MTH714U Group Theory 2 Permutation Groups
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ON the SHELLABILITY of the ORDER COMPLEX of the SUBGROUP LATTICE of a FINITE GROUP 1. Introduction We Will Show That the Order C
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 353, Number 7, Pages 2689{2703 S 0002-9947(01)02730-1 Article electronically published on March 12, 2001 ON THE SHELLABILITY OF THE ORDER COMPLEX OF THE SUBGROUP LATTICE OF A FINITE GROUP JOHN SHARESHIAN Abstract. We show that the order complex of the subgroup lattice of a finite group G is nonpure shellable if and only if G is solvable. A by-product of the proof that nonsolvable groups do not have shellable subgroup lattices is the determination of the homotopy types of the order complexes of the subgroup lattices of many minimal simple groups. 1. Introduction We will show that the order complex of the subgroup lattice of a finite group G is (nonpure) shellable if and only if G is solvable. The proof of nonshellability in the nonsolvable case involves the determination of the homotopy type of the order complexes of the subgroup lattices of many minimal simple groups. We begin with some history and basic definitions. It is assumed that the reader is familiar with some of the rudiments of algebraic topology and finite group theory. No distinction will be made between an abstract simplicial complex ∆ and an arbitrary geometric realization of ∆. Maximal faces of a simplicial complex ∆ will be called facets of ∆. Definition 1.1. A simplicial complex ∆ is shellable if the facets of ∆ can be ordered σ1;::: ,σn so that for all 1 ≤ i<k≤ n thereexistssome1≤ j<kand x 2 σk such that σi \ σk ⊆ σj \ σk = σk nfxg. The list σ1;::: ,σn is called a shelling of ∆. -
ON the INTERSECTION NUMBER of FINITE GROUPS Humberto Bautista Serrano University of Texas at Tyler
University of Texas at Tyler Scholar Works at UT Tyler Math Theses Math Spring 5-14-2019 ON THE INTERSECTION NUMBER OF FINITE GROUPS Humberto Bautista Serrano University of Texas at Tyler Follow this and additional works at: https://scholarworks.uttyler.edu/math_grad Part of the Algebra Commons, and the Discrete Mathematics and Combinatorics Commons Recommended Citation Bautista Serrano, Humberto, "ON THE INTERSECTION NUMBER OF FINITE GROUPS" (2019). Math Theses. Paper 9. http://hdl.handle.net/10950/1332 This Thesis is brought to you for free and open access by the Math at Scholar Works at UT Tyler. It has been accepted for inclusion in Math Theses by an authorized administrator of Scholar Works at UT Tyler. For more information, please contact [email protected]. ON THE INTERSECTION NUMBER OF FINITE GROUPS by HUMBERTO BAUTISTA SERRANO A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Mathematics Kassie Archer, Ph.D., Committee Chair College of Arts and Sciences The University of Texas at Tyler April 2019 c Copyright by Humberto Bautista Serrano 2019 All rights reserved Acknowledgments Foremost I would like to express my gratitude to my two excellent advisors, Dr. Kassie Archer at UT Tyler and Dr. Lindsey-Kay Lauderdale at Towson University. This thesis would never have been possible without their support, encouragement, and patience. I will always be thankful to them for introducing me to research in mathematics. I would also like to thank the reviewers, Dr. Scott LaLonde and Dr. David Milan for pointing to several mistakes and omissions and enormously improving the final version of this thesis. -
Base Size of Finite Primitive Solvable Permutation Groups
Base size of finite primitive solvable permutation groups Ayan Maiti Under the supervision of Prof. Pal Hegedus A thesis presented for the partial fulfilment towards the degree of Masters of Science in Mathematics Mathematics and its Application Central European University Hungary Declaration of Authorship I, Ayan Maiti, declare that this thesis titled, "Base size of finite primitive solvable per- mutation groups" and the work presented in it are my own. I confirm that: This work was done wholly or mainly while in candidature for a masters degree at this University. Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated. Where I have consulted the published work of others, this is always clearly attributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. I have acknowledged all main sources of help. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself. Signed: Ayan Maiti Date: 20th May, 2016 1 Abstract The content of this thesis report is based on the bounds of the base size of affine type primitive permutation groups, the bound was conjectured by Pyber and later was proved by Akos Seress. The the primary focus of this thesis is to understand the basic idea and the proof given by Akos Seress. -
(Hereditarily) Just Infinite Property in Profinite Groups
Inverse system characterizations of the (hereditarily) just infinite property in profinite groups Colin D. Reid October 6, 2018 Abstract We give criteria on an inverse system of finite groups that ensure the limit is just infinite or hereditarily just infinite. More significantly, these criteria are ‘universal’ in that all (hereditarily) just infinite profinite groups arise as limits of the specified form. This is a corrected and revised version of [8]. 1 Introduction Notation. In this paper, all groups will be profinite groups, all homomorphisms are required to be continuous, and all subgroups are required to be closed; in particular, all references to commutator subgroups are understood to mean the closures of the corresponding abstractly defined subgroups. For an inverse system Λ= {(Gn)n>0, ρn : Gn+1 ։ Gn} of finite groups, we require all the homomorphisms ρn to be surjective. A subscript o will be used to indicate open inclusion, for instance A ≤o B means that A is an open subgroup of B. We use ‘pronilpotent’ and ‘prosoluble’ to mean a group that is the inverse limit of finite nilpotent groups or finite soluble groups respectively, and ‘G-invariant subgroup of H’ to mean a subgroup of H normalized by G. A profinite group G is just infinite if it is infinite, and every nontrivial normal subgroup of G is of finite index; it is hereditarily just infinite if in addition every arXiv:1708.08301v1 [math.GR] 28 Aug 2017 open subgroup of G is just infinite. At first sight the just infinite property is a qualitative one, like that of simplicity: either a group has nontrivial normal subgroups of infinite index, or it does not. -
Arxiv:1509.08090V1 [Math.GR]
THE CLASS MN OF GROUPS IN WHICH ALL MAXIMAL SUBGROUPS ARE NORMAL AGLAIA MYROPOLSKA Abstract. We investigate the class MN of groups with the property that all maximal subgroups are normal. The class MN appeared in the framework of the study of potential counter-examples to the Andrews-Curtis conjecture. In this note we give various structural properties of groups in MN and present examples of groups in MN and not in MN . 1. Introduction The class MN was introduced in [Myr13] as the class of groups with the property that all maximal subgroups are normal. The study of MN was motivated by the analysis of potential counter-examples to the Andrews-Curtis conjecture [AC65]. It was shown in [Myr13] that a finitely generated group G in the class MN satisfies the so-called “generalised Andrews- Curtis conjecture” (see [BLM05] for the precise definition) and thus cannot confirm potential counter-examples to the original conjecture. Apart from its relation to the Andrews-Curtis conjecutre, the study of the class MN can be interesting on its own. Observe that if a group G belongs to MN then all maximal subgroups of G are of finite index. The latter group property has been considered in the literature for different classes of groups. For instance in the linear setting, Margulis and Soifer [MS81] showed that all maximal subgroups of a finitely generated linear group G are of finite index if and only if G is virtually solvable. The above property also was considered for branch groups, however the results in this direction are partial and far from being as general as for linear groups. -
Math 602 Assignment 1, Fall 2020 Part A
Math 602 Assignment 1, Fall 2020 Part A. From Gallier{Shatz: Problems 1, 2, 6, 9. Part B. Definition Suppose a group G operates transitively on the left of a set X. (i) We say that the action (G; X) is imprimitive if there exists a non-trivial partition Q of X which is stable under G. Here \non-trivial" means that Q 6= fXg and Q 6= ffxg : x 2 Xg : Such a partition Q will be called a system of imprimitivity for (G; X). (ii) We say that the action (G; X) is primitive if it is not imprimitive. 1. (a) Suppose that (G; X; Q) is a system of imprimitivity for a transitive left action (G; X), Y 2 Q, y 2 Y . Let H = StabG(Y ), K = StabG(y). Prove the following statements. • K < H < G and H operates transitively on Y . • jXj = jY j · jQj, jQj = [G : H], jY j = [H : K]. (These statements hold even if X is infinite.) (b) Suppose that (G; X) is a transitive left action, y 2 X, K := StabG(y), and H is a subgroup of G such that K < H < G. Let Y := H · y ⊂ X, and let Q := fg · Y j g 2 Gg. (Our general notation scheme is that StabG(Y ) := fg 2 G j g · Y = Y g.) Show that (G; X; Q) is a system of imprimitivity. (c) Suppose that (G; X) is a transitive left action, x 2 X. Show that (G; X) is primitive if and only if Gx is a maximal proper subgroup of G. -
Computing the Maximal Subgroups of a Permutation Group I
Computing the maximal subgroups of a permutation group I Bettina Eick and Alexander Hulpke Abstract. We introduce a new algorithm to compute up to conjugacy the maximal subgroups of a finite permutation group. Or method uses a “hybrid group” approach; that is, we first compute a large solvable normal subgroup of the given permutation group and then use this to split the computation in various parts. 1991 Mathematics Subject Classification: primary 20B40, 20-04, 20E28; secondary 20B15, 68Q40 1. Introduction Apart from being interesting themselves, the maximal subgroups of a group have many applications in computational group theory: They provide a set of proper sub- groups which can be used for inductive calculations; for example, to determine the character table of a group. Moreover, iterative application can be used to investigate parts of the subgroups lattice without the excessive resource requirements of com- puting the full lattice. Furthermore, algorithms to compute the Galois group of a polynomial proceed by descending from the symmetric group via a chain of iterated maximal subgroups, see [Sta73, Hul99b]. In this paper, we present a new approach towards the computation of the conju- gacy classes of maximal subgroups of a finite permutation group. For this purpose we use a “hybrid group” method. This type of approach to computations in permu- tation groups has been used recently for other purposes such as conjugacy classes [CS97, Hul], normal subgroups [Hul98, CS] or the automorphism group [Hol00]. For finite solvable groups there exists an algorithm to compute the maximal sub- groups using a special pc presentation, see [CLG, Eic97, EW]. -
Irreducible Character Restrictions to Maximal Subgroups of Low-Rank Classical Groups of Type B and C
IRREDUCIBLE CHARACTER RESTRICTIONS TO MAXIMAL SUBGROUPS OF LOW-RANK CLASSICAL GROUPS OF TYPE B AND C KEMPTON ALBEE, MIKE BARNES, AARON PARKER, ERIC ROON, AND A.A. SCHAEFFER FRY Abstract Representations are special functions on groups that give us a way to study abstract groups using matrices, which are often easier to understand. In particular, we are often interested in irreducible representations, which can be thought of as the building blocks of all representations. Much of the information about these representations can then be understood by instead looking at the trace of the matrices, which we call the character of the representation. This paper will address restricting characters to subgroups by shrinking the domain of the original representation to just the subgroup. In particular, we will discuss the problem of determining when such restricted characters remain irreducible for certain low-rank classical groups. 1. Introduction Given a finite group G, a (complex) representation of G is a homomorphism Ψ: G ! GLn(C). By summing the diagonal entries of the images Ψ(g) for g 2 G (that is, taking the trace of the matrices), we obtain the corresponding character, χ = Tr◦Ψ of G. The degree of the representation Ψ or character χ is n = χ(1). It is well-known that any character of G can be written as a sum of so- called irreducible characters of G. In this sense, irreducible characters are of particular importance in representation theory, and we write Irr(G) to denote the set of irreducible characters of G. Given a subgroup H of G, we may view Ψ as a representation of H as well, simply by restricting the domain. -
MAT 511 Notes on Maximal Ideals and Subgroups 9/10/13 a Subgroup
MAT 511 Notes on maximal ideals and subgroups 9/10/13 A subgroup H of a group G is maximal if H 6= G, and, if K is a subgroup of G satisfying H ⊆ K $ G, then H = K. An ideal I of a ring R is maximal if I 6= R, and, if J is an ideal of R satisfying I ⊆ J $ R, then I = J. Zorn's Lemma Suppose P is a nonempty partially-ordered set with the property that every chain in P has an upper bound in P. Then P contains a maximal element. Here a chain C ⊆ P is a totally-ordered subset: for all x; y 2 C, x ≤ y or y ≤ x.A maximal element of P is an element x 2 P with the property x ≤ y =) x = y for all y 2 P. Partially-ordered sets can have several different maximal elements. Zorn's Lemma says, intuitively, if one cannot construct an ever-increasing sequence in P whose terms get arbitrarily large, then there must be a maximal element in P. It is equivalent to the Axiom of Choice: in essence we assume that Zorn's Lemma is true, when we adopt the ZFC axioms as the foundation of mathematics. Theorem 1. If I0 is an ideal of a ring R, and I0 6= R, then there exists a maximal ideal I of R with I0 ⊆ I. Proof. Let P be the set of proper (i.e., 6= R) ideals of R containing I0, ordered by inclusion. Then S P is nonempty, since I0 2 P. -
A New Maximal Subgroup of E8 in Characteristic 3
A New Maximal Subgroup of E8 in Characteristic 3 David A. Craven, David I. Stewart and Adam R. Thomas March 22, 2021 Abstract We prove the existence and uniqueness of a new maximal subgroup of the algebraic group of type E8 in characteristic 3. This has type F4, and was missing from previous lists of maximal subgroups 3 produced by Seitz and Liebeck–Seitz. We also prove a result about the finite group H = D4(2), that if H embeds in E8 (in any characteristic p) and has two composition factors on the adjoint module then p = 3 and H lies in this new maximal F4 subgroup. 1 Introduction The classification of the maximal subgroups of positive dimension of exceptional algebraic groups [13] is a cornerstone of group theory. In the course of understanding subgroups of the finite groups E8(q) in [3], the first author ran into a configuration that should not occur according to the tables in [13]. We elicit a previously undiscovered maximal subgroup of type F4 of the algebraic group E8 over an algebraically closed field of characteristic 3. This discovery corrects the tables in [13], and the original source [17] on which it depends. Theorem 1.1. Let G be a simple algebraic group of type E8 over an algebraically closed field of char- acteristic 3. Then G contains a unique conjugacy class of simple maximal subgroups of type F4. If X is in this class, then the restriction of the adjoint module L(E8) to X is isomorphic to LX(1000) ⊕ LX(0010), where the first factor is the adjoint module for X of dimension 52 and the second is a simple module of dimension 196 for X. -
George Mackey and His Work on Representation Theory and Foundations of Physics
Contemporary Mathematics George Mackey and His Work on Representation Theory and Foundations of Physics V. S. Varadarajan To the memory of George Mackey Abstract. This article is a retrospective view of the work of George Mackey and its impact on the mathematics of his time and ours. The principal themes of his work–systems of imprimitivity, induced representations, projective rep- resentations, Borel cohomology, metaplectic representations, and so on, are examined and shown to have been central in the development of the theory of unitary representations of arbitrary separable locally compact groups. Also examined are his contributions to the foundations of quantum mechanics, in particular the circle of ideas that led to the famous Mackey-Gleason theorem and a significant sharpening of von Neumann’s theorem on the impossibil- ity of obtaining the results of quantum mechanics by a mechanism of hidden variables. Contents 1. Introduction 2 2. Stone-Von Neumann theorem, systems of imprimitivity, and the imprimitivity theorem 3 3. Semi direct products and the little group method. Representations of finite length and orbit schemes 8 4. Super Lie groups and their systems of imprimitivity 11 5. Intertwining numbers, double coset decompositions, and irreducibility of induced representations 13 6. Projective representations, Borel cohomology of groups, and the metaplectic representation 15 7. Foundations of Physics: hidden variables and the Mackey-Gleason theorem 21 2000 Mathematics Subject Classification. 22D10, 81P10. Key words and phrases. Stone-von Neumann theorem, systems of imprimitivity, unitary rep- resentations, induced representations, semi direct products, super Lie groups, intertwining num- bers, double coset decompositions, projective representations, Borel cohomology, Baruer groups, metaplectic representation, hidden variables, Mackey-Gleason theorem, quantum logics, canonical commutation rules, quantum information theory, quantum stochastic calculus. -
Covariant Quantum Fields Via Lorentz Group Representation of Weyl
Covariant Quantum Fields via Lorentz Group Representation of Weyl Operators Radhakrishnan Balu Army Research Laboratory Adelphi, MD, 21005-5069, USA [email protected] Department of Mathematics & Norbert Wiener Center for Harmonic Analysis and Applications, University of Maryland, College Park, MD 20742. [email protected] Received: date / Accepted: September 11, 2019 Abstract The building blocks of Hudson-Parthasarathy quantum stochastic calculus start with Weyl operators on a symmetric Fock space. To realize a relativistically covari- ant version of the calculus we construct representations of Poinca`re group in terms of Weyl operators on suitably constructed, Bosonic or Fermionic based on the mass and spin of the fundamental particle, Fock spaces. We proceed by describing the orbits of homogeneous Lorentz group on R4 and build fiber bundle representations arXiv:1908.09180v2 [math-ph] 9 Sep 2019 of Poinca`re group induced from the stabilizer subgroups (little groups) and build the Boson Fock space of the Hilbert space formed from the sections of the bun- dle. Our Weyl operators are constructed on symmetric Fock space of this space and the corresponding annihilation, creation, and conservation operators are syn- thesized in the usual fashion in relativistic theories for space-like, time-like, and light-like fields. We achieve this by constructing transitive systems of imprimitivity (second-quantized SI), which are dynamical systems with trajectories dense in the configuration space, by induced representations. We provide the details of the field operators for the case of massive Bosons as the rest are similar in construction and indicate the ways to construct adapted processes paving way for building covariant quantum stochastic calculus.