radical changes in innovation processes in various sectors. This is best illustrated by the pharmaceutical industry where the traditional chemical paradigm of drug discovery and development is being replaced by a new biotechnological paradigm. This has important consequences for the structure and functioning of the biopharmaceutical innovation system: biotechnology firms and public sector research organisations are becoming key actors generating new knowledge, tools and substances for the pharmaceutical industry. Regulations, standards and intellectual property rights (IPR) schemes have to deal with new types of components, and, on the demand side, new solutions are emerging for as yet unmet needs. For this reason the biopharmaceutical sectoral innovation system was chosen as one of the pilot sectors of the OECD Case Studies in Innovation.1 Building on previous work on national innovation systems (NIS), the OECD Case Studies in Innovation are aimed at improving the understanding of the idiosyncratic properties of particular areas of technology and sectoral innovation systems, so that a consistent and transparent policy mix can be designed that combines generic innovation policies with customised policies adapted to the characteristics of a specific area of technology or of a sectoral innovation system. Aims of the case study The general aim of the case study on pharmaceutical biotechnology was to provide
    [Show full text]