Some Alternative Formulations of the Event Calculus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Notes on Calculus II Integral Calculus Miguel A. Lerma
Notes on Calculus II Integral Calculus Miguel A. Lerma November 22, 2002 Contents Introduction 5 Chapter 1. Integrals 6 1.1. Areas and Distances. The Definite Integral 6 1.2. The Evaluation Theorem 11 1.3. The Fundamental Theorem of Calculus 14 1.4. The Substitution Rule 16 1.5. Integration by Parts 21 1.6. Trigonometric Integrals and Trigonometric Substitutions 26 1.7. Partial Fractions 32 1.8. Integration using Tables and CAS 39 1.9. Numerical Integration 41 1.10. Improper Integrals 46 Chapter 2. Applications of Integration 50 2.1. More about Areas 50 2.2. Volumes 52 2.3. Arc Length, Parametric Curves 57 2.4. Average Value of a Function (Mean Value Theorem) 61 2.5. Applications to Physics and Engineering 63 2.6. Probability 69 Chapter 3. Differential Equations 74 3.1. Differential Equations and Separable Equations 74 3.2. Directional Fields and Euler’s Method 78 3.3. Exponential Growth and Decay 80 Chapter 4. Infinite Sequences and Series 83 4.1. Sequences 83 4.2. Series 88 4.3. The Integral and Comparison Tests 92 4.4. Other Convergence Tests 96 4.5. Power Series 98 4.6. Representation of Functions as Power Series 100 4.7. Taylor and MacLaurin Series 103 3 CONTENTS 4 4.8. Applications of Taylor Polynomials 109 Appendix A. Hyperbolic Functions 113 A.1. Hyperbolic Functions 113 Appendix B. Various Formulas 118 B.1. Summation Formulas 118 Appendix C. Table of Integrals 119 Introduction These notes are intended to be a summary of the main ideas in course MATH 214-2: Integral Calculus. -
Probabilistic Event Calculus for Event Recognition
A Probabilistic Event Calculus for Event Recognition ANASTASIOS SKARLATIDIS1;2, GEORGIOS PALIOURAS1, ALEXANDER ARTIKIS1 and GEORGE A. VOUROS2, 1Institute of Informatics and Telecommunications, NCSR “Demokritos”, 2Department of Digital Systems, University of Piraeus Symbolic event recognition systems have been successfully applied to a variety of application domains, extracting useful information in the form of events, allowing experts or other systems to monitor and respond when significant events are recognised. In a typical event recognition application, however, these systems often have to deal with a significant amount of uncertainty. In this paper, we address the issue of uncertainty in logic-based event recognition by extending the Event Calculus with probabilistic reasoning. Markov Logic Networks are a natural candidate for our logic-based formalism. However, the temporal semantics of the Event Calculus introduce a number of challenges for the proposed model. We show how and under what assumptions we can overcome these problems. Additionally, we study how probabilistic modelling changes the behaviour of the formalism, affecting its key property, the inertia of fluents. Furthermore, we demonstrate the advantages of the probabilistic Event Calculus through examples and experiments in the domain of activity recognition, using a publicly available dataset for video surveillance. Categories and Subject Descriptors: I.2.3 [Deduction and Theorem Proving]: Uncertainty, “fuzzy,” and probabilistic reasoning; I.2.4 [Knowledge Representation Formalisms and Methods]: Temporal logic; I.2.6 [Learning]: Parameter learning; I.2.10 [Vision and Scene Understanding]: Video analysis General Terms: Complex Event Processing, Event Calculus, Markov Logic Networks Additional Key Words and Phrases: Events, Probabilistic Inference, Machine Learning, Uncertainty ACM Reference Format: Anastasios Skarlatidis, Georgios Paliouras, Alexander Artikis and George A. -
A Brief Tour of Vector Calculus
A BRIEF TOUR OF VECTOR CALCULUS A. HAVENS Contents 0 Prelude ii 1 Directional Derivatives, the Gradient and the Del Operator 1 1.1 Conceptual Review: Directional Derivatives and the Gradient........... 1 1.2 The Gradient as a Vector Field............................ 5 1.3 The Gradient Flow and Critical Points ....................... 10 1.4 The Del Operator and the Gradient in Other Coordinates*............ 17 1.5 Problems........................................ 21 2 Vector Fields in Low Dimensions 26 2 3 2.1 General Vector Fields in Domains of R and R . 26 2.2 Flows and Integral Curves .............................. 31 2.3 Conservative Vector Fields and Potentials...................... 32 2.4 Vector Fields from Frames*.............................. 37 2.5 Divergence, Curl, Jacobians, and the Laplacian................... 41 2.6 Parametrized Surfaces and Coordinate Vector Fields*............... 48 2.7 Tangent Vectors, Normal Vectors, and Orientations*................ 52 2.8 Problems........................................ 58 3 Line Integrals 66 3.1 Defining Scalar Line Integrals............................. 66 3.2 Line Integrals in Vector Fields ............................ 75 3.3 Work in a Force Field................................. 78 3.4 The Fundamental Theorem of Line Integrals .................... 79 3.5 Motion in Conservative Force Fields Conserves Energy .............. 81 3.6 Path Independence and Corollaries of the Fundamental Theorem......... 82 3.7 Green's Theorem.................................... 84 3.8 Problems........................................ 89 4 Surface Integrals, Flux, and Fundamental Theorems 93 4.1 Surface Integrals of Scalar Fields........................... 93 4.2 Flux........................................... 96 4.3 The Gradient, Divergence, and Curl Operators Via Limits* . 103 4.4 The Stokes-Kelvin Theorem..............................108 4.5 The Divergence Theorem ...............................112 4.6 Problems........................................114 List of Figures 117 i 11/14/19 Multivariate Calculus: Vector Calculus Havens 0. -
Differentiation Rules (Differential Calculus)
Differentiation Rules (Differential Calculus) 1. Notation The derivative of a function f with respect to one independent variable (usually x or t) is a function that will be denoted by D f . Note that f (x) and (D f )(x) are the values of these functions at x. 2. Alternate Notations for (D f )(x) d d f (x) d f 0 (1) For functions f in one variable, x, alternate notations are: Dx f (x), dx f (x), dx , dx (x), f (x), f (x). The “(x)” part might be dropped although technically this changes the meaning: f is the name of a function, dy 0 whereas f (x) is the value of it at x. If y = f (x), then Dxy, dx , y , etc. can be used. If the variable t represents time then Dt f can be written f˙. The differential, “d f ”, and the change in f ,“D f ”, are related to the derivative but have special meanings and are never used to indicate ordinary differentiation. dy 0 Historical note: Newton used y,˙ while Leibniz used dx . About a century later Lagrange introduced y and Arbogast introduced the operator notation D. 3. Domains The domain of D f is always a subset of the domain of f . The conventional domain of f , if f (x) is given by an algebraic expression, is all values of x for which the expression is defined and results in a real number. If f has the conventional domain, then D f usually, but not always, has conventional domain. Exceptions are noted below. -
Learning Effect Axioms Via Probabilistic Logic Programming
Learning Effect Axioms via Probabilistic Logic Programming Rolf Schwitter Department of Computing, Macquarie University, Sydney NSW 2109, Australia [email protected] Abstract Events have effects on properties of the world; they initiate or terminate these properties at a given point in time. Reasoning about events and their effects comes naturally to us and appears to be simple, but it is actually quite difficult for a machine to work out the relationships between events and their effects. Traditionally, effect axioms are assumed to be given for a particular domain and are then used for event recognition. We show how we can automatically learn the structure of effect axioms from example interpretations in the form of short dialogue sequences and use the resulting axioms in a probabilistic version of the Event Calculus for query answering. Our approach is novel, since it can deal with uncertainty in the recognition of events as well as with uncertainty in the relationship between events and their effects. The suggested probabilistic Event Calculus dialect directly subsumes the logic-based dialect and can be used for exact as well as a for inexact inference. 1998 ACM Subject Classification D.1.6 Logic Programming Keywords and phrases Effect Axioms, Event Calculus, Event Recognition, Probabilistic Logic Programming, Reasoning under Uncertainty Digital Object Identifier 10.4230/OASIcs.ICLP.2017.8 1 Introduction The Event Calculus [9] is a logic language for representing events and their effects and provides a logical foundation for a number of reasoning tasks [13, 24]. Over the years, different versions of the Event Calculus have been successfully used in various application domains; amongst them for temporal database updates, for robot perception and for natural language understanding [12, 13]. -
Mccarthy Variations in a Modal Key ∗ Johan Van Benthem A,B
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Artificial Intelligence 175 (2011) 428–439 Contents lists available at ScienceDirect Artificial Intelligence www.elsevier.com/locate/artint McCarthy variations in a modal key ∗ Johan van Benthem a,b, a University of Amsterdam, Institute for Logic, Language and Computation (ILLC), P.O. Box 94242, Amsterdam, GE, Netherlands b Stanford, United States article info abstract Article history: We take a fresh look at some major strands in John McCarthy’s work from a logician’s Available online 3 April 2010 perspective. First, we re-analyze circumscription in dynamic logics of belief change under hard and soft information. Next, we re-analyze the regression method in the Situation Keywords: Calculus in terms of update axioms for dynamic–epistemic temporal logics. Finally, we Circumscription draw some general methodological comparisons between ‘Logical AI’ and practices in Fixed-point logic Structural rules modal logic, pointing at some creative tensions. Belief change © 2010 Elsevier B.V. All rights reserved. Situation Calculus Temporal logic Regression method Dynamic epistemic logic 1. Introduction John McCarthy is a colleague whom I have long respected and admired. He is a truly free spirit who always commu- nicates about issues in an open-minded way, away from beaten academic tracks and entrenched academic ranks. Each encounter has been a pleasure, from being involved with his creative Ph.D. students in Logical AI (each a remarkable char- acter) to his lively presence at our CSLI workshop series on Logic, Language and Computation – and most recently, his participation in the Handbook of the Philosophy of Information [1]. -
John Mccarthy – Father of Artificial Intelligence
Asia Pacific Mathematics Newsletter John McCarthy – Father of Artificial Intelligence V Rajaraman Introduction I first met John McCarthy when he visited IIT, Kanpur, in 1968. During his visit he saw that our computer centre, which I was heading, had two batch processing second generation computers — an IBM 7044/1401 and an IBM 1620, both of them were being used for “production jobs”. IBM 1620 was used primarily to teach programming to all students of IIT and IBM 7044/1401 was used by research students and faculty besides a large number of guest users from several neighbouring universities and research laboratories. There was no interactive computer available for computer science and electrical engineering students to do hardware and software research. McCarthy was a great believer in the power of time-sharing computers. John McCarthy In fact one of his first important contributions was a memo he wrote in 1957 urging the Director of the MIT In this article we summarise the contributions of Computer Centre to modify the IBM 704 into a time- John McCarthy to Computer Science. Among his sharing machine [1]. He later persuaded Digital Equip- contributions are: suggesting that the best method ment Corporation (who made the first mini computers of using computers is in an interactive mode, a mode and the PDP series of computers) to design a mini in which computers become partners of users computer with a time-sharing operating system. enabling them to solve problems. This logically led to the idea of time-sharing of large computers by many users and computing becoming a utility — much like a power utility. -
Leonhard Euler: His Life, the Man, and His Works∗
SIAM REVIEW c 2008 Walter Gautschi Vol. 50, No. 1, pp. 3–33 Leonhard Euler: His Life, the Man, and His Works∗ Walter Gautschi† Abstract. On the occasion of the 300th anniversary (on April 15, 2007) of Euler’s birth, an attempt is made to bring Euler’s genius to the attention of a broad segment of the educated public. The three stations of his life—Basel, St. Petersburg, andBerlin—are sketchedandthe principal works identified in more or less chronological order. To convey a flavor of his work andits impact on modernscience, a few of Euler’s memorable contributions are selected anddiscussedinmore detail. Remarks on Euler’s personality, intellect, andcraftsmanship roundout the presentation. Key words. LeonhardEuler, sketch of Euler’s life, works, andpersonality AMS subject classification. 01A50 DOI. 10.1137/070702710 Seh ich die Werke der Meister an, So sehe ich, was sie getan; Betracht ich meine Siebensachen, Seh ich, was ich h¨att sollen machen. –Goethe, Weimar 1814/1815 1. Introduction. It is a virtually impossible task to do justice, in a short span of time and space, to the great genius of Leonhard Euler. All we can do, in this lecture, is to bring across some glimpses of Euler’s incredibly voluminous and diverse work, which today fills 74 massive volumes of the Opera omnia (with two more to come). Nine additional volumes of correspondence are planned and have already appeared in part, and about seven volumes of notebooks and diaries still await editing! We begin in section 2 with a brief outline of Euler’s life, going through the three stations of his life: Basel, St. -
Calculus Terminology
AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential -
Calculus Formulas and Theorems
Formulas and Theorems for Reference I. Tbigonometric Formulas l. sin2d+c,cis2d:1 sec2d l*cot20:<:sc:20 +.I sin(-d) : -sitt0 t,rs(-//) = t r1sl/ : -tallH 7. sin(A* B) :sitrAcosB*silBcosA 8. : siri A cos B - siu B <:os,;l 9. cos(A+ B) - cos,4cos B - siuA siriB 10. cos(A- B) : cosA cosB + silrA sirrB 11. 2 sirrd t:osd 12. <'os20- coS2(i - siu20 : 2<'os2o - I - 1 - 2sin20 I 13. tan d : <.rft0 (:ost/ I 14. <:ol0 : sirrd tattH 1 15. (:OS I/ 1 16. cscd - ri" 6i /F tl r(. cos[I ^ -el : sitt d \l 18. -01 : COSA 215 216 Formulas and Theorems II. Differentiation Formulas !(r") - trr:"-1 Q,:I' ]tra-fg'+gf' gJ'-,f g' - * (i) ,l' ,I - (tt(.r))9'(.,') ,i;.[tyt.rt) l'' d, \ (sttt rrJ .* ('oqI' .7, tJ, \ . ./ stll lr dr. l('os J { 1a,,,t,:r) - .,' o.t "11'2 1(<,ot.r') - (,.(,2.r' Q:T rl , (sc'c:.r'J: sPl'.r tall 11 ,7, d, - (<:s<t.r,; - (ls(].]'(rot;.r fr("'),t -.'' ,1 - fr(u") o,'ltrc ,l ,, 1 ' tlll ri - (l.t' .f d,^ --: I -iAl'CSllLl'l t!.r' J1 - rz 1(Arcsi' r) : oT Il12 Formulas and Theorems 2I7 III. Integration Formulas 1. ,f "or:artC 2. [\0,-trrlrl *(' .t "r 3. [,' ,t.,: r^x| (' ,I 4. In' a,,: lL , ,' .l 111Q 5. In., a.r: .rhr.r' .r r (' ,l f 6. sirr.r d.r' - ( os.r'-t C ./ 7. /.,,.r' dr : sitr.i'| (' .t 8. tl:r:hr sec,rl+ C or ln Jccrsrl+ C ,f'r^rr f 9. -
A Logic-Based Calculus of Events
10 A Logic-based Calculus of Events ROBERT KOWALSKI and MAREK SERGOT 1 introduction Formal Logic can be used to represent knowledge of many kinds for many purposes. It can be used to formalize programs, program specifications, databases, legislation, and natural language in general. For many such applications of logic a representation of time is necessary. Although there have been several attempts to formalize the notion of time in classical first-order logic, it is still widely believed that classical logic is not adequate for the representation of time and that some form of non-classical Temporal Logic is needed. In this paper, we shall outline a treatment of time, based on the notion of event, formalized in the Horn clause subset of classical logic augmented with negation as failure. The resulting formalization is executable as a logic program. We use the term ‘‘event calculus’’ to relate it to the well-known ‘‘situation calculus’’ (McCarthy and Hayes 1969). The main difference between the two is conceptual: the situation calculus deals with global states whereas the event calculus deals with local events and time periods. Like the event calculus, the situation calculus can be formalized by means of Horn clauses augmented with negation by failure (Kowalski 1979). The main intended applications investigated in this paper are the updating of data- bases and narrative understanding. In order to treat both cases uniformly we have taken the view that an update consists of the addition of new knowledge to a knowledge base. The effect of explicit deletion of information in conventional databases is obtained without deletion by adding new knowledge about the end of the period of time for which the information holds. -
Modeling and Reasoning in Event Calculus Using Goal-Directed Constraint Answer Set Programming?
Modeling and Reasoning in Event Calculus Using Goal-Directed Constraint Answer Set Programming? Joaqu´ınArias1;2, Zhuo Chen3, Manuel Carro1;2, and Gopal Gupta3 1 IMDEA Software Institute 2 Universidad Polit´ecnicade Madrid [email protected], [email protected],upm.esg 3 University of Texas at Dallas fzhuo.chen,[email protected] Abstract. Automated commonsense reasoning is essential for building human-like AI systems featuring, for example, explainable AI. Event Cal- culus (EC) is a family of formalisms that model commonsense reasoning with a sound, logical basis. Previous attempts to mechanize reasoning using EC faced difficulties in the treatment of the continuous change in dense domains (e.g., time and other physical quantities), constraints among variables, default negation, and the uniform application of differ- ent inference methods, among others. We propose the use of s(CASP), a query-driven, top-down execution model for Predicate Answer Set Pro- gramming with Constraints, to model and reason using EC. We show how EC scenarios can be naturally and directly encoded in s(CASP) and how its expressiveness makes it possible to perform deductive and abductive reasoning tasks in domains featuring, for example, constraints involving dense time and fluents. Keywords: ASP · goal-directed · Event Calculus · Constraints 1 Introduction The ability to model continuous characteristics of the world is essential for Com- monsense Reasoning (CR) in many domains that require dealing with continu- ous change: time, the height of a falling object, the gas level of a car, the water level in a sink, etc. Event Calculus (EC) is a formalism based on many-sorted predicate logic [13, 23] that can represent continuous change and capture the commonsense law of inertia, whose modeling is a pervasive problem in CR.