Operads and Gamma-Homology of Commutative Rings

Total Page:16

File Type:pdf, Size:1020Kb

Operads and Gamma-Homology of Commutative Rings See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2745568 Operads And Gamma-Homology Of Commutative Rings Article in Mathematical Proceedings of the Cambridge Philosophical Society · June 1998 DOI: 10.1017/S0305004102005534 · Source: CiteSeer CITATIONS READS 42 21 2 authors, including: Sarah Whitehouse The University of Sheffield 33 PUBLICATIONS 241 CITATIONS SEE PROFILE All content following this page was uploaded by Sarah Whitehouse on 30 July 2014. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. OPERADS AND HOMOLOGY OF COMMUTATIVE RINGS Alan Robinson and Sarah Whitehouse May Introduction In this pap er we construct and investigate the natural homology theory for coherently homotopy commutative dg algebras usually known as E algebras We call the theory homology for historical reasons see for instance Since discrete commutative rings are E rings we obtain by sp ecialization a new homology theory for commutative rings This sp ecial case is far from trivial It has the following application in stable homotopy theory which was our original motivation and which will b e treated in a sequel to this pap er The obstructions to an E multiplicative structure on a sp ectrum lie under mild hyp otheses in the cohomology of the corresp onding dual Steenro d algebra just as the obstructions to an A structure lie in the Ho chschild cohomology of that algebra The homology of a discrete commutative algebra B can b e understo o d as a renement of Harrison homology which was originally dened as the homology of the quotient of the Ho chschild complex by the sub complex generated by nontrivial shue pro ducts It is b etter dened as the homology of a related complex which n one obtains by tensoring each term B with a certain integral representation V of n the symmetric group and passing to covariants Harrison theory works very n n well in characteristic zero but not otherwise A more satisfactory theory necessarily involves the higher homology of the symmetric groups not only the covariants H Our homology theory is constructed to do just that It is furthermore completely dierent except in characteristic zero from AndreQuillen homology which is related to a completely dierent class of problems Polynomial algebras are acyclic for AndreQuillen theory by its construction but they are not generally free E algebras and their homology is generally nonzero There are two further signicant generalizations First there is a cyclic variant of the homology of any E dg algebra This arises very naturally from our construction in x The cyclic theory like standard cohomology is connected with an obstructiontheoretic problem A full account will app ear elsewhere Second the domain of denition can b e widened from the ab elian situation of dg algebras to the case of sp ectra in stable homotopy theory so that one can dene the homology of an E ring sp ectrum This is analogous to extending Ho chschild homology to top ological Ho chschild homology which includes Mac Lane homology as a sp ecial The second author was supp orted by a TMR grant from the Europ ean Union held at the Lab oratoire dAnalyse Geometrie et Applications UMR au CNRS Universite ParisNord The rst author was supp orted by the EU Homotopy Theory Network Typ eset by A ST X M E ALAN ROBINSON AND SARAH WHITEHOUSE case The generalization to sp ectra is not dicult but we have p ostp oned the details to another sequel We mention that E homology was invented indep endently by the rst author and by Waldhausen during the s and outlined in various lectures including a plenary lecture by the rst author to the Adams Memorial meeting in Some details subsequently app eared in the second authors thesis and a preprint Meanwhile Kriz and later Basterra were developing by metho ds very dierent from ours an E cohomology theory for ring sp ectra which is extremely likely to b e equivalent to ours The pap er is organised as follows Section contains material on op erads In Section we intro duce complexes over op erads and dene the realization of such a complex A cyclic variant of the construction is also given Section covers the most imp ortant case of realization namely the cotangent complex of an E algebra This section also contains the denitions of homology and cyclic homology and a transitivity theorem The pro of of a key acyclicity lemma is deferred to App endix A In Section we further justify our constructions by showing that their A analogues lead to Ho chschild and cyclic homology of asso ciative algebras Section is devoted to the sp ecial case of homology of discrete commutative algebras It is shown that for pairs of Q algebras homology coincides with AndreQuillen homology and an example is given to show the theories are dierent in general The nal section describ es a pro duct in cohomology of a discrete commutative algebra Operads cyclic operads and cofibrancy We work in the category of chain complexes dg mo dules over a commutative ground ring K We might equally well of course have chosen simplicial mo dules Our principal denitions use Getzler and Kapranovs theory of cyclic op erads but we require Markls nonunital version which is describ ed in Op erads Let S denote the category of nite sets S and isomorphisms of sets S the sub category of nonempty sets and S the category of based nite sets and isomorphisms To avoid foundational diculties we assume without further mention where necessary that these have b een replaced by equivalent small sub categories Our constructions do not dep end up on the choice of sub category One can for instance take just one set f ng in S for each n and similarly f ng for each n in S so that b oth categories b ecome disjoint unions of symmetric groups An op erad C has ob jects chain complexes C indexed by S all nite sets S isomorphisms C C induced by isomorphisms S T S T of sets and comp osition maps C C C t S T S t T t for all nite sets S and T and all elements t T where S t T is the deleted t sum S t T n ftg these data must satisfy standard conditions of functoriality and asso ciativity of comp osition The induced isomorphisms give a left action of the symmetric group of automorphisms of S on C One thinks of C as a parameter S S S space of op erations in the sense of universal algebra with inputs lab elled by S and a single output the induced isomorphisms corresp ond to p ermutation of inputs and the comp osition to substitution of the output of C for the input lab elled t in t S OPERADS AND HOMOLOGY OF COMMUTATIVE RINGS C The op erad C is said to b e E if for each S S the complex C is contractible T S and free It is obviously sucient to check this for S f ng for all S n The standard example of an E op erad is D in which D is the nerve of the S category SS of isomorphisms of nite sets over S Comp osition in D is induced by the deleted sum functor in S Cyclic op erads A cyclic op erad can b e dened as an op erad with extra structure a action on C which makes comp osition symmetric by n f ng putting the output variable on the same fo oting as the n inputs see Then it is clearly desirable to change the notation and denote by C what was S t previously denoted C Confusion can arise so we stress that from now on we shall S use the cyclic convention and include the output in the lab elling set It seems b est to dene cyclic op erads directly A cyclic operad is a functor E from the category S of nonempty nite sets to the category of chain complexes together with comp osition op erations E E E st S T S t T st for all nite sets S T with at least two elements and all choices of s S t T Here S t T denotes the deleted sum S n fsg t T n ftg and is required to st st b e a natural transformation of functors from S S to chain complexes having the asso ciativity prop erty st t u t u st for s S t t T t t u U and the symmetry prop erty st ts where E E is induced by the isomorphism of sets and E S t T T t S S st ts E E E interchanges factors and intro duces the usual sign T T S Some further notation will b e needed The comp osition E E E st S T V is asso ciated with a partition of V into two subsets S n fsg and T n ftg Conversely let V P t Q b e any partition of V into two nonempty sets We can dene the asso ciated comp osition by writing P and Q for the disjoint unions P t fg and Q t fg and taking 1 2 E E E V P Q E cyclic op erads We call E an E cyclic operad if for all S S the complex E is contractible and free It suces to check this for S f ng S S for all n The op erad D dened as in is an E cyclic op erad the comp osition again b eing induced by the deleted sum functor Cobrant op erads We adopt the notation intro duced in for adding new p oints to a set S S and S are to denote S t fg S t fg and S t f g resp ectively For each partition V S t T of V we have a comp osition map 1 2 E In a cobrant op erad provided S and T each have more E E V T S than one element we want this map to b e the inclusion of a face of E so we V require it to b e an equivariant cobration and we require faces to intersect only in faces of faces This leads to the following ALAN ROBINSON AND SARAH WHITEHOUSE Denition Let E denote the co equalizer of the maps V 1 21 M M 2 1 2 12 1 E E E E E
Recommended publications
  • An Introduction to Operad Theory
    AN INTRODUCTION TO OPERAD THEORY SAIMA SAMCHUCK-SCHNARCH Abstract. We give an introduction to category theory and operad theory aimed at the undergraduate level. We first explore operads in the category of sets, and then generalize to other familiar categories. Finally, we develop tools to construct operads via generators and relations, and provide several examples of operads in various categories. Throughout, we highlight the ways in which operads can be seen to encode the properties of algebraic structures across different categories. Contents 1. Introduction1 2. Preliminary Definitions2 2.1. Algebraic Structures2 2.2. Category Theory4 3. Operads in the Category of Sets 12 3.1. Basic Definitions 13 3.2. Tree Diagram Visualizations 14 3.3. Morphisms and Algebras over Operads of Sets 17 4. General Operads 22 4.1. Basic Definitions 22 4.2. Morphisms and Algebras over General Operads 27 5. Operads via Generators and Relations 33 5.1. Quotient Operads and Free Operads 33 5.2. More Examples of Operads 38 5.3. Coloured Operads 43 References 44 1. Introduction Sets equipped with operations are ubiquitous in mathematics, and many familiar operati- ons share key properties. For instance, the addition of real numbers, composition of functions, and concatenation of strings are all associative operations with an identity element. In other words, all three are examples of monoids. Rather than working with particular examples of sets and operations directly, it is often more convenient to abstract out their common pro- perties and work with algebraic structures instead. For instance, one can prove that in any monoid, arbitrarily long products x1x2 ··· xn have an unambiguous value, and thus brackets 2010 Mathematics Subject Classification.
    [Show full text]
  • Arxiv:Math/0701299V1 [Math.QA] 10 Jan 2007 .Apiain:Tfs F,S N Oooyagba 11 Algebras Homotopy and Tqfts ST CFT, Tqfts, 9.1
    FROM OPERADS AND PROPS TO FEYNMAN PROCESSES LUCIAN M. IONESCU Abstract. Operads and PROPs are presented, together with examples and applications to quantum physics suggesting the structure of Feynman categories/PROPs and the corre- sponding algebras. Contents 1. Introduction 2 2. PROPs 2 2.1. PROs 2 2.2. PROPs 3 2.3. The basic example 4 3. Operads 4 3.1. Restricting a PROP 4 3.2. The basic example 5 3.3. PROP generated by an operad 5 4. Representations of PROPs and operads 5 4.1. Morphisms of PROPs 5 4.2. Representations: algebras over a PROP 6 4.3. Morphisms of operads 6 5. Operations with PROPs and operads 6 5.1. Free operads 7 5.1.1. Trees and forests 7 5.1.2. Colored forests 8 5.2. Ideals and quotients 8 5.3. Duality and cooperads 8 6. Classical examples of operads 8 arXiv:math/0701299v1 [math.QA] 10 Jan 2007 6.1. The operad Assoc 8 6.2. The operad Comm 9 6.3. The operad Lie 9 6.4. The operad Poisson 9 7. Examples of PROPs 9 7.1. Feynman PROPs and Feynman categories 9 7.2. PROPs and “bi-operads” 10 8. Higher operads: homotopy algebras 10 9. Applications: TQFTs, CFT, ST and homotopy algebras 11 9.1. TQFTs 11 1 9.1.1. (1+1)-TQFTs 11 9.1.2. (0+1)-TQFTs 12 9.2. Conformal Field Theory 12 9.3. String Theory and Homotopy Lie Algebras 13 9.3.1. String backgrounds 13 9.3.2.
    [Show full text]
  • Atiyah Singer Index Theorem.Pdf
    ATIYAH-SINGER INDEX THEOREM FROM SUPERSYMMETRIC QUANTUM MECHANICS HEATHER LEE Master of Science in Mathematics Nipissing University 2010 ATIYAH-SINGER INDEX THEOREM FROM SUPERSYMMETRIC QUANTUM MECHANICS HEATHER LEE SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MATHEMATICS NIPISSING UNIVERSITY SCHOOL OF GRADUATE STUDIES NORTH BAY, ONTARIO Heather Lee August 2010 I hereby declare that I am the sole author of this Thesis or major Research Paper. I authorize Nipissing University to lend this thesis or Major Research Paper to other institutions or individuals for the purpose of scholarly research. I further authorize Nipissing University to reproduce this thesis or dissertation by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research. Abstract Some preliminary knowledge for understanding the Atiyah-Singer theorem, including differential manifolds, Cartan’s exterior algebra, de Rham cohomology, Hodge theory, Riemannian manifolds and K¨ahler manifolds, fibre bundle theory, and characteristic classes is reviewed. The Atiyah-Singer index theorems for four classical elliptic complexes, including the Gauss-Bonnet theorem of the de Rahm complex, Hirzebruch Signature theorem of the signature complex, Reimann-Roch theorems of the Dolbeault complex, and the index theorem for A-roof genus of spin complex, are introduced. Quantum mechanics is formulated from classical mechanics using the canonical and path integral quantizations. Supersymmetric quantum mechanics is introduced including the 0+1-dimensional supersymmetric nonlinear sigma model. By representing supersymmetric quantum theory as a graded Hilbert space, the identification between a supersymmetric quantum mechanical system and a certain elliptic complex is established.
    [Show full text]
  • Algebra + Homotopy = Operad
    Symplectic, Poisson and Noncommutative Geometry MSRI Publications Volume 62, 2014 Algebra + homotopy = operad BRUNO VALLETTE “If I could only understand the beautiful consequences following from the concise proposition d 2 0.” —Henri Cartan D This survey provides an elementary introduction to operads and to their ap- plications in homotopical algebra. The aim is to explain how the notion of an operad was prompted by the necessity to have an algebraic object which encodes higher homotopies. We try to show how universal this theory is by giving many applications in algebra, geometry, topology, and mathematical physics. (This text is accessible to any student knowing what tensor products, chain complexes, and categories are.) Introduction 229 1. When algebra meets homotopy 230 2. Operads 239 3. Operadic syzygies 253 4. Homotopy transfer theorem 272 Conclusion 283 Acknowledgements 284 References 284 Introduction Galois explained to us that operations acting on the solutions of algebraic equa- tions are mathematical objects as well. The notion of an operad was created in order to have a well defined mathematical object which encodes “operations”. Its name is a portemanteau word, coming from the contraction of the words “operations” and “monad”, because an operad can be defined as a monad encoding operations. The introduction of this notion was prompted in the 60’s, by the necessity of working with higher operations made up of higher homotopies appearing in algebraic topology. Algebra is the study of algebraic structures with respect to isomorphisms. Given two isomorphic vector spaces and one algebra structure on one of them, 229 230 BRUNO VALLETTE one can always define, by means of transfer, an algebra structure on the other space such that these two algebra structures become isomorphic.
    [Show full text]
  • Notes on the Lie Operad
    Notes on the Lie Operad Todd H. Trimble Department of Mathematics University of Chicago These notes have been reLATEXed by Tim Hosgood, who takes responsibility for any errors. The purpose of these notes is to compare two distinct approaches to the Lie operad. The first approach closely follows work of Joyal [9], which gives a species-theoretic account of the relationship between the Lie operad and homol- ogy of partition lattices. The second approach is rooted in a paper of Ginzburg- Kapranov [7], which generalizes within the framework of operads a fundamental duality between commutative algebras and Lie algebras. Both approaches in- volve a bar resolution for operads, but in different ways: we explain the sense in which Joyal's approach involves a \right" resolution and the Ginzburg-Kapranov approach a \left" resolution. This observation is exploited to yield a precise com- parison in the form of a chain map which induces an isomorphism in homology, between the two approaches. 1 Categorical Generalities Let FB denote the category of finite sets and bijections. FB is equivalent to the permutation category P, whose objects are natural numbers and whose set of P morphisms is the disjoint union Sn of all finite symmetric groups. P (and n>0 therefore also FB) satisfies the following universal property: given a symmetric monoidal category C and an object A of C, there exists a symmetric monoidal functor P !C which sends the object 1 of P to A and this functor is unique up to a unique monoidal isomorphism. (Cf. the corresponding property for the braid category in [11].) Let V be a symmetric monoidal closed category, with monoidal product ⊕ and unit 1.
    [Show full text]
  • Reconstruction of Vehicle Dynamics from Inertial and GNSS Data
    ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA ¢ Reconstruction of vehicle dynamics from inertial and GNSS data Scuola di Scienze CORSO DI LAUREA IN INFORMATICA Supervisor: Candidate: Chiar.mo Prof. Federico Bertani Stefano Sinigardi Co-Supervisor: Dott. Alessandro Fabbri I sessione Anno Accademico 2017-2018 ABSTRACT The increasingly massive collection of data from various types of sensors installed on vehicles allows the study and reconstruction of their dynamics in real time, as well as their archiving for subsequent analysis. This Thesis describes the design of a numerical algorithm and its implementation in a program that uses data from inertial and geo-positioning sensors, with applications in industrial contexts and automotive research. The result was made usable through the development of a Python add-on for the Blender graphics program, able to generate a three- dimensional view of the dynamics that can be used by experts and others. Throughout the Thesis, particular attention was paid to the complex nature of the data processed, introducing adequate systems for filtering, interpolation, integration and analysis, aimed at reducing errors and simultaneously optimizing performances. La raccolta sempre più massiccia di dati provenienti da sensori di varia natura installati sui veicoli in circolazione permette lo studio e la ricostruzione della loro dinamica in tempo reale, nonché la loro archiviazione per analisi a posteriori. In questa Tesi si descrive la progettazione di un algoritmo numerico e la sua implementazione in un programma che utilizza dati provenienti da sensori inerziali e di geo-posizionamento con applicazioni a contesti industriali e di ricerca automobilistica. Il risultato è stato reso fruibile tramite lo sviluppo di un add-on Python per il programma di grafica Blender, in grado di generare una visualizzazione tridimensionale della dinamica fruibile da esperti e non.
    [Show full text]
  • Tom Leinster
    Theory and Applications of Categories, Vol. 12, No. 3, 2004, pp. 73–194. OPERADS IN HIGHER-DIMENSIONAL CATEGORY THEORY TOM LEINSTER ABSTRACT. The purpose of this paper is to set up a theory of generalized operads and multicategories and to use it as a language in which to propose a definition of weak n-category. Included is a full explanation of why the proposed definition of n- category is a reasonable one, and of what happens when n ≤ 2. Generalized operads and multicategories play other parts in higher-dimensional algebra too, some of which are outlined here: for instance, they can be used to simplify the opetopic approach to n-categories expounded by Baez, Dolan and others, and are a natural language in which to discuss enrichment of categorical structures. Contents Introduction 73 1 Bicategories 77 2 Operads and multicategories 88 3 More on operads and multicategories 107 4 A definition of weak ω-category 138 A Biased vs. unbiased bicategories 166 B The free multicategory construction 177 C Strict ω-categories 180 D Existence of initial operad-with-contraction 189 References 192 Introduction This paper concerns various aspects of higher-dimensional category theory, and in partic- ular n-categories and generalized operads. We start with a look at bicategories (Section 1). Having reviewed the basics of the classical definition, we define ‘unbiased bicategories’, in which n-fold composites of 1-cells are specified for all natural n (rather than the usual nullary and binary presentation). We go on to show that the theories of (classical) bicategories and of unbiased bicategories are equivalent, in a strong sense.
    [Show full text]
  • Algebras with One Operation Including Poisson and Other Lie-Admissible
    Algebras with one operation including Poisson and other Lie-admissible algebras Martin Markl∗ and Elisabeth Remm† Abstract. We investigate algebras with one operation. We study when these algebras form a monoidal category and analyze Koszulness and cyclicity of the corresponding operads. We also introduce a new kind of symmetry for operads, the dihedrality, responsible for the existence of dihedral cohomology. The main trick, which we call the polarization, will be to represent an algebra with one operation without any specific symmetry as an algebra with one commutative and one anticommutative operations. We will try to convince the reader that this change of perspective might sometimes lead to new insights and results. This point of view was used in [15] to introduce a one-parametric family of operads whose specialization at 0 is the operad for Poisson algebras, while at a generic point it equals the operad for associative algebras. We study this family and explain how it can be used to interpret the deformation quantization ( -product) in a neat and elegant ∗ way. Table of content: 1. Some examples to warm up – page 3 2. Monoidal structures – page 9 3. Koszulness, cyclicity and dihedrality – page 13 Introduction If not stated otherwise, all algebraic objects in this paper will be defined over a fixed field K arXiv:math/0412206v1 [math.AT] 10 Dec 2004 of characteristic 0. We assume basic knowledge of operads as it can be gained for example from [20], though the first two sections can be read without this knowledge. We are going to study classes of algebras with one operation : V V V and axioms given as linear · ⊗ → combinations of terms of the form vσ (vσ vσ ) and/or (vσ vσ ) vσ , where σ Σ (1) · (2) · (3) (1) · (2) · (3) ∈ 3 is a permutation.
    [Show full text]
  • Overview of ∞-Operads As Analytic Monads
    Overview of 1-Operads as Analytic Monads Noah Chrein March 12, 2019 Operads have been around for quite some time, back to May in the 70s Originally meant to capture some of the computational complexities of different associative and unital algebraic operations, Operads have found a home in a multitude of algebraic contexts, such as commutative ring theory, lie theory etc. Classicaly, Operads are defined as a sequence of O(n) of "n-ary" operations, sets which are meant to act on some category. These Operads are symmetric sequences, i.e. Functors O 2 CF in where Fin is the disconnected category of finite sets and bijections. Any symmetric sequence gives rise to an endofunctor a n T (X) = (O(n) ×Σn X ) which the authors call an "analytic functor" due to it's resemblance to a power series. An operad is a symmetric sequence with a notion of composition (of the n-ary operations) which is associative and unital. When O is an operad, the associated endofunctor takes the form of a monad, a special endofunctor with a unit and a multiplication. In both settings, we can consider algebras over operads, defined as maps O(n) × An ! A and algebras over a monad, maps T (A) ! A. In the case where the target category C = Set the algebras of an operad and it's associated monad can be recovered from one another However, when we are working with space, this equivalence fails. The point of the presented paper is to re-establish operads in the context of higher category theory in order to recover this algebra equivalence.
    [Show full text]
  • High School Mathematics Glossary Pre-Calculus
    High School Mathematics Glossary Pre-calculus English-Chinese BOARD OF EDUCATION OF THE CITY OF NEW YORK Board of Education of the City of New York Carol A. Gresser President Irene H. ImpeUizzeri Vice President Louis DeSario Sandra E. Lerner Luis O. Reyes Ninfa Segarra-Velez William C. Thompson, ]r. Members Tiffany Raspberry Student Advisory Member Ramon C. Cortines Chancellor Beverly 1. Hall Deputy Chancellor for Instruction 3195 Ie is the: policy of the New York City Board of Education not to discriminate on (he basis of race. color, creed. religion. national origin. age. handicapping condition. marital StatuS • .saual orientation. or sex in itS eduacional programs. activities. and employment policies. AS required by law. Inquiries regarding compiiulce with appropriate laws may be directed to Dr. Frederick..6,.. Hill. Director (Acting), Dircoetcr, Office of Equal Opporrurury. 110 Livingston Screet. Brooklyn. New York 11201: or Director. Office for o ..·ij Rights. Depa.rtmenc of Education. 26 Federal PJaz:t. Room 33- to. New York. 'Ne:w York 10278. HIGH SCHOOL MATHEMATICS GLOSSARY PRE-CALCULUS ENGLISH - ClllNESE ~ 0/ * ~l.tt Jf -taJ ~ 1- -jJ)f {it ~t ~ -ffi 'ff Chinese!Asian Bilingual Education Technical Assistance Center Division of Bilingual Education Board of Education of the City of New York 1995 INTRODUCTION The High School English-Chinese Mathematics Glossary: Pre­ calculus was developed to assist the limited English proficient Chinese high school students in understanding the vocabulary that is included in the New York City High School Pre-calculus curricu lum. To meet the needs of the Chinese students from different regions, both traditional and simplified character versions are included.
    [Show full text]
  • Non-Associative and Non- Distributive Pararing
    © 2017 JETIR October 2017, Volume 4, Issue 10 www.jetir.org (ISSN-2349-5162) NON-ASSOCIATIVE AND NON- DISTRIBUTIVE PARARING Jalaj Kumar Kashyap1 and Shanker Kumar2 1Dept. of Mathematics, T.M. Bhagalpur University, Bhagalpur, 2Dept. of Mathematics, T.M. Bhagalpur University, Bhagalpur. ABSTRACT : In this paper a particular type of associative (non-associative) non-distributive ring has been introduced with the help of a newly defined distributive property called the para-distributive property. Different types of pararing have been illustrated with examples. Lastly some important properties of the pararing have been studied. Keywords: Para-distributive property, Basal, Mixed ring, Pararing, Sub-pararing. 1. Introduction Non-associative and non-distributive rings of different varieties have introduced quasi-ring R(+, 0) with the help of quasi- distributive properties [3] : x + (y + z) = x y + x z - x; (x + y) z = x z + y z - z; x, y, z R(+, 0). Quasi-distributive ring is not a ring and vice versa. Further, x and x , being the nul1element of R(+, 0). x (y + z) = x y = x z - x ; (1.1) (y + z) x = y x + z x - x (1.2) to deal with weak-ring and weak lie algebras respectively. Weak-ring and weak lie algebras are not ring and lie algebras respectively [l]. For quasi-vector space v over F we have used a generalised form of scalar distribution property ( + + )x = x + x + x; , , F, x v. In this paper para-distributive and right (left) para-distributive properties have been introduced in an analogous way leading to the definition of pararing, right (left) ring and mixed ring of a pararing such that any ring is a right (left) ring and mixed ring which are again pararing but the converse is not true.
    [Show full text]
  • Cofree Coalgebras Over Operads and Representative Functions
    Cofree coalgebras over operads and representative functions M. Anel September 16, 2014 Abstract We give a recursive formula to compute the cofree coalgebra P _(C) over any colored operad P in V = Set; CGHaus; (dg)Vect. The construction is closed to that of [Smith] but different. We use a more conceptual approach to simplify the proofs that P _ is the cofree P -coalgebra functor and also the comonad generating P -coalgebras. In a second part, when V = (dg)Vect is the category of vector spaces or chain com- plexes over a field, we generalize to operads the notion of representative functions of [Block-Leroux] and prove that P _(C) is simply the subobject of representative elements in the "completed P -algebra" P ^(C). This says that our recursion (as well as that of [Smith]) stops at the first step. Contents 1 Introduction 2 2 The cofree coalgebra 4 2.1 Analytic functors . .4 2.2 Einstein convention . .5 2.3 Operads and associated functors . .7 2.4 Coalgebras over an operad . 10 2.5 The comonad of coendomorphisms . 12 2.6 Lax comonads and their coalgebras . 13 2.7 The coreflection theorem . 16 3 Operadic representative functions 21 3.1 Representative functions . 23 3.2 Translations and recursive functions . 25 3.3 Cofree coalgebras and representative functions . 27 1 1 Introduction This work has two parts. In a first part we prove that coalgebras over a (colored) operad P are coalgebras over a certain comonad P _ by giving a recursive construction of P _. In a second part we prove that the recursion is unnecessary in the case where the operad is enriched over vector spaces or chain complexes.
    [Show full text]