Use of Axonal Projection Patterns for the Homologisation of Cerebral
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project
High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project AEA Technology, Environment Contract: W/35/00632/00/00 For: The Department of Trade and Industry New & Renewable Energy Programme Report issued 30 August 2002 (Version with minor corrections 16 September 2002) Keith Hiscock, Harvey Tyler-Walters and Hugh Jones Reference: Hiscock, K., Tyler-Walters, H. & Jones, H. 2002. High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Report from the Marine Biological Association to The Department of Trade and Industry New & Renewable Energy Programme. (AEA Technology, Environment Contract: W/35/00632/00/00.) Correspondence: Dr. K. Hiscock, The Laboratory, Citadel Hill, Plymouth, PL1 2PB. [email protected] High level environmental screening study for offshore wind farm developments – marine habitats and species ii High level environmental screening study for offshore wind farm developments – marine habitats and species Title: High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Contract Report: W/35/00632/00/00. Client: Department of Trade and Industry (New & Renewable Energy Programme) Contract management: AEA Technology, Environment. Date of contract issue: 22/07/2002 Level of report issue: Final Confidentiality: Distribution at discretion of DTI before Consultation report published then no restriction. Distribution: Two copies and electronic file to DTI (Mr S. Payne, Offshore Renewables Planning). One copy to MBA library. Prepared by: Dr. K. Hiscock, Dr. H. Tyler-Walters & Hugh Jones Authorization: Project Director: Dr. Keith Hiscock Date: Signature: MBA Director: Prof. S. Hawkins Date: Signature: This report can be referred to as follows: Hiscock, K., Tyler-Walters, H. -
The Malacological Society of London
ACKNOWLEDGMENTS This meeting was made possible due to generous contributions from the following individuals and organizations: Unitas Malacologica The program committee: The American Malacological Society Lynn Bonomo, Samantha Donohoo, The Western Society of Malacologists Kelly Larkin, Emily Otstott, Lisa Paggeot David and Dixie Lindberg California Academy of Sciences Andrew Jepsen, Nick Colin The Company of Biologists. Robert Sussman, Allan Tina The American Genetics Association. Meg Burke, Katherine Piatek The Malacological Society of London The organizing committee: Pat Krug, David Lindberg, Julia Sigwart and Ellen Strong THE MALACOLOGICAL SOCIETY OF LONDON 1 SCHEDULE SUNDAY 11 AUGUST, 2019 (Asilomar Conference Center, Pacific Grove, CA) 2:00-6:00 pm Registration - Merrill Hall 10:30 am-12:00 pm Unitas Malacologica Council Meeting - Merrill Hall 1:30-3:30 pm Western Society of Malacologists Council Meeting Merrill Hall 3:30-5:30 American Malacological Society Council Meeting Merrill Hall MONDAY 12 AUGUST, 2019 (Asilomar Conference Center, Pacific Grove, CA) 7:30-8:30 am Breakfast - Crocker Dining Hall 8:30-11:30 Registration - Merrill Hall 8:30 am Welcome and Opening Session –Terry Gosliner - Merrill Hall Plenary Session: The Future of Molluscan Research - Merrill Hall 9:00 am - Genomics and the Future of Tropical Marine Ecosystems - Mónica Medina, Pennsylvania State University 9:45 am - Our New Understanding of Dead-shell Assemblages: A Powerful Tool for Deciphering Human Impacts - Sue Kidwell, University of Chicago 2 10:30-10:45 -
“Opisthobranchia”! a Review on the Contribution of Mesopsammic Sea Slugs to Euthyneuran Systematics
Thalassas, 27 (2): 101-112 An International Journal of Marine Sciences BYE BYE “OPISTHOBRANCHIA”! A REVIEW ON THE CONTRIBUTION OF MESOPSAMMIC SEA SLUGS TO EUTHYNEURAN SYSTEMATICS SCHRÖDL M(1), JÖRGER KM(1), KLUSSMANN-KOLB A(2) & WILSON NG(3) Key words: Mollusca, Heterobranchia, morphology, molecular phylogeny, classification, evolution. ABSTRACT of most mesopsammic “opisthobranchs” within a comprehensive euthyneuran taxon set. During the last decades, textbook concepts of “Opisthobranchia” have been challenged by The present study combines our published morphology-based and, more recently, molecular and unpublished topologies, and indicates that studies. It is no longer clear if any precise distinctions monophyletic Rhodopemorpha cluster outside of can be made between major opisthobranch and Euthyneura among shelled basal heterobranchs, acte- pulmonate clades. Worm-shaped, mesopsammic taxa onids are the sister to rissoellids, and Nudipleura such as Acochlidia, Platyhedylidae, Philinoglossidae are the basal offshoot of Euthyneura. Furthermore, and Rhodopemorpha were especially problematic in Pyramidellidae, Sacoglossa and Acochlidia cluster any morphology-based system. Previous molecular within paraphyletic Pulmonata, as sister to remaining phylogenetic studies contained a very limited sampling “opisthobranchs”. Worm-like mesopsammic hetero- of minute and elusive meiofaunal slugs. Our recent branch taxa have clear independent origins and thus multi-locus approaches of mitochondrial COI and 16S their similarities are the result of convergent evolu- rRNA genes and nuclear 18S and 28S rRNA genes tion. Classificatory and evolutionary implications (“standard markers”) thus included representatives from our tree hypothesis are quite dramatic, as shown by some examples, and need to be explored in more detail in future studies. (1) Bavarian State Collection of Zoology. Münchhausenstr. -
Ringiculid Bubble Snails Recovered As the Sister Group to Sea Slugs
www.nature.com/scientificreports OPEN Ringiculid bubble snails recovered as the sister group to sea slugs (Nudipleura) Received: 13 May 2016 Yasunori Kano1, Bastian Brenzinger2,3, Alexander Nützel4, Nerida G. Wilson5 & Accepted: 08 July 2016 Michael Schrödl2,3 Published: 08 August 2016 Euthyneuran gastropods represent one of the most diverse lineages in Mollusca (with over 30,000 species), play significant ecological roles in aquatic and terrestrial environments and affect many aspects of human life. However, our understanding of their evolutionary relationships remains incomplete due to missing data for key phylogenetic lineages. The present study integrates such a neglected, ancient snail family Ringiculidae into a molecular systematics of Euthyneura for the first time, and is supplemented by the first microanatomical data. Surprisingly, both molecular and morphological features present compelling evidence for the common ancestry of ringiculid snails with the highly dissimilar Nudipleura—the most species-rich and well-known taxon of sea slugs (nudibranchs and pleurobranchoids). A new taxon name Ringipleura is proposed here for these long-lost sisters, as one of three major euthyneuran clades with late Palaeozoic origins, along with Acteonacea (Acteonoidea + Rissoelloidea) and Tectipleura (Euopisthobranchia + Panpulmonata). The early Euthyneura are suggested to be at least temporary burrowers with a characteristic ‘bubble’ shell, hypertrophied foot and headshield as exemplified by many extant subtaxa with an infaunal mode of life, while the expansion of the mantle might have triggered the explosive Mesozoic radiation of the clade into diverse ecological niches. The traditional gastropod subclass Euthyneura is a highly diverse clade of snails and slugs with at least 30,000 living species1,2. -
Gastropoda, Acteonidae) and Remarks on the Other Mediterranean Species of the Family Acteonidae D’Orbigny, 1835
BASTERIA, 60: 183-193, 1996 Central Tyrrhenian sea Mollusca: XI. of Callostracon Description tyrrhenicum sp. nov. (Gastropoda, Acteonidae) and remarks on the other Mediterranean species of the family Acteonidae d’Orbigny, 1835 Carlo Smriglio Via di Valle Aurelia 134, 1-00167 Rome, Italy & Paolo Mariottini Dipartimento di Biologia, Terza Universita degli Studi di Roma, Via Ostiense 173, 1-00154 Rome, Italy A new acteonid species, collected in the Central Tyrrhenian Sea, is here described. It is placed in Callostracon and named C. Hamlin, 1884, tyrrhenicum. The description is based on shell morpho- logyonly. Remarks on the four bathyal and the three infralittoral species ofthe familyActeonidae known from the Mediterranean Sea, are also featured. Key-words: Gastropoda, Opisthobranchia, Acteonidae, Callostracon, taxonomy, bathyal fauna, Central Tyrrhenian Sea, Italy. INTRODUCTION In the framework of carried an investigation out over the past decade, we continue to characterize the bathyal faunal assemblages from the Central Tyrrhenian Sea, off the Latial coast (Italy) (Smriglio et al., 1987, 1990, 1992, 1993). In particular, we are interested in the molluscan fauna occurring in the deep-sea coral (biocoenose des and des coraux blancs, CB) muddy-bathyal (biocoenose vases bathyales, VB) commu- nities & of this In this we describe of (Peres Picard, 1964) area. paper a new species acteonid, Callostracon tyrrhenicum, from material dredged in a deep-sea coral bank off the coast. Latial Among the molluscan fauna associated with C. tyrrhenicum, we have iden- tified four which bathyal acteonids, we think worth reporting: Acteon monterosatoi Crenilabium Dautzenberg, 1889, exile (Jeffreys, 1870, ex Forbes ms.), Japonacteon pusillus and Liocarenus (McGillavray, 1843), globulinus (Forbes, 1844). -
The Cephalic Sensory Organs of Acteon Tornatilis (Linnaeus, 1758) (Gastropoda Opisthobranchia) – Cellular Innervation Patterns As a Tool for Homologisation*
Bonner zoologische Beiträge Band 55 (2006) Heft 3/4 Seiten 311–318 Bonn, November 2007 The cephalic sensory organs of Acteon tornatilis (Linnaeus, 1758) (Gastropoda Opisthobranchia) – cellular innervation patterns as a tool for homologisation* Sid STAUBACH & Annette KLUSSMANN-KOLB1) 1)Institute for Ecology, Evolution and Diversity – Phylogeny and Systematics, J. W. Goethe-University, Frankfurt am Main, Germany *Paper presented to the 2nd International Workshop on Opisthobranchia, ZFMK, Bonn, Germany, September 20th to 22nd, 2006 Abstract. Gastropoda are guided by several sensory organs in the head region, referred to as cephalic sensory organs (CSOs). This study investigates the CSO structure in the opisthobranch, Acteon tornatilis whereby the innervation pat- terns of these organs are described using macroscopic preparations and axonal tracing techniques. A bipartite cephalic shield and a lateral groove along the ventral side of the cephalic shield was found in A. tornatilis. Four cerebral nerves can be described innervating different CSOs: N1: lip, N2: anterior cephalic shield and lateral groove, N3 and Nclc: posterior cephalic shield. Cellular innervation patterns of the cerebral nerves show characteristic and con- stant cell clusters in the CNS for each nerve. We compare these innervation patterns of A. tornatilis with those described earlier for Haminoea hydatis (STAUBACH et al. in press). Previously established homologisation criteria are used in order to homologise cerebral nerves as well as the organs innervated by these nerves. Evolutionary implications of this homologisation are discussed. Keywords. Haminoea hydatis, Cephalaspidea, axonal tracing, homology, innervation patterns, lip organ, Hancock´s organ. 1. INTRODUCTION Gastropoda are guided by several organs in the head re- phylogenetic position of Acteonoidea within Opistho- gion which are assumed to have primarily chemo- and branchia unsettled. -
Beyond Shells: first Detailed Morphological Description of the Mangrove- Associated Gastropod Haminoea Cf
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/334836562 Beyond shells: first detailed morphological description of the mangrove- associated gastropod Haminoea cf. fusca (A. Adams, 1850) (Cephalaspidea, Haminoeidae), with a COI phylogenet... Article in Zoosystema · August 2019 DOI: 10.5252/zoosystema2019v41a16 CITATIONS READS 6 264 4 authors, including: Sadar Aslam Trond Roger Oskars University of Karachi Statsforvaltaren i Møre og Romsdal 37 PUBLICATIONS 63 CITATIONS 16 PUBLICATIONS 131 CITATIONS SEE PROFILE SEE PROFILE Manuel Malaquias University of Bergen 106 PUBLICATIONS 1,453 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Taxonomy, phylogenetics and systematic revision of Scaphandridae (Heterobranchia: Cephalaspidea) View project Ecology and Spatial Dynamics of Marine Non-Indigenous and Rare Species View project All content following this page was uploaded by Manuel Malaquias on 01 August 2019. The user has requested enhancement of the downloaded file. DIRECTEUR DE LA PUBLICATION : Bruno David Président du Muséum national d’Histoire naturelle RÉDACTRICE EN CHEF / EDITOR-IN-CHIEF : Laure Desutter-Grandcolas ASSISTANTS DE RÉDACTION / ASSISTANT EDITORS : Anne Mabille ([email protected]), Emmanuel Côtez MISE EN PAGE / PAGE LAYOUT : Anne Mabille COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD : James Carpenter (AMNH, New York, États-Unis) Maria Marta Cigliano (Museo de La Plata, La Plata, Argentine) Henrik Enghoff (NHMD, Copenhague, Danemark) Rafael Marquez (CSIC, Madrid, Espagne) Peter Ng (University of Singapore) Norman I. Platnick (AMNH, New York, États-Unis) Jean-Yves Rasplus (INRA, Montferrier-sur-Lez, France) Jean-François Silvain (IRD, Gif-sur-Yvette, France) Wanda M. Weiner (Polish Academy of Sciences, Cracovie, Pologne) John Wenzel (The Ohio State University, Columbus, États-Unis) COUVERTURE / COVER : SEM, detail of rodlets in dorsal part of gizzard plate of Haminoea cf. -
The Feeding Habits of Pleurobranchaea
THE FEEDING HABITS OF PLEUROBRANCHAEA CALIFORNICA MACFARLAND, 1966 (OPISTHOBRANCHIA, NOTASPIDEA) IN MONTEREY BAY, CALIFORNIA A Thesis Presented to the Faculty of California State University, Stanislaus and Moss Landing Marine Laboratories In Partial Fulfillment Of the Requirements for the Degree Master of Science in Marine Science By Karen E. Battle August, 1994 ABSTRACT The natural diet of Pleurobranchaea californica was studied in Monterey Bay, California. Specimens were collected from January 29 to November 9, 1992, at depths of 30-100 meters, using an otter trawl and an interfacial trawl. Three hundred fty-six animals were collected and ranged in size from 0.01-411 grams with most of the animals weighing between 1.0 and 50 grams. The gut contents were examined and 16 different prey types were identified. Thirty-three percent of the guts were empty. Many animals had sediment in their guts, which was presumed to be a result of their ingesting or attempting to ingest prey items that live on or below the substratum. P. californica a euryphagic predator with pronounced cannibalism. Individual Index of Relative Importance values showed that opisthobranchs made up the largest portion of the diet of P. californica. The opisthobranchs in the diet included P. californica (as prey), Armina californica and Aglaja sp. The diets were similar specimens of P. californica collected at all depths, but did change depending upon the season in which the animals were collected, and their size. ii ACKNOWLEDGEMENTS I would like to thank my committee members, Dr. James Nybakken, Dr. Gregor Cailliet, and Dr. Pamela Roe for their guidance and advice throughout this study. -
Developing a List of Invasive Alien Species Likely to Threaten Biodiversity and Ecosystems in the European Union
Received: 25 July 2018 | Accepted: 7 November 2018 DOI: 10.1111/gcb.14527 PRIMARY RESEARCH ARTICLE Developing a list of invasive alien species likely to threaten biodiversity and ecosystems in the European Union Helen E. Roy1 | Sven Bacher2 | Franz Essl3,4 | Tim Adriaens5 | David C. Aldridge6 | John D. D. Bishop7 | Tim M. Blackburn8,9 | Etienne Branquart10 | Juliet Brodie11 | Carles Carboneras12 | Elizabeth J. Cottier-Cook13 | Gordon H. Copp14,15 | Hannah J. Dean1 | Jørgen Eilenberg16 | Belinda Gallardo17 | Mariana Garcia18 | Emili García‐Berthou19 | Piero Genovesi20 | Philip E. Hulme21 | Marc Kenis22 | Francis Kerckhof23 | Marianne Kettunen24 | Dan Minchin25 | Wolfgang Nentwig26 | Ana Nieto18 | Jan Pergl27 | Oliver L. Pescott1 | Jodey M. Peyton1 | Cristina Preda28 | Alain Roques29 | Steph L. Rorke1 | Riccardo Scalera18 | Stefan Schindler3 | Karsten Schönrogge1 | Jack Sewell7 | Wojciech Solarz30 | Alan J. A. Stewart31 | Elena Tricarico32 | Sonia Vanderhoeven33 | Gerard van der Velde34,35,36 | Montserrat Vilà37 | Christine A. Wood7 | Argyro Zenetos38 | Wolfgang Rabitsch3 1Centre for Ecology & Hydrology, Wallingford, UK 2University of Fribourg, Fribourg, Switzerland 3Environment Agency Austria, Vienna, Austria 4Division of Conservation Biology, Vegetation Ecology and Landscape Ecology, University Vienna, Vienna, Austria 5Research Institute for Nature and Forest (INBO), Brussels, Belgium 6Department of Zoology, University of Cambridge, Cambridge, UK 7The Laboratory, The Marine Biological Association, Plymouth, UK 8University College London, -
Genetic Structure of the Grey Side-Gilled Sea Slug (Pleurobranchaea Maculata) in Coastal Waters of New Zealand
RESEARCH ARTICLE Genetic structure of the grey side-gilled sea slug (Pleurobranchaea maculata) in coastal waters of New Zealand Yeşerin Yõldõrõm1¤*, Marti J. Anderson1,2, Bengt Hansson3, Selina Patel4, Craig D. Millar4, Paul B. Rainey1,5,6 1 New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand, 2 Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand, 3 Department of Biology, a1111111111 Lund University, Lund, Sweden, 4 School of Biological Sciences, University of Auckland, Auckland, New a1111111111 Zealand, 5 Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, PloÈn, a1111111111 Germany, 6 Ecole SupeÂrieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI ParisTech), a1111111111 CNRS UMR 8231, PSL Research University, Paris, France a1111111111 ¤ Current address: Center for Ecology and Evolution in Microbial Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden * [email protected] OPEN ACCESS Abstract Citation: Yõldõrõm Y, Anderson MJ, Hansson B, Patel S, Millar CD, Rainey PB (2018) Genetic Pleurobranchaea maculata is a rarely studied species of the Heterobranchia found through- structure of the grey side-gilled sea slug out the south and western Pacific±and recently recorded in Argentina±whose population (Pleurobranchaea maculata) in coastal waters of genetic structure is unknown. Interest in the species was sparked in New Zealand following New Zealand. PLoS ONE 13(8): e0202197. https:// doi.org/10.1371/journal.pone.0202197 a series of dog deaths caused by ingestions of slugs containing high levels of the neurotoxin tetrodotoxin. Here we describe the genetic structure and demographic history of P. -
Alien Species in the Mediterranean Sea by 2010
Mediterranean Marine Science Review Article Indexed in WoS (Web of Science, ISI Thomson) The journal is available on line at http://www.medit-mar-sc.net Alien species in the Mediterranean Sea by 2010. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution A. ZENETOS 1, S. GOFAS 2, M. VERLAQUE 3, M.E. INAR 4, J.E. GARCI’A RASO 5, C.N. BIANCHI 6, C. MORRI 6, E. AZZURRO 7, M. BILECENOGLU 8, C. FROGLIA 9, I. SIOKOU 10 , D. VIOLANTI 11 , A. SFRISO 12 , G. SAN MART N 13 , A. GIANGRANDE 14 , T. KATA AN 4, E. BALLESTEROS 15 , A. RAMOS-ESPLA ’16 , F. MASTROTOTARO 17 , O. OCA A 18 , A. ZINGONE 19 , M.C. GAMBI 19 and N. STREFTARIS 10 1 Institute of Marine Biological Resources, Hellenic Centre for Marine Research, P.O. Box 712, 19013 Anavissos, Hellas 2 Departamento de Biologia Animal, Facultad de Ciencias, Universidad de Ma ’laga, E-29071 Ma ’laga, Spain 3 UMR 6540, DIMAR, COM, CNRS, Université de la Méditerranée, France 4 Ege University, Faculty of Fisheries, Department of Hydrobiology, 35100 Bornova, Izmir, Turkey 5 Departamento de Biologia Animal, Facultad de Ciencias, Universidad de Ma ’laga, E-29071 Ma ’laga, Spain 6 DipTeRis (Dipartimento per lo studio del Territorio e della sue Risorse), University of Genoa, Corso Europa 26, 16132 Genova, Italy 7 Institut de Ciències del Mar (CSIC) Passeig Mar tim de la Barceloneta, 37-49, E-08003 Barcelona, Spain 8 Adnan Menderes University, Faculty of Arts & Sciences, Department of Biology, 09010 Aydin, Turkey 9 c\o CNR-ISMAR, Sede Ancona, Largo Fiera della Pesca, 60125 Ancona, Italy 10 Institute of Oceanography, Hellenic Centre for Marine Research, P.O. -
Genetic Structure of Pleurobranchaea Maculata in New Zealand
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. GENETIC STRUCTURE OF PLEUROBRANCHAEA MACULATA IN NEW ZEALAND A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) in Genetics The New Zealand Institute for Advanced Study Massey University, Auckland, New Zealand YEŞERİN YILDIRIM 2016 ACKNOWLEDEGEMENTS I have a long list of people to acknowledge, as my PhD project would not have been possible without their support. Firstly, I would like to thank my supervisor, Professor Paul B. Rainey (New Zealand Institute of Advanced Study, Massey University), for providing me with the opportunity to join his research group. He gave me constant support, insightful guidance, valuable input, and showed me how to think like a scientist. I would also like to thank my co- supervisor, Dr Craig D. Millar, who welcomed me into his genetics laboratory at the Department of Biological Sciences at the University of Auckland whenever I needed help. He guided me patiently right from the beginning of my PhD project, was generous with his time, encouraging, and taught me how to troubleshoot where necessary. I would like to extend a special mention to Selina Patel, a very talented technician at Dr Millar’s Lab who shared her extensive technical and theoretical knowledge with me generously, but also allocated considerable time to help me progress with my research.