OPEN LETTER to the CONGRESS and PRESIDENT of the UNITED STATES Nobel Laureates and Science Community Leaders Comment on Harm to American Science from the Shutdown

Total Page:16

File Type:pdf, Size:1020Kb

OPEN LETTER to the CONGRESS and PRESIDENT of the UNITED STATES Nobel Laureates and Science Community Leaders Comment on Harm to American Science from the Shutdown OPEN LETTER TO THE CONGRESS AND PRESIDENT OF THE UNITED STATES Nobel Laureates and Science Community Leaders Comment on Harm to American Science from the Shutdown February 11, 2019 Dear Mr. President and Members of Congress: As American scientists—researchers, teachers, heads of major national scientific societies and institutes, and Nobel Laureates—we are writing to call attention to the harm done to the US scientific enterprise by the recently ended partial shutdown of the federal government. The disruptions caused by the shutdown have consequences that will extend well beyond the shutdown, with the potential to affect many aspects of our society, including our economy, security, health, and international competitiveness. For decades, the US has led the world in basic scientific research. Our strength in fundamental research gave birth to the military technology that helped to end World War II and continues to safeguard us and our allies. Our past global scientific dominance fueled the technological innovations that have made our economy the strongest in the world. A critical component of that leadership was, and continues to be, sustained federal investment in basic research. Today, in a trend starting long before the recent disruption, our scientific leadership is threatened by other countries whose investment in research is growing more rapidly than our own. The government shutdown closed some of the agencies most crucial to the maintenance of our leadership and of the health of American science. The National Science Foundation (NSF) funds much of the basic research in our universities. The National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), the National Institute of Standards and Technology (NIST), and others produce fundamental research leading to innovations that improve our daily lives, our security, and our economy. Even the temporary loss of those activities has a profoundly disruptive effect on experimental work and the functions of research teams at a time when American scientific leadership is challenged by China and other international competitors. Make no mistake: although the shutdown’s effect on science will not be as immediately evident as were the long airport security lines, flight delays, and missing paychecks for federal employees, the effects will be longer lasting and more widespread. Major science agencies like the National Institutes of Health (NIH), the Centers for Disease Control and Prevention (CDC), and the Department of Energy (DOE), which already had their funding approved and did not shut down, nevertheless felt the effects because important connections and collaborations with scientists supported by the shuttered agencies were put on hold. And scientists at non- government institutions, such as universities and research institutes, were impeded by the absence of staff at federal agencies that support their work. Science is essential to our technological society. The development of advanced materials and devices, new medical treatments, worldwide communication technologies, new energy sources, GPS navigation with our smartphones — essentially all the technologies used by modern societies — were enabled by federal support for fundamental science. Future advances will depend on additional programs, such as the newly enacted National Quantum Initiative, designed to change the landscape of military and commercial capabilities. But during the shutdown much of the new quantum research could not even begin, while China and Europe continued to develop the new quantum technology at full speed. Similarly, while NASA had to suspend some of its efforts to explore space, other countries continued their programs to plant probes in previously unexplored parts of our universe. Of even greater long-term consequence, the interruption of the careers of young researchers has likely caused some to question their future involvement in our national scientific adventure. We write to you now, at a time when another possible government shutdown looms, to draw your attention to the detrimental consequences of even short-term suspensions of federal funding on the nation’s scientific enterprise. We are encouraged by discussions of proposals that would protect science, among other critical activities, from the significant disruptions that occur during shutdowns of appreciable length, and we urge the avoidance of such lapses. Shutting down parts or all of the federally funded scientific enterprise, which enjoys support across the entire political spectrum, serves only our foreign competitors. Continued strong support for science benefits us all. Yours respectfully, Nobel Laureates Frances H. Arnold David Gross Nobel Laureate, Chemistry 2018 Nobel Laureate, Physics, 2004 President, American Physical Society David Baltimore Nobel Laureate, Physiology or Medicine, 1975 Robert H. Grubbs Nobel Laureate, Chemistry, 2005 J. Michael Bishop Nobel Laureate, Physiology or Medicine, 1989 Robert Horvitz Nobel Laureate, Physiology or Medicine, 2002 Michael S. Brown Nobel Laureate, Medicine or Physiology, 1985 Brian Kobilka Nobel Laureate, Chemistry, 2012 Steven Chu Nobel Laureate, Physics, 1997 Roger D. Kornberg President-elect, American Association for the Nobel Laureate, Chemistry, 2006 Advancement of Science W. E. Moerner Robert Curl Nobel Laureate, Chemistry, 2014 Nobel Laureate, Chemistry, 1996 William D. Phillips Joseph Goldstein Nobel Laureate, Physics, 1997 Nobel Laureate, Physiology or Medicine, 1985 Randy Schekman Carol Greider Nobel Laureate, Physiology or Medicine, 2013 Nobel Laureate, Physiology or Medicine, 2009 Richard R. Schrock Harold E. Varmus Nobel Laureate, Chemistry, 2005 Nobel Laureate, Physiology or Medicine, 1989 David J. Wineland Nobel Laureate, Physics, 2012 Science Community Leaders Bruce M. Alberts Erin O’Shea Former President, National Academy of President, Howard Hughes Medical Institute Sciences Kent Rochford Juliane Baron CEO, SPIE, the international society for optics Executive Director, Federation of and photonics Associations in Behavioral and Brain Sciences Catherine Roberts Executive Director, American Mathematical Sarah Brookhart Society Executive Director, Association for Psychological Science Elizabeth Rogan CEO, The Optical Society (OSA) Mary Sue Coleman President, Association of American Erika C. Shugart Universities CEO, American Society for Cell Biology Thomas M. Connelly Jr. Keith L. Seitter CEO, American Chemical Society Executive Director, American Meteorological Society Rush D. Holt CEO, American Association for the Shirley M. Tilghman Advancement of Science President Emerita, Princeton University Laura F. Huenneke Jamie L. Vernon President, Ecological Society of America Executive Director and CEO, Sigma Xi, The Scientific Research Honor Society Nancy Kidd Executive Director, American Sociological Mary Woolley Association President and CEO, Research!America Kate Kirby Milan P. Yager CEO, American Physical Society Executive Director, American Institute for Medical and Biological Engineering Edward T. Morgan President, American Society for Pharmacology and Experimental Therapeutics .
Recommended publications
  • The Pharmacologist 2 0 0 6 December
    Vol. 48 Number 4 The Pharmacologist 2 0 0 6 December 2006 YEAR IN REVIEW The Presidential Torch is passed from James E. Experimental Biology 2006 in San Francisco Barrett to Elaine Sanders-Bush ASPET Members attend the 15th World Congress in China Young Scientists at EB 2006 ASPET Awards Winners at EB 2006 Inside this Issue: ASPET Election Online EB ’07 Program Grid Neuropharmacology Division Mixer at SFN 2006 New England Chapter Meeting Summary SEPS Meeting Summary and Abstracts MAPS Meeting Summary and Abstracts Call for Late-Breaking Abstracts for EB‘07 A Publication of the American Society for 121 Pharmacology and Experimental Therapeutics - ASPET Volume 48 Number 4, 2006 The Pharmacologist is published and distributed by the American Society for Pharmacology and Experimental Therapeutics. The Editor PHARMACOLOGIST Suzie Thompson EDITORIAL ADVISORY BOARD Bryan F. Cox, Ph.D. News Ronald N. Hines, Ph.D. Terrence J. Monks, Ph.D. 2006 Year in Review page 123 COUNCIL . President Contributors for 2006 . page 124 Elaine Sanders-Bush, Ph.D. Election 2007 . President-Elect page 126 Kenneth P. Minneman, Ph.D. EB 2007 Program Grid . page 130 Past President James E. Barrett, Ph.D. Features Secretary/Treasurer Lynn Wecker, Ph.D. Secretary/Treasurer-Elect Journals . Annette E. Fleckenstein, Ph.D. page 132 Past Secretary/Treasurer Public Affairs & Government Relations . page 134 Patricia K. Sonsalla, Ph.D. Division News Councilors Bryan F. Cox, Ph.D. Division for Neuropharmacology . page 136 Ronald N. Hines, Ph.D. Centennial Update . Terrence J. Monks, Ph.D. page 137 Chair, Board of Publications Trustees Members in the News .
    [Show full text]
  • 書 名 等 発行年 出版社 受賞年 備考 N1 Ueber Das Zustandekommen Der
    書 名 等 発行年 出版社 受賞年 備考 Ueber das Zustandekommen der Diphtherie-immunitat und der Tetanus-Immunitat bei thieren / Emil Adolf N1 1890 Georg thieme 1901 von Behring N2 Diphtherie und tetanus immunitaet / Emil Adolf von Behring und Kitasato 19-- [Akitomo Matsuki] 1901 Malarial fever its cause, prevention and treatment containing full details for the use of travellers, University press of N3 1902 1902 sportsmen, soldiers, and residents in malarious places / by Ronald Ross liverpool Ueber die Anwendung von concentrirten chemischen Lichtstrahlen in der Medicin / von Prof. Dr. Niels N4 1899 F.C.W.Vogel 1903 Ryberg Finsen Mit 4 Abbildungen und 2 Tafeln Twenty-five years of objective study of the higher nervous activity (behaviour) of animals / Ivan N5 Petrovitch Pavlov ; translated and edited by W. Horsley Gantt ; with the collaboration of G. Volborth ; and c1928 International Publishing 1904 an introduction by Walter B. Cannon Conditioned reflexes : an investigation of the physiological activity of the cerebral cortex / by Ivan Oxford University N6 1927 1904 Petrovitch Pavlov ; translated and edited by G.V. Anrep Press N7 Die Ätiologie und die Bekämpfung der Tuberkulose / Robert Koch ; eingeleitet von M. Kirchner 1912 J.A.Barth 1905 N8 Neue Darstellung vom histologischen Bau des Centralnervensystems / von Santiago Ramón y Cajal 1893 Veit 1906 Traité des fiévres palustres : avec la description des microbes du paludisme / par Charles Louis Alphonse N9 1884 Octave Doin 1907 Laveran N10 Embryologie des Scorpions / von Ilya Ilyich Mechnikov 1870 Wilhelm Engelmann 1908 Immunität bei Infektionskrankheiten / Ilya Ilyich Mechnikov ; einzig autorisierte übersetzung von Julius N11 1902 Gustav Fischer 1908 Meyer Die experimentelle Chemotherapie der Spirillosen : Syphilis, Rückfallfieber, Hühnerspirillose, Frambösie / N12 1910 J.Springer 1908 von Paul Ehrlich und S.
    [Show full text]
  • Nobel Laureates Endorse Joe Biden
    Nobel Laureates endorse Joe Biden 81 American Nobel Laureates in Physics, Chemistry, and Medicine have signed this letter to express their support for former Vice President Joe Biden in the 2020 election for President of the United States. At no time in our nation’s history has there been a greater need for our leaders to appreciate the value of science in formulating public policy. During his long record of public service, Joe Biden has consistently demonstrated his willingness to listen to experts, his understanding of the value of international collaboration in research, and his respect for the contribution that immigrants make to the intellectual life of our country. As American citizens and as scientists, we wholeheartedly endorse Joe Biden for President. Name Category Prize Year Peter Agre Chemistry 2003 Sidney Altman Chemistry 1989 Frances H. Arnold Chemistry 2018 Paul Berg Chemistry 1980 Thomas R. Cech Chemistry 1989 Martin Chalfie Chemistry 2008 Elias James Corey Chemistry 1990 Joachim Frank Chemistry 2017 Walter Gilbert Chemistry 1980 John B. Goodenough Chemistry 2019 Alan Heeger Chemistry 2000 Dudley R. Herschbach Chemistry 1986 Roald Hoffmann Chemistry 1981 Brian K. Kobilka Chemistry 2012 Roger D. Kornberg Chemistry 2006 Robert J. Lefkowitz Chemistry 2012 Roderick MacKinnon Chemistry 2003 Paul L. Modrich Chemistry 2015 William E. Moerner Chemistry 2014 Mario J. Molina Chemistry 1995 Richard R. Schrock Chemistry 2005 K. Barry Sharpless Chemistry 2001 Sir James Fraser Stoddart Chemistry 2016 M. Stanley Whittingham Chemistry 2019 James P. Allison Medicine 2018 Richard Axel Medicine 2004 David Baltimore Medicine 1975 J. Michael Bishop Medicine 1989 Elizabeth H. Blackburn Medicine 2009 Michael S.
    [Show full text]
  • Fullerenes Finally Score As Nobel Committee Honours Chemists
    NEWS Fullerenes finally score as Nobel committee honours chemists London. The Nobel committee last week regarded as the conceptual beginning of C6 might well have stayed the curiosity it gave the answer to a favourite topic of spec­ fullercne science.) remained for the next five years if physicists ulation at chemistry conferences for several In contrast, Robert Haddon, one of the Wolfgang Kratschmer, Don Huffman and years: when would the chemistry prize be team at Bell Laboratories in New Jersey their respective students Kosta Fostiropou­ awarded for the discovery that carbon who discovered superconducting C60 com­ los and Lowell Lamb had not found a way to atoms can assemble into the C60 carbon pounds in 1991, feels that the prize "could make the compound in gram quantities in cages of buckminsterfullerene - and who have been awarded by the end of 1991, when 1990. It was this discovery that allowed would win it? it was clear that fullerenes would change fullerene science to blossom. Both questions have now been answered, organic chemistry and materials science". There is no question that fullerenes have the second with the decision to award the The question of 'who' was the hardest, as provided entertainment for scientists and prize to Sir Harry Kroto of the UK Univer­ the route from discovery to worldwide non-scientists alike. But how important are sity of Sussex (bottom right), and Robert impact has involved many significant contri­ they? Kroto feels that the Nobel committee Curl and Richard Smalley of Rice Univer­ butions. But no award would have made have taken "a gamble that fullerenes will be sity in Houston, Texas (right).
    [Show full text]
  • Advances in Theoretical & Computational Physics
    ISSN: 2639-0108 Research Article Advances in Theoretical & Computational Physics Supreme Theory of Everything Ulaanbaatar Tarzad *Corresponding author Ulaanbaatar Tarzad, Department of Physics, School of Applied Sciences, Department of Physics, School of Applied Sciences, Mongolian Mongolian University of Science and Technology, Ulaanbaatar, Mongolia, University of Science and Technology E-mail: [email protected] Submitted: 27 Mar 2019; Accepted: 24 Apr 2019; Published: 06 June 2019 Abstract Not only universe, but everything has general characters as eternal, infinite, cyclic and wave-particle duality. Everything from elementary particles to celestial bodies, from electromagnetic wave to gravity is in eternal motions, which dissects only to circle. Since everything is described only by trigonometry. Without trigonometry and mathematical circle, the science cannot indicate all the beauty of harmonic universe. Other method may be very good, but it is not perfect. Some part is very nice, another part is problematic. General Theory of Relativity holds that gravity is geometric. Quantum Mechanics describes all particles by wave function of trigonometry. In this paper using trigonometry, particularly mathematics circle, a possible version of the unification of partial theories, evolution history and structure of expanding universe, and the parallel universes are shown. Keywords: HRD, Trigonometry, Projection of Circle, Singularity, The reality of universe describes by geometry, because of that not Celestial Body, Black Hole and Parallel Universes. only gravity is geometrical, but everything is it and nothing is linear. One of the important branches of geometry is trigonometry dealing Introduction with circle and triangle. For this reason, it is easier to describe nature Today scientists describe the universe in terms of two basic partial of universe by mathematics circle.
    [Show full text]
  • INGUA Ff.. Ga. , Arahumarkvis"
    ails.- archiro n the ice, cont,1: ic and cis th,u -war or ,- INGUA ff.. ga. , ARAHUMARkvis" - 1 , ,,.,••• -• rlildrri riP trIr': ri-/_rrP (‘Y• 7 C. i A r• -Nb) itz it.. — BY THE NUMBERS A LOOK AT THE RICE UNIVERSITY CLASS OF 2000 1996 APPLICATIONS PEATURE UNDER G TOTAL APPLICATIONS 7054 At Rice., forefront OFFERS OF ADMISSION 1731 FRESHMEN (INCL. TRANSFERS) 675 LINGUA A Rice 1 can ton! 1996 ADMISSIONS FROM TEXAS 316 THINicit NANOS FROM OTHER STATES 331 The cc( ence ar society INTERNATIONAL 28 TOTAL 675 WyporF.A1.t1996 EATURES UN DERGRADUATE RESEARCH AT RICE 14 At Rice, undergraduate students often find themselves in the forefront of major research. LINRAU LINGUA TARAHUMARA 22 A Rice linguist's study of an almost unknown Native Ameri- can tongue has made him almost one of the family. —DAVID D. MEDINA THINKING SMALL/THINKING BIG: THE FUTURE OF NA NOSCALE SCIENCE AND TECHNOLOGY 30 The economic and commercial implications of nanoscale sci- ence and technology promise to reverberate throughout our A P t V C N T society for decades to come. —MALCOLM GILLIS RETURN ADDRESSED THROUGH THE SALLYPORT 5 WHO'S WHO 36 GIFTS AND GIVING 36 ON THE BOOKSHELF 38 SEs & ACADEMs 40 SCOREBOARD 42 ALUMNI GAZETTE 45 CLASSNOTES 48 YESTERYEAR 73 FALL '96 1 FOREWORD THINKING Sallyport FALL 1996, VOL. 53, NO. 1 FORWARD AFFIF .Published hv the I)ItIsluttoI I s crsIty Athancement I am tempted to tell you that the time has again come for change, but the truth ' The la< EDITOR is, as has often been stated,that change is the only constant and is always here with ments Christopher Do, us.
    [Show full text]
  • Samar Hasnain
    Crystallography,working,across,na2ons, , 1948, Samar Hasnain Volume!68! Acta!Crystallographica!launched! (January,2012)! Founding,editor:,P.P.,Ewald, Max Perutz Professor of Molecular Biophysics, University of Liverpool, UK Editor-in-Chief of IUCr journals 66 years ! & Founding Editor of Journal of Synchrotron Radiation 2014, Volume!69,!Part!1!(January,2013)! IUCrJ -100 years 100 years of from FIRST Crystallography, Nobel prize to Crystallography, [email protected] & [email protected]! IUCr facts 53#member!countries! 42#Adhering!Bodies!(including!4 Regional!Associates:!ACA,!AsCA,!ECA,!LACA)! 23#Commissions! 9#Journals!(including#IUCrJ#launched!in!2014)! IUCr!Congress!every!3#years!(24th IUCr!Congress,!Hyderabad,!August!2017)! Michele Zema The IUCr is a member of since 1947 Project Manager for IYCr2014 EMC5, Oujda, Oct 2013 IUCr Journal milestones 1968, Acta!Crystallographica!split!into!! 1948, SecMon!A:!FoundaMons!of!! Acta!Crystallographica!launched! Crystallography!and!SecMon!B:!! Founding,editor:,P.P.,Ewald, Structural!Science! Founding,editor:,A.J.C.,Wilson, ! 1983, 1968, Acta!Crystallographica!SecMon!C:!! Journal!of!Applied!Crystallography! Crystal!Structure!CommunicaMons!! 1991, launched! Adop2on,of,CIF, launched! Founding,editor:,A.,Guinier, Founding,editor:,S.C.,Abrahams, ! ! 1994, 1993, Journal!of!Synchrotron!! Acta!Crystallographica!SecMon!D:!! RadiaMon!launched! 1999, Biological!Crystallography! Founding,editors:,, Online,, launched! S.S.,Hasnain,,J.R.,Helliwell,, access, Founding,editor:,J.P.,Glusker, and,H.,Kamitsubo,
    [Show full text]
  • Interview Apr 2008 28-31
    ISSUE SIX APRIL 2008 €5.00 / £3.50 ISSN 1757-2517 THE MAGAZINE FOR SMALL SCIENCE MMIIRRAACCLLEE MCMarboAAn nTTanoEEtubRRes IIAALL Nobel conversation The future for Sir Harry Kroto Smart Yarns Spinning next generation materials Plumbing on the nanoscale Welding nanotubes together for smart circuits Credit crunch How market changes will impact nanotech Investing in the future Japan on a mission to stay top in technology What’s New in Nano Keep up with the latest news PLUS: A TRICK OF THE LIGHT? METAMATERIALS BENDING LIGHT BACKWARDS EW VI R TE IN Nobel conversation OTTILIA SAXL INTERVIEWS SIR HARRY KROTO, WHO RECEIVED THE NOBEL PRIZE FOR CHEMISTRY, IN 1996, ALONG WITH ROBERT CURL AND RICHARD SMALLEY FOR THE DISCOVERY OF CARBON C60, AN ENTIRELY NEW FORM OF CARBON WITH MANY INTRIGUING PROPERTIES. SIR HARRY IS CONVINCED THAT THE WORLD OF CIVIL ENGINEERING WILL CHANGE AS DEFECT-FREE STRUCTURES ARE CREATED ONCE LONG LENGTHS OF CARBON NANOTUBES HAVING A CONSISTENT DIAMETER CAN BE ROUTINELY SYNTHESIZED.. part from his research and other future in these as a career. My father, who got involved in athletics and worked on the interests, Sir Harry has been active had been a refugee, ran a small family student magazine. I did so many things Ain enabling leading scientists to business, and was keen for me to join him. there that I wanted to stay on, and did so by communicate with the public through the But both my chemistry teacher and my art taking a PhD in Spectroscopy. Essentially, Vega Trust, and has more recently set up a teacher were very supportive of me University for me was a place I could do all new website, GeoSet, which offers a forum continuing my studies, and it was my the things I was interested in, so I gave it a try for young scientists to share their ideas and chemistry teacher, Harry Heaney, who for 5 years.
    [Show full text]
  • January 24, 2020 President Donald J. Trump the White House
    January 24, 2020 President Donald J. Trump The White House 1600 Pennsylvania Ave NW Washington, DC 20500 Dear President Trump: As 21 Nobel Prize award-winning scientists and scholars we are writing to express our strong support for immediate open access to the results of research funded with U.S. taxpayer dollars. We understand there is an Executive Order under consideration by your Administration that would remove the 12-month embargo currently in place for access to published, taxpayer-funded research and strongly urge you to sign this order. Immediate online access to the bounty of research funded and published with U.S. support is fundamental to realising the full potential of our nation’s $65b investment in science. We must ensure that human and machine readers alike have open access to the reports, data, and code stemming from our work in order that it may be built upon swiftly, efficiently, and be translated effectively into benefits for society. Such barriers must be removed. The work of our nation’s seven million scientists 1 is inhibited so long as there are delays before we are able to read the latest work in our fields. Improving public health through the investigation of new treatments and potential cures for disease is delayed. Growing the U.S. economy through the translation of research into new services, tools and businesses is delayed. Progress across all of our fields is delayed by the embargo on access. Immediate, open online access to U.S. research will create valuable visibility. We publish our findings so that they may be read and built upon.
    [Show full text]
  • Prezentacja Programu Powerpoint
    1 Sprawy organizacyjne Zajęcia laboratoryjne: CHEMIA: piątki, 14:15 – 18:00 TECHNOLOGIA CHEMICZNA: środy, 10:15 – 14:00 Miejsce zajęć (zgodnie z podanym planem): Katedra Fizyki Molekularnej (dr Izabela Bobowska) Międzyresortowy Instytut Techniki Radiacyjnej (sala 213) (dr Sławomir Kadłubowski, dr Radosław Wach, dr hab. Piotr Ulański – pok. 224 MITR) 2 Sprawy organizacyjne Zajęcia laboratoryjne: 30 godzin, każdy student wykonuje 5 ćwiczeń po 4 h Podział na grupy pięcioosobowe A1, A2, A3; B1, B2, B3; C1, C2, C3; D1, D2, D3 Grafik będzie podany Sprawozdanie składa grupa Na końcu wszyscy zdają dwuczęściowe kolokwium Zasady określone w regulaminie (link będzie podany) Regulamin TRZEBA przeczytać Instrukcje (MITR) są na stronie (samoobsługa) 3 Sprawy organizacyjne 4 Sprawy organizacyjne 5 ”There is plenty of room at the bottom …” 6 Richard Feynman (laureat nagrody Nobla z fizyki) Products - Nano The Nobel Prize in Chemistry 2016: NANOMOTORS Jean-Pierre Sauvage, Sir J. F. Stoddart, Bernard Feringa „For the design and synthesis of molecular machines". The Nobel Prize in Chemistry 2014: TO SEE AT NANOSCALE Eric Betzig, Stefan W. Hell and William E. Moerner „For the development of super-resolved fluorescence microscopy". 7 Nano-słownik Nano = 10-9 (jedna miliardowa część) Z greckiego νᾶνος (nanos) - karzeł Nanosekunda = 1 10-9 s Bardzo szybkie reakcje chemiczne W ciągu 1 ns światło przebywa drogę 30 cm, a dźwięk w powietrzu 0,00033 mm (0,33 mikrona) Nanogram = 1 10-9 g (obiekty o wymiarach ok. 10 mikronów, około 1/300 masy ziarenka maku) Nanometr
    [Show full text]
  • The Birth of Fullerene Chemistry: Harold W. Kroto Discusses New Lines of Buckyball Research in a Science Watchm Interview
    Current Comments@ EUGENE GARFIELD INSTITUTE FOB SCIENTIFIC !NFORMATION@ I 3501 MARKET ST, PHILADELPHIA, PA I W04 The Birth of Fullerene Chemistry: Harold W. Kroto Discusses New Lines of Buckyball Research in a Science Watchm Interview Number 37 September 13, 1993 A Star Is Born: Discovering the Third Not surprisingly, buckyballs and the new Form of Carbon field of fullerene chemistry have attracted Last week in the engineering and phys- much attention in the press, For example, ics/chemi stry editions of Currenr Contents@ Science selected the buckyball as its Mol- (C@), we published a Citufion Classic@ ecule of the Year in 1991,6 and the Econo- commentary by Harold W. Kroto, Univer- misf called it (be Renaissance Molecule in sity of Sussex, Brighton, EngIand, on the 1992,7 It was first featured in CC in a 1988 1985 Nature paper describing the discov- essay on the most-cited 1985 chemistry pa- ery of buckminsterfullerene, IZ Working pers.~ with a team of colleagues at Rice Univer- h addition, Kroto was interviewed in sity, Houston, led by Richard E, Smalley, Science WaKh@, ISI@’s newsletter ihat Kroto was interested in learning more about &acks quantitative trends in researches The the interstellar formation of long carbon 1992 interview, reprinted below, focused chains in red giant stars. An unexpected on new directions in fullerene research and result of their effort was the serendipitous its applications in various fields. It is a discovery of a third natural form of car- useful companion piece to Kroto’s Cita- bon—the stable Cm molecule named after tion Classic commentary, ] because both R.
    [Show full text]
  • Cover June 2011
    z NOBEL LAUREATES IN Qui DNA RESEARCH n u SANGRAM KESHARI LENKA & CHINMOYEE MAHARANA F 1. Who got the Nobel Prize in Physiology or Medicine 1933) for discovering the famous concept that says chromosomes carry genes? a. Gregor Johann Mendel b. Thomas Hunt Morgan c. Aristotle d. Charles Darwin 5. Name the Nobel laureate (1959) for his discovery of the mechanisms in the biological 2. The concept of Mutations synthesis of ribonucleic acid and are changes in genetic deoxyribonucleic acid? information” awarded him a. Arthur Kornberg b. Har Gobind Khorana the Nobel Prize in 1946: c. Roger D. Kornberg d. James D. Watson a. Hermann Muller b. M.F. Perutz c. James D. Watson 6. Discovery of the DNA double helix fetched them d. Har Gobind Khorana the Nobel Prize in Physiology or Medicine (1962). a. Francis Crick, James Watson, Rosalind Elsie Franklin b. Francis Crick, James Watson and Maurice Willkins c. James Watson, Maurice Willkins, Rosalind Elsie Franklin 3. Identify the discoverer and d. Maurice Willkins, Rosalind Elsie Franklin and Francis Crick Nobel laureate of 1958 who found DNA in bacteria and viruses. a. Louis Pasteur b. Alexander Fleming c. Joshua Lederberg d. Roger D. Kornberg 4. A direct link between genes and enzymatic reactions, known as the famous “one gene, one enzyme” hypothesis, was put forth by these 7. They developed the theory of genetic regulatory scientists who shared the Nobel Prize in mechanisms, showing how, on a molecular level, Physiology or Medicine, 1958. certain genes are activated and suppressed. Name a. George Wells Beadle and Edward Lawrie Tatum these famous Nobel laureates of 1965.
    [Show full text]