Maximum Weighted Likelihood Estimation

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Maximum Weighted Likelihood Estimation by Steven Xiaogang Wang B.Sc, Beijing Polytechnic University, P.R. China, 1991. M.S., University of California at Riverside, U.S.A., 1996. „ A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy in THE FACULTY OF GRADUATE STUDIES Department of Statistics We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA June 21, 2001 ©Steven Xiaogang Wang, 2001 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department The University of British Columbia Vancouver, Canada DE-6 (2/88) Maximum Weighted Likelihood Estimation Steven X. Wang Abstract A maximum weighted likelihood method is proposed to combine all the relevant data from different sources to improve the quality of statistical inference especially when the sample sizes are moderate or small. The linear weighted likelihood estimator (WLE), is studied in depth. The weak consistency, strong consistency and the asymptotic normality of the WLE are proved. The asymptotic properties of the WLE using adaptive weights are also established. A procedure for adaptively choosing the weights by using cross-validation is proposed in the thesis. The analytical forms of the "adaptive weights" are derived when the WLE is a linear combination of the MLE's. The weak consistency and asymptotic nor• mality of the WLE with weights chosen by cross-validation criterion are established. The connection between WLE and theoretical information theory is discovered. The derivation of the weighted likelihood by using the maximum entropy principle is pre• sented. The approximations of the distributions of the WLE by using saddlepoint approximation for small sample sizes are derived. The results of the application to the disease mapping are shown in the last chapter of this thesis. ii Contents Abstract iii Table of Contents iii List of Figures vi List of Tables vii Acknowledgements viii 1 Introduction 1 1.1 Introduction 1 1.2 Local Likelihood and Related Methods 2 1.3 Relevance Weighted Likelihood Method 6 1.4 Weighted Likelihood Method 6 1.5 A Simple Example 8 1.6 The Scope of the Thesis 11 2 Motivating Example: Normal Populations 14 2.1 A Motivating Example 15 2.2 Weighted Likelihood Estimation 16 2.3 A Criterion for Assessing Relevance 18 iii 2.4 The Optimum WLE 22 2.5 Results for Bivariate Normal Populations 24 3 Maximum Weighted Likelihood Estimation 28 3.1 Weighted Likelihood Estimation 28 3.2 Results for One-Parameter Exponential Families 29 3.3 WLE On Restricted Parameter Spaces 32 3.4 Limits of Optimum Weights 38 4 Asymptotic Properties of the WLE 48 4.1 Asymptotic Results for the WLE 49 4.1.1 Weak Consistency 50 4.1.2 Asymptotic Normality 60 4.1.3 Strong Consistency 70 4.2 Asymptotic Properties of Adaptive Weights 74 4.2.1 Weak Consistency and Asymptotic Normality 74 4.2.2 Strong Consistency by Using Adaptive Weights 77 4.3 Examples 78 4.3.1 Estimating a Univariate normal Mean 78 4.3.2 Restricted Normal Means 79 4.3.3 Multivariate Normal Means 81 4.4 Concluding Remarks 83 5 Choosing Weights by Cross-Validation 85 5.1 Introduction 85 5.2 Linear WLE for Equal Sample Sizes 87 5.2.1 Two Population Case 88 iv 5.2.2 Alternative Matrix Representation of Ae and be 93 5.2.3 Optimum Weights X°f By Cross-validation 95 5.3 Linear WLE for Unequal Sample Sizes 96 5.3.1 Two Population Case 97 5.3.2 Optimum Weights By Cross-Validation 99 5.4 Asymptotic Properties of the Weights 102 5.5 Simulation Studies 107 6 Derivations of the Weighted Likelihood Functions 112 6.1 Introduction 112 6.2 Existence of the Optimal Density 114 6.3 Solution to the Isoperimetric Problem 116 6.4 Derivation of the WL Functions 117 7 Saddlepoint Approximation of the WLE 125 7.1 Introduction 125 7.2 Review of the Saddlepoint Approximation 125 7.3 Results for Exponential Family 128 7.4 Approximation for General WL Estimation 134 8 Application to Disease Mapping 137 8.1 Introduction 137 8.2 Weighted Likelihood Estimation 138 8.3 Results of the Analysis 141 8.4 Discussion 143 Bibliography 146 v List of Figures 2.1 A special case: the solid line is the max\p-a\<cMSE(WLE), and the broken line represents the MSE(MLE). The X-axis represents the value of Ai. The parameters have been set to be the following: = l,p = 0.5 and C = 1 21 8.1 Daily hospital admissions for CSD # 380 in the summer of 1983. 138 8.2 Hospital Admissions for CSD # 380, 362, 366 and 367 in 1983. ... 139 vi List of Tables 5.1 MSE of the MLE and the WLE and standard deviations of the squared errors for samples with equal sizes for N(0,1) and iV(0.3,1) 108 5.2 Optimum weights and their standard deviations for samples with equal sizes from N(0,1) and N(0.3,1) 109 5.3 MSE of the MLE and the WLE and their Standard deviations for samples with equal sizes from V(3) and V(3.6) 110 5.4 Optimum weights and their standard deviations for samples with equal sizes from V(3) and P(3.6) Ill 7.1 Saddlepoint Approximations of T(n + 1) = n\ 128 7.2 Saddlepoint Approximation of the Spread Density for m = 10 132 8.1 Estimated MSE for the MLE and the WLE 142 8.2 Correlation matrix and the weight function for 1984 144 8.3 MSE of the MLE and the WLE for CSD 380 145 vii Acknowledgments I am most grateful to my supervisor, Dr. James V. Zidek, whose advice and support are a source of invaluable guidance, constant encouragement and great in• spiration throughout my Ph.D. study at University of British Columbia. I am also very grateful to my co-supervisor, Dr. Constance van Eeden, who provides invaluable advice and rigorous training in technical writing. I wish to thank my thesis committee members Dr. John Petkau and Dr. Paul Gustafson whose insights and helps are greatly appreciated. I also wish to thank Dr. Ruben Zamar for his suggestions. Finally, I would like to thank my wife, Ying Luo, for her understanding and support. My other family members all have their shares in this thesis. viii Chapter 1 Introduction I.l Introduction Recently there has been increasing interest in. combining information from diverse sources. Effective methods for combining information are needed in a variety of fields, including engineering, environmental sciences, geosciences and medicine. Cox (1981) gives an overview on some methods for the combination of data such as weighted means and pooling in the presence of over-dispersion. An excellent survey of more current techniques of combining information and some concrete examples can be found in the report Combining Information written by the Committee on Applied and Theoretical Statistics, U.S. National Research Council (1992). This thesis will concentrate on the combination of information from separate sets of data. • When two or more data sets derive from similar variables measured on different samples of subjects are available to answer a given question, a judgment must be made whether the samples and variables are sufficiently similar that the data sets may be directly merged or whether some other method of combining information that only partially merges them is more appropriate. For instance, data sets may be 1 1.2. LOCAL LIKELIHOOD AND RELATED METHODS 2 time series data for ozone levels of each year. Or they may be hospital admissions for different geographical regions that are close to each other. The question is how to combine information from data sets collected under different conditions (and with • differing degrees of precision and bias) to yield more reliable conclusions than those available from a single information source. 1.2 Local Likelihood and Related Methods Local likelihood, introduced by Tibshirani and Hastie (1987), extends the idea of local fitting to likelihood-based regression models. Local regression may be viewed as a special case of the local likelihood procedure. Staniswalis (1989) defines her version of local likelihood in the context of non-parametric regression as follows: W(9) = J2w{^^)logf(yi]e) i=i where X{ are fixed and b is a single unknown parameter. Recently, versions of local likelihood for estimation have been proposed and discussed. The general form of local likelihood was presented by Eguchi and Copas (1998). The basic idea is to infuse local adaptation into the likelihood by considering n x — t ! L(t;x1,x2,...,xn) = K{--^—)logf{xi,e), i=l . where K = K(^^) is a kernel function with center t and bandwidth h. The local maximum likelihood estimate 0t of a parameter in a statistical model f(x; 9) is defined by maximizing the weighted version of the likelihood function which gives more weight to sample points near t. This does not give an unbiased estimating equation as it stands, and so the local likelihood approach introduces a correction factor to ensure consistent estimation. The resulting local maximum likelihood estimator (LMLE), 1.2.
Recommended publications
  • The Matroid Theorem We First Review Our Definitions: a Subset System Is A

    The Matroid Theorem We First Review Our Definitions: a Subset System Is A

    CMPSCI611: The Matroid Theorem Lecture 5 We first review our definitions: A subset system is a set E together with a set of subsets of E, called I, such that I is closed under inclusion. This means that if X ⊆ Y and Y ∈ I, then X ∈ I. The optimization problem for a subset system (E, I) has as input a positive weight for each element of E. Its output is a set X ∈ I such that X has at least as much total weight as any other set in I. A subset system is a matroid if it satisfies the exchange property: If i and i0 are sets in I and i has fewer elements than i0, then there exists an element e ∈ i0 \ i such that i ∪ {e} ∈ I. 1 The Generic Greedy Algorithm Given any finite subset system (E, I), we find a set in I as follows: • Set X to ∅. • Sort the elements of E by weight, heaviest first. • For each element of E in this order, add it to X iff the result is in I. • Return X. Today we prove: Theorem: For any subset system (E, I), the greedy al- gorithm solves the optimization problem for (E, I) if and only if (E, I) is a matroid. 2 Theorem: For any subset system (E, I), the greedy al- gorithm solves the optimization problem for (E, I) if and only if (E, I) is a matroid. Proof: We will show first that if (E, I) is a matroid, then the greedy algorithm is correct. Assume that (E, I) satisfies the exchange property.
  • CONTINUITY in the ALEXIEWICZ NORM Dedicated to Prof. J

    CONTINUITY in the ALEXIEWICZ NORM Dedicated to Prof. J

    131 (2006) MATHEMATICA BOHEMICA No. 2, 189{196 CONTINUITY IN THE ALEXIEWICZ NORM Erik Talvila, Abbotsford (Received October 19, 2005) Dedicated to Prof. J. Kurzweil on the occasion of his 80th birthday Abstract. If f is a Henstock-Kurzweil integrable function on the real line, the Alexiewicz norm of f is kfk = sup j I fj where the supremum is taken over all intervals I ⊂ . Define I the translation τx by τxfR(y) = f(y − x). Then kτxf − fk tends to 0 as x tends to 0, i.e., f is continuous in the Alexiewicz norm. For particular functions, kτxf − fk can tend to 0 arbitrarily slowly. In general, kτxf − fk > osc fjxj as x ! 0, where osc f is the oscillation of f. It is shown that if F is a primitive of f then kτxF − F k kfkjxj. An example 1 6 1 shows that the function y 7! τxF (y) − F (y) need not be in L . However, if f 2 L then kτxF − F k1 6 kfk1jxj. For a positive weight function w on the real line, necessary and sufficient conditions on w are given so that k(τxf − f)wk ! 0 as x ! 0 whenever fw is Henstock-Kurzweil integrable. Applications are made to the Poisson integral on the disc and half-plane. All of the results also hold with the distributional Denjoy integral, which arises from the completion of the space of Henstock-Kurzweil integrable functions as a subspace of Schwartz distributions. Keywords: Henstock-Kurzweil integral, Alexiewicz norm, distributional Denjoy integral, Poisson integral MSC 2000 : 26A39, 46Bxx 1.
  • Cardinality Constrained Combinatorial Optimization: Complexity and Polyhedra

    Cardinality Constrained Combinatorial Optimization: Complexity and Polyhedra

    Takustraße 7 Konrad-Zuse-Zentrum D-14195 Berlin-Dahlem fur¨ Informationstechnik Berlin Germany RUDIGER¨ STEPHAN1 Cardinality Constrained Combinatorial Optimization: Complexity and Polyhedra 1Email: [email protected] ZIB-Report 08-48 (December 2008) Cardinality Constrained Combinatorial Optimization: Complexity and Polyhedra R¨udigerStephan Abstract Given a combinatorial optimization problem and a subset N of natural numbers, we obtain a cardinality constrained version of this problem by permitting only those feasible solutions whose cardinalities are elements of N. In this paper we briefly touch on questions that addresses common grounds and differences of the complexity of a combinatorial optimization problem and its cardinality constrained version. Afterwards we focus on polytopes associated with cardinality constrained combinatorial optimiza- tion problems. Given an integer programming formulation for a combina- torial optimization problem, by essentially adding Gr¨otschel’s cardinality forcing inequalities [11], we obtain an integer programming formulation for its cardinality restricted version. Since the cardinality forcing inequal- ities in their original form are mostly not facet defining for the associated polyhedra, we discuss possibilities to strengthen them. In [13] a variation of the cardinality forcing inequalities were successfully integrated in the system of linear inequalities for the matroid polytope to provide a com- plete linear description of the cardinality constrained matroid polytope. We identify this polytope as a master polytope for our class of problems, since many combinatorial optimization problems can be formulated over the intersection of matroids. 1 Introduction, Basics, and Complexity Given a combinatorial optimization problem and a subset N of natural numbers, we obtain a cardinality constrained version of this problem by permitting only those feasible solutions whose cardinalities are elements of N.
  • Some Properties of AP Weight Function

    Some Properties of AP Weight Function

    Journal of the Institute of Engineering, 2016, 12(1): 210-213 210 TUTA/IOE/PCU © TUTA/IOE/PCU Printed in Nepal Some Properties of AP Weight Function Santosh Ghimire Department of Engineering Science and Humanities, Institute of Engineering Pulchowk Campus, Tribhuvan University, Kathmandu, Nepal Corresponding author: [email protected] Received: June 20, 2016 Revised: July 25, 2016 Accepted: July 28, 2016 Abstract: In this paper, we briefly discuss the theory of weights and then define A1 and Ap weight functions. Finally we prove some of the properties of AP weight function. Key words: A1 weight function, Maximal functions, Ap weight function. 1. Introduction The theory of weights play an important role in various fields such as extrapolation theory, vector-valued inequalities and estimates for certain class of non linear differential equation. Moreover, they are very useful in the study of boundary value problems for Laplace's equation in Lipschitz domains. In 1970, Muckenhoupt characterized positive functions w for which the Hardy-Littlewood maximal operator M maps Lp(Rn, w(x)dx) to itself. Muckenhoupt's characterization actually gave the better understanding of theory of weighted inequalities which then led to the introduction of Ap class and consequently the development of weighted inequalities. 2. Definitions n Definition: A locally integrable function on R that takes values in the interval (0,∞) almost everywhere is called a weight. So by definition a weight function can be zero or infinity only on a set whose Lebesgue measure is zero. We use the notation to denote the w-measure of the set E and we reserve the notation Lp(Rn,w) or Lp(w) for the weighted L p spaces.
  • Importance Sampling

    Importance Sampling

    Chapter 6 Importance sampling 6.1 The basics To movtivate our discussion consider the following situation. We want to use Monte Carlo to compute µ = E[X]. There is an event E such that P (E) is small but X is small outside of E. When we run the usual Monte Carlo algorithm the vast majority of our samples of X will be outside E. But outside of E, X is close to zero. Only rarely will we get a sample in E where X is not small. Most of the time we think of our problem as trying to compute the mean of some random variable X. For importance sampling we need a little more structure. We assume that the random variable we want to compute the mean of is of the form f(X~ ) where X~ is a random vector. We will assume that the joint distribution of X~ is absolutely continous and let p(~x) be the density. (Everything we will do also works for the case where the random vector X~ is discrete.) So we focus on computing Ef(X~ )= f(~x)p(~x)dx (6.1) Z Sometimes people restrict the region of integration to some subset D of Rd. (Owen does this.) We can (and will) instead just take p(x) = 0 outside of D and take the region of integration to be Rd. The idea of importance sampling is to rewrite the mean as follows. Let q(x) be another probability density on Rd such that q(x) = 0 implies f(x)p(x) = 0.
  • Adaptively Weighted Maximum Likelihood Estimation of Discrete Distributions

    Adaptively Weighted Maximum Likelihood Estimation of Discrete Distributions

    Unicentre CH-1015 Lausanne http://serval.unil.ch Year : 2010 ADAPTIVELY WEIGHTED MAXIMUM LIKELIHOOD ESTIMATION OF DISCRETE DISTRIBUTIONS Michael AMIGUET Michael AMIGUET, 2010, ADAPTIVELY WEIGHTED MAXIMUM LIKELIHOOD ESTIMATION OF DISCRETE DISTRIBUTIONS Originally published at : Thesis, University of Lausanne Posted at the University of Lausanne Open Archive. http://serval.unil.ch Droits d’auteur L'Université de Lausanne attire expressément l'attention des utilisateurs sur le fait que tous les documents publiés dans l'Archive SERVAL sont protégés par le droit d'auteur, conformément à la loi fédérale sur le droit d'auteur et les droits voisins (LDA). A ce titre, il est indispensable d'obtenir le consentement préalable de l'auteur et/ou de l’éditeur avant toute utilisation d'une oeuvre ou d'une partie d'une oeuvre ne relevant pas d'une utilisation à des fins personnelles au sens de la LDA (art. 19, al. 1 lettre a). A défaut, tout contrevenant s'expose aux sanctions prévues par cette loi. Nous déclinons toute responsabilité en la matière. Copyright The University of Lausanne expressly draws the attention of users to the fact that all documents published in the SERVAL Archive are protected by copyright in accordance with federal law on copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the author and/or publisher before any use of a work or part of a work for purposes other than personal use within the meaning of LDA (art. 19, para. 1 letter a). Failure to do so will expose offenders to the sanctions laid down by this law.
  • 3 May 2012 Inner Product Quadratures

    3 May 2012 Inner Product Quadratures

    Inner product quadratures Yu Chen Courant Institute of Mathematical Sciences New York University Aug 26, 2011 Abstract We introduce a n-term quadrature to integrate inner products of n functions, as opposed to a Gaussian quadrature to integrate 2n functions. We will characterize and provide computataional tools to construct the inner product quadrature, and establish its connection to the Gaussian quadrature. Contents 1 The inner product quadrature 2 1.1 Notation.................................... 2 1.2 A n-termquadratureforinnerproducts. 4 2 Construct the inner product quadrature 4 2.1 Polynomialcase................................ 4 2.2 Arbitraryfunctions .............................. 6 arXiv:1205.0601v1 [math.NA] 3 May 2012 3 Product law and minimal functions 7 3.1 Factorspaces ................................. 8 3.2 Minimalfunctions............................... 11 3.3 Fold data into Gramians - signal processing . 13 3.4 Regularization................................. 15 3.5 Type-3quadraturesforintegralequations. .... 15 4 Examples 16 4.1 Quadratures for non-positive definite weights . ... 16 4.2 Powerfunctions,HankelGramians . 16 4.3 Exponentials kx,hyperbolicGramians ................... 18 1 5 Generalizations and applications 19 5.1 Separation principle of imaging . 20 5.2 Quadratures in higher dimensions . 21 5.3 Deflationfor2-Dquadraturedesign . 22 1 The inner product quadrature We consider three types of n-term Gaussian quadratures in this paper, Type-1: to integrate 2n functions in interval [a, b]. • Type-2: to integrate n2 inner products of n functions. • Type-3: to integrate n functions against n weights. • For these quadratures, the weight functions u are not required positive definite. Type-1 is the classical Guassian quadrature, Type-2 is the inner product quadrature, and Type-3 finds applications in imaging and sensing, and discretization of integral equations.
  • Depth-Weighted Estimation of Heterogeneous Agent Panel Data

    Depth-Weighted Estimation of Heterogeneous Agent Panel Data

    Depth-Weighted Estimation of Heterogeneous Agent Panel Data Models∗ Yoonseok Lee† Donggyu Sul‡ Syracuse University University of Texas at Dallas June 2020 Abstract We develop robust estimation of panel data models, which is robust to various types of outlying behavior of potentially heterogeneous agents. We estimate parameters from individual-specific time-series and average them using data-dependent weights. In partic- ular, we use the notion of data depth to obtain order statistics among the heterogeneous parameter estimates, and develop the depth-weighted mean-group estimator in the form of an L-estimator. We study the asymptotic properties of the new estimator for both homogeneous and heterogeneous panel cases, focusing on the Mahalanobis and the pro- jection depths. We examine relative purchasing power parity using this estimator and cannot find empirical evidence for it. Keywords: Panel data, Depth, Robust estimator, Heterogeneous agents, Mean group estimator. JEL Classifications: C23, C33. ∗First draft: September 2017. The authors thank to Robert Serfling and participants at numerous sem- inar/conference presentations for very helpful comments. Lee acknowledges support from Appleby-Mosher Research Fund, Maxwell School, Syracuse University. †Corresponding author. Address: Department of Economics and Center for Policy Research, Syracuse University, 426 Eggers Hall, Syracuse, NY 13244. E-mail: [email protected] ‡Address: Department of Economics, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080. E-mail: [email protected] 1Introduction A robust estimator is a statistic that is less influenced by outliers. Many robust estimators are available for regression models, where the robustness is toward outliers in the regression error.
  • Lecture 4 1 the Maximum Weight Matching Problem

    Lecture 4 1 the Maximum Weight Matching Problem

    CS 671: Graph Streaming Algorithms and Lower Bounds Rutgers: Fall 2020 Lecture 4 September 29, 2020 Instructor: Sepehr Assadi Scribe: Aditi Dudeja Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor. In this lecture, we will primarily focus on the following paper: • \Ami Paz, Gregory Schwartzman, A (2 + )-Approximation for Maximum Weight Matching in the Semi-Streaming Model. In SODA 2017." with additional backgrounds from: • \Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, Jian Zhang, On Graph Problems in a Semi-streaming Model. In ICALP 2004 and Theor. Comput. Sci. 2005." • \Michael Crouch, Daniel S. Stubbs, Improved Streaming Algorithms for Weighted Matching, via Un- weighted Matching. In APPROX-RANDOM 2014." 1 The Maximum Weight Matching Problem Let G = (V; E; w) be a simple graph with non-negative edge weights w(e) ≥ 0 on each edge e. As usual, we denote n := jV j and m := jEj. Recall that a matching M in a graph G is a set of edges so that no two edge share a vertex. In this lecture, we consider the maximum weight matching problem, namely, the problem P of finding a matching M in G which maximizes e2M we. Throughout this lecture, we shall assume that weight of each edge is bounded by some poly(n) and thus can be represented with O(log n) bits1. Recall that by what we already proved in Lecture 2 even for unweighted matching, there is no hope to find an exact semi-streaming algorithm for maximum weight matching in a single pass.
  • Numerical Integration and Differentiation Growth And

    Numerical Integration and Differentiation Growth And

    Numerical Integration and Differentiation Growth and Development Ra¨ulSantaeul`alia-Llopis MOVE-UAB and Barcelona GSE Spring 2017 Ra¨ulSantaeul`alia-Llopis(MOVE,UAB,BGSE) GnD: Numerical Integration and Differentiation Spring 2017 1 / 27 1 Numerical Differentiation One-Sided and Two-Sided Differentiation Computational Issues on Very Small Numbers 2 Numerical Integration Newton-Cotes Methods Gaussian Quadrature Monte Carlo Integration Quasi-Monte Carlo Integration Ra¨ulSantaeul`alia-Llopis(MOVE,UAB,BGSE) GnD: Numerical Integration and Differentiation Spring 2017 2 / 27 Numerical Differentiation The definition of the derivative at x∗ is 0 f (x∗ + h) − f (x∗) f (x∗) = lim h!0 h Ra¨ulSantaeul`alia-Llopis(MOVE,UAB,BGSE) GnD: Numerical Integration and Differentiation Spring 2017 3 / 27 • Hence, a natural way to numerically obtain the derivative is to use: f (x + h) − f (x ) f 0(x ) ≈ ∗ ∗ (1) ∗ h with a small h. We call (1) the one-sided derivative. • Another way to numerically obtain the derivative is to use: f (x + h) − f (x − h) f 0(x ) ≈ ∗ ∗ (2) ∗ 2h with a small h. We call (2) the two-sided derivative. We can show that the two-sided numerical derivative has a smaller error than the one-sided numerical derivative. We can see this in 3 steps. Ra¨ulSantaeul`alia-Llopis(MOVE,UAB,BGSE) GnD: Numerical Integration and Differentiation Spring 2017 4 / 27 • Step 1, use a Taylor expansion of order 3 around x∗ to obtain 0 1 00 2 1 000 3 f (x) = f (x∗) + f (x∗)(x − x∗) + f (x∗)(x − x∗) + f (x∗)(x − x∗) + O3(x) (3) 2 6 • Step 2, evaluate the expansion (3) at x
  • Orthogonal Polynomials: an Illustrated Guide

    Orthogonal Polynomials: an Illustrated Guide

    Orthogonal Polynomials: An Illustrated Guide Avaneesh Narla December 10, 2018 Contents 1 Definitions 1 2 Example 1 2 3 Three-term Recurrence Relation 3 4 Christoffel-Darboux Formula 5 5 Zeros 6 6 Gauss Quadrature 8 6.1 Lagrange Interpolation . .8 6.2 Gauss quadrature formula . .8 7 Classical Orthogonal Polynomials 11 7.1 Hermite Polynomials . 11 7.2 Laguerre Polynomials . 12 7.3 Legendre Polynomials . 14 7.4 Jacobi Polynomials . 16 7.5 Chebyshev Polynomials of the First Kind . 17 7.6 Chebyshev Polynomials of the Second Kind . 19 7.7 Gegenbauer polynomials . 20 1 Definitions Orthogonal polynomials are orthogonal with respect to a certain function, known as the weight function w(x), and a defined interval. The weight function must be continuous and positive such that its moments (µn) exist. Z b n µn := w(x)x dx; n = 0; 1; 2; ::: a The interval may be infinite. We now define the inner product of two polynomials as follows Z 1 hf; giw(x) := w(x)f(x)g(x) dx −∞ 1 We will drop the subscript indicating the weight function in future cases. Thus, as always, a 1 sequence of polynomials fpn(x)gn=0 with deg(pn(x)) = n are called orthogonal polynomials for a weight function w if hpm; pni = hnδmn Above, the delta function is the Kronecker Delta Function There are two possible normalisations: If hn = 1 8n 2 f0; 1; 2:::g, the sequence is orthonormal. If the coefficient of highest degree term is 1 for all elements in the sequence, the sequence is monic.
  • Contents 3 Inner Product Spaces

    Contents 3 Inner Product Spaces

    Linear Algebra (part 3) : Inner Product Spaces (by Evan Dummit, 2020, v. 2.00) Contents 3 Inner Product Spaces 1 3.1 Inner Product Spaces . 1 3.1.1 Inner Products on Real Vector Spaces . 1 3.1.2 Inner Products on Complex Vector Spaces . 3 3.1.3 Properties of Inner Products, Norms . 4 3.2 Orthogonality . 6 3.2.1 Orthogonality, Orthonormal Bases, and the Gram-Schmidt Procedure . 7 3.2.2 Orthogonal Complements and Orthogonal Projection . 9 3.3 Applications of Inner Products . 13 3.3.1 Least-Squares Estimates . 13 3.3.2 Fourier Series . 16 3.4 Linear Transformations and Inner Products . 18 3.4.1 Characterizations of Inner Products . 18 3.4.2 The Adjoint of a Linear Transformation . 20 3 Inner Product Spaces In this chapter we will study vector spaces having an additional kind of structure called an inner product, which generalizes the idea of the dot product of vectors in Rn, and which will allow us to formulate notions of length and angle in more general vector spaces. We dene inner products in real and complex vector spaces and establish some of their properties, including the celebrated Cauchy-Schwarz inequality, and survey some applications. We then discuss orthogonality of vectors and subspaces and in particular describe a method for constructing an orthonormal basis for any nite-dimensional inner product space, which provides an analogue of giving standard unit coordinate axes in Rn. Next, we discuss a pair of very important practical applications of inner products and orthogonality: computing least-squares approximations and approximating periodic functions with Fourier series.