Proceedings of the Seventh EWM Meeting

Total Page:16

File Type:pdf, Size:1020Kb

Proceedings of the Seventh EWM Meeting Pro ceedings of the seventh EWM meeting EUROPEAN WOMEN IN MATHEMATICS Universidad Complutense de Madrid September Contents Preface Europ ean Women in Mathematics EWM on the Web I History Since Luminy EWM since its fth meeting in Luminy Brief rep ort on the sixth meeting of EWM in Warsaw II MADRID Organization of EWM Decisions taken during the general assembly THE MATHEMATICAL PART The Mathematical part of EWM Meetings III Holomorphic Dynamics A short course organized by Caroline Series Holomorphic dynamical systems in the complex plane An introduction Bo dil Branner The theory of p olynomiallike mappings The imp ortance of quadratic p olynomials N uriaFagella Lo cal prop erties of the Mandelbrot set M Similarities b etween M and Julia sets Tan Lei IV Classication in Algebraic Geometry A Short Course organized by Rosa M MiroRoigand Raquel Mallavibarrena On some notions in algebraic geometry Margarida Mendes Lop es On classication of algebraic space curves liaison and mo dules Mireille MartinDeschamps On classication of pro jective varieties of small co dimension Emilia Mezzetti V Mathematical Physics Session organised by Sylvie Paycha Mirror Symmetry Claire Voisin written by Sylvie Paycha and Alice Rogers Mo delling the randomness in physics Flora Koukiou Sup er mo duli space Alice Rogers Universal measuring coalgebras The p oints of the matter Marjorie Batchelor VI Mo duli Spaces An Interdisciplinary Workshop organized by Sylvie Paycha Mo duli spaces and conformal dynamics Caroline Series Mo duli spaces and path integrals in Quantum Field Theory Sylvie Paycha Notes on mo duli spaces in Algebraic Geometry Rosa M MiroRoig An example of mo duli spaces in number theory Laura Fainsilber VI I Short Talks The multidimensional RiemannHilb ert problem generalized Knizhnik Zamolo dchikov equations and applications Valentina A Golub eva Quadratic and hermitian forms over rings Laura Fainsilber On Sampling plans for insp ection by variables Vera I Pagurova VI I I Evaluation Evaluation of the mathematical asp ects of the meeting OTHER TOPICS In b etween meetings the everyday life of EWM Renormalisation in Mathematics and Physics FemailEmail discussion Mathematical studies at Europ ean universities IX Family versus Career Family versus Career in Women Mathematicians COMMITTEES COORDINATORS AND PARTICIPANTS Committee Members Co ordinators List of Participants in EWM Preface to the printed edition This volume contains records of the mathematical activities and some of the other activities which to ok place during the seventh general meeting of Europ ean Women in Mathematics at Universidad Complutense de Madrid September The meeting was attended by participants from countries Denmark EnglandFinland France Germany Italy Norway Portugal Rumania Russia Spain Sweden and Switzer land The main organizers were by far Capi Corrales Ro driganez and Raquel Mallavibarrena from Madrid They were assisted by an organizing committee consisting of Bo dil Branner Denmark Isab el Lab ouriau Portugal Rosa Maria MiroRoigSpain Marjatta Naatanen Finland Sylvie Paycha France Caroline Series England Laura TedeschiniLalli Italy In organizing the meeting we build on earlier exp eriences In particular the work done by Eva Bayer MicheleAudin and Catherine Goldstein all from France around the fth EWM meeting in Luminy in December has b een a constant source of inspiration We are very grateful for the nancial supp ort we received from the spanish Instituto de la Mujer and the Ministerio de Educacion y Ciencia b oth for the Madrid meeting and for the publication of these Pro ceedings The logo of the EWM meeting and the tshirt pattern shown on the front page was designed by DODOT These Pro ceedings were edited by Bo dil Branner and N uriaFagella We thank Christian Mannes for setting up the TeX style we have used The photos were taken by Marketa Novak We wish to express our thanks to all participants for making the Madrid meeting a success and to all who contributed in writing to this volume Esp ecially we thank Capi and Raquel for making it all p ossible February Bo dil Branner and N uriaFagella Addendum to the electronic edition The original version of these pro ceedings was printed at the Universitat de Barcelona with Dep Legal L Impreso Poblagrac SL Av Estacion sn Pobla de Segur The main dierence b etween the electronic edition and the printed one is that some mis prints have b een corrected and that the logo designed by DODOT the photos and the gures contained in the mathematical pap ers do not app ear here If you wish to get a copy of the printed version please contact your regional co ordinator and ask if some are still available Europ ean Women in Mathematics EWM is an aliation of women b ound by a common interest in the p osition of women in mathematics Our purp oses are To encourage women to take up and continue their studies in mathematics To supp ort women with or desiring careers in research in mathematics or mathematics related elds To provide a meeting place for these women To foster international scientic communication among women and men in the mathemat ical community To co op erate with groups and organizations in Europ e and elsewhere with similar goals Our organization was conceived at the International Congress of Mathematicians in Berke ley August as a result of a panel discussion organized by the Asso ciation for Women in Mathematics in which several Europ ean women mathematicians to ok part There have since b een six Europ ean meetings in Paris in Cop enhagen in Warwick England in Lisb on in Marseilles in Warsaw and in Madrid The next meeting will b e in The place of the meeting will b e announced later At the time of writing there are participating members in the following countries Belgium Czech Republic Denmark Estonia Finland France Germany Greece Italy Latvia Lithuania the Netherlands Norway Poland Portugal Romania Russia Spain Sweden Switzerland Turkey Ukraine and the United Kingdom contacts in Albania as well as with several nonEurop ean countries Activities and publicity within each country are organized by regional coordinators Each country or region is free to form its own regional or national organization taking whatever organizational or legal form is appropriate to the lo cal circumstances Such an organization Femmes et Mathematiques already exists in France Other members are encouraged to consider the p ossibility of forming such lo cal regional or national groups themselves There is also an email network For further information contact The secretary of EWM Riitta Ulmanen Department of Mathematics POBox Yliopistonkatu FIN University of Helsinki Finland email ulmanensophiehel sinki Tel Fax For details of the email network contact sarahreesnewcastleacuk September EWM on the Web EWM now has a page on the Web There are two adresses although b oth contain the same information One in Helsinki httpwwwmathhelsinkiEWM and one in Austria httpwwwriscunilinzacatmiscinfoewmEWMhtml The Web account has b een set up by Olga Caprotti Giovanna Ro da Ileana Tomuta and Daniela Vasaru at RISC Linz Research Institute for Symbolic Computation Johannes Kepler University A Linz Austria They can b e reached at the EWM Web account ewmriscunilinz acat or at their p ersonal accounts FirstNameLastNameriscunilinzacat History Since Luminy EWM since its fth meeting in Luminy Caroline Series University of Warwick England The fth EWM meeting was held in Luminy France December th In the lengthy rep ort which was published of the Luminy meeting I wrote a brief history of the rst ve years of EWM Since this is the rst ma jor EWM rep ort to b e published since that time I have b een asked to write a few words to record what has happ ened in the interim The Sixth General Meeting Warsaw June thth The sixth General EWM Meeting to ok place at the Technical University in Warsaw from June thth The main organiser was Anna Romanowska The meeting was attended by ab out participants from Europ ean countries The conference featured lectures in pure and applied mathematics an interesting session on creativity and several business ses sions There was a rep ort from the Round Table on women in Mathematics at the Europ ean Congress in We learned that the prop ortion of women among do ctorates in mathe matics is highest in eastern Europ ean and Mediterranean countries Greece Italy and Spain were represented at the conference and lowest in Scandinavia the Netherlands the UK and Germany There has b een much sp eculation ab out this somewhat counterintuitive situation but it seems more pro ductive to concentrate on how to get more women into mathematics in the northern countries Mary Gray gave a talk on the history aims and activities of the AWM and also gave helpful advice ab out the draft statutes of EWM Legalisation of EWM and establishment of the Helsinki Oce One of our early failures as an organisation which I mentioned in the rep ort of the Luminy meeting was our lo ose structure in which everything dep ended on just one p erson the inter national co ordinator By the time of the Luminy meeting we had decided that it was time to set in place some more formal organisation and that we wanted EWM to b e a legal b o dy During the Luminy meeting we did a lot of work drafting our basic organisational structure and statutes and a small committee consisting of Marjatta Naatanen Riitta Ulmanen and myself was formed to carry this work further In the course of discussing our statutes
Recommended publications
  • A Tour Through Mirzakhani's Work on Moduli Spaces of Riemann Surfaces
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 57, Number 3, July 2020, Pages 359–408 https://doi.org/10.1090/bull/1687 Article electronically published on February 3, 2020 A TOUR THROUGH MIRZAKHANI’S WORK ON MODULI SPACES OF RIEMANN SURFACES ALEX WRIGHT Abstract. We survey Mirzakhani’s work relating to Riemann surfaces, which spans about 20 papers. We target the discussion at a broad audience of non- experts. Contents 1. Introduction 359 2. Preliminaries on Teichm¨uller theory 361 3. The volume of M1,1 366 4. Integrating geometric functions over moduli space 367 5. Generalizing McShane’s identity 369 6. Computation of volumes using McShane identities 370 7. Computation of volumes using symplectic reduction 371 8. Witten’s conjecture 374 9. Counting simple closed geodesics 376 10. Random surfaces of large genus 379 11. Preliminaries on dynamics on moduli spaces 382 12. Earthquake flow 386 13. Horocyclic measures 389 14. Counting with respect to the Teichm¨uller metric 391 15. From orbits of curves to orbits in Teichm¨uller space 393 16. SL(2, R)-invariant measures and orbit closures 395 17. Classification of SL(2, R)-orbit closures 398 18. Effective counting of simple closed curves 400 19. Random walks on the mapping class group 401 Acknowledgments 402 About the author 402 References 403 1. Introduction This survey aims to be a tour through Maryam Mirzakhani’s remarkable work on Riemann surfaces, dynamics, and geometry. The star characters, all across Received by the editors May 12, 2019. 2010 Mathematics Subject Classification. Primary 32G15. c 2020 American Mathematical Society 359 License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 360 ALEX WRIGHT 2 3117 4 5 12 14 16 18 19 9106 13 15 17 8 Figure 1.1.
    [Show full text]
  • 2010 Table of Contents Newsletter Sponsors
    OKLAHOMA/ARKANSAS SECTION Volume 31, February 2010 Table of Contents Newsletter Sponsors................................................................................ 1 Section Governance ................................................................................ 6 Distinguished College/University Teacher of 2009! .............................. 7 Campus News and Notes ........................................................................ 8 Northeastern State University ............................................................. 8 Oklahoma State University ................................................................. 9 Southern Nazarene University ............................................................ 9 The University of Tulsa .................................................................... 10 Southwestern Oklahoma State University ........................................ 10 Cameron University .......................................................................... 10 Henderson State University .............................................................. 11 University of Arkansas at Monticello ............................................... 13 University of Central Oklahoma ....................................................... 14 Minutes for the 2009 Business Meeting ............................................... 15 Preliminary Announcement .................................................................. 18 The Oklahoma-Arkansas Section NExT ............................................... 21 The 2nd Annual
    [Show full text]
  • President's Report
    Newsletter Volume 43, No. 3 • mAY–JuNe 2013 PRESIDENT’S REPORT Greetings, once again, from 35,000 feet, returning home from a major AWM conference in Santa Clara, California. Many of you will recall the AWM 40th Anniversary conference held in 2011 at Brown University. The enthusiasm generat- The purpose of the Association ed by that conference gave rise to a plan to hold a series of biennial AWM Research for Women in Mathematics is Symposia around the country. The first of these, the AWM Research Symposium 2013, took place this weekend on the beautiful Santa Clara University campus. • to encourage women and girls to study and to have active careers The symposium attracted close to 150 participants. The program included 3 plenary in the mathematical sciences, and talks, 10 special sessions on a wide variety of topics, a contributed paper session, • to promote equal opportunity and poster sessions, a panel, and a banquet. The Santa Clara campus was in full bloom the equal treatment of women and and the weather was spectacular. Thankfully, the poster sessions and coffee breaks girls in the mathematical sciences. were held outside in a courtyard or those of us from more frigid climates might have been tempted to play hooky! The event opened with a plenary talk by Maryam Mirzakhani. Mirzakhani is a professor at Stanford and the recipient of multiple awards including the 2013 Ruth Lyttle Satter Prize. Her talk was entitled “On Random Hyperbolic Manifolds of Large Genus.” She began by describing how to associate a hyperbolic surface to a graph, then proceeded with a fascinating discussion of the metric properties of surfaces associated to random graphs.
    [Show full text]
  • Arxiv:1610.06871V4 [Math.AT] 13 May 2019 Se[A H.7506 N SG E.B.6.2.7]): Rem
    THE MOREL–VOEVODSKY LOCALIZATION THEOREM IN SPECTRAL ALGEBRAIC GEOMETRY ADEEL A. KHAN Abstract. We prove an analogue of the Morel–Voevodsky localization theorem over spectral algebraic spaces. As a corollary we deduce a “derived nilpotent invariance” result which, informally speaking, says that A1-homotopy invariance kills all higher homotopy groups of a connective commutative ring spectrum. 1. Introduction ´et Let R be a connective E∞-ring spectrum, and denote by CAlgR the ∞-category of ´etale E∞-algebras over R. The starting point for this paper is the following fundamental result of J. Lurie, which says that the small ´etale topos of R is equivalent to the small ´etale topos of π0(R) (see [HA, Thm. 7.5.0.6] and [SAG, Rem. B.6.2.7]): Theorem 1.0.1 (Lurie). For any connective E∞-ring R, let π0(R) denote its 0-truncation E ´et ´et (viewed as a discrete ∞-ring). Then restriction along the canonical functor CAlgR → CAlgπ0(R) ´et induces an equivalence from the ∞-category of ´etale sheaves of spaces CAlgπ0(R) → Spc to the ´et ∞-category of ´etale sheaves of spaces CAlgR → Spc. Theorem 1.0.1 can be viewed as a special case of the following result (see [SAG, Prop. 3.1.4.1]): ′ Theorem 1.0.2 (Lurie). Let R → R be a homomorphism of connective E∞-rings that is ´et ´et surjective on π0. Then restriction along the canonical functor CAlgR → CAlgR′ defines a fully ´et faithful embedding of the ∞-category of ´etale sheaves CAlgR′ → Spc into the ∞-category of ´etale ´et sheaves CAlgR → Spc.
    [Show full text]
  • Fundamental Algebraic Geometry
    http://dx.doi.org/10.1090/surv/123 hematical Surveys and onographs olume 123 Fundamental Algebraic Geometry Grothendieck's FGA Explained Barbara Fantechi Lothar Gottsche Luc lllusie Steven L. Kleiman Nitin Nitsure AngeloVistoli American Mathematical Society U^VDED^ EDITORIAL COMMITTEE Jerry L. Bona Peter S. Landweber Michael G. Eastwood Michael P. Loss J. T. Stafford, Chair 2000 Mathematics Subject Classification. Primary 14-01, 14C20, 13D10, 14D15, 14K30, 18F10, 18D30. For additional information and updates on this book, visit www.ams.org/bookpages/surv-123 Library of Congress Cataloging-in-Publication Data Fundamental algebraic geometry : Grothendieck's FGA explained / Barbara Fantechi p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 123) Includes bibliographical references and index. ISBN 0-8218-3541-6 (pbk. : acid-free paper) ISBN 0-8218-4245-5 (soft cover : acid-free paper) 1. Geometry, Algebraic. 2. Grothendieck groups. 3. Grothendieck categories. I Barbara, 1966- II. Mathematical surveys and monographs ; no. 123. QA564.F86 2005 516.3'5—dc22 2005053614 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA.
    [Show full text]
  • Algebraic Stacks (Winter 2020/2021) Lecturer: Georg Oberdieck
    Algebraic Stacks (Winter 2020/2021) Lecturer: Georg Oberdieck Date: Wednesday 4-6, Friday 12-2. Oral Exam: February 19 and March 26, 2021. Exam requirement: You have to hand in solutions to at least half of all exercise problems to be admitted to the exam. Summary: The course is an introduction to the theory of algebraic stacks. We will discuss applications to the construction of moduli spaces. Prerequisites: Algebraic Geometry I and II (e.g. on the level of Hartshorne's book Chapter I and II plus some background on flat/etale morphisms). Some category theory (such as Vakil's Notes on Algebraic Geometry, Chapter 1). References: (1) Olsson, Algebraic Spaces and Stacks (2) Stacks Project (3) Vistoli, Notes on Grothendieck topologies, fibered categories and descent theory (available online) (4) Halpern-Leistner, The Moduli space, https://themoduli.space (5) Guide to the literature by Jarod Alper (6) Behrend, Introduction to algebraic stacks, lecture notes. The main reference of the coarse is Olsson and will be used throughout, in particular for many of the exercises. However, we will diverge in some details from Olsson's presentation, in particular on quasi-coherent sheaves on algebraic stacks where we follow the stacks project. The notes of Vistoli are also highly recommended for the first part which covers aspects of Grothendieck topologies, fibered categories and descent theory. In the second part we will use the notes of Halpern-Leistner. Exercises and student presentations: Friday's session will be used sometimes for informal discussion of the material covered in the problem sets. From time to time there will also be student presentations, see: http://www.math.uni-bonn.de/~georgo/stacks/presentations.pdf Schedule1 Oct 28: Motivation mostly.
    [Show full text]
  • Algebra & Number Theory Vol. 10 (2016)
    Algebra & Number Theory Volume 10 2016 No. 4 msp Algebra & Number Theory msp.org/ant EDITORS MANAGING EDITOR EDITORIAL BOARD CHAIR Bjorn Poonen David Eisenbud Massachusetts Institute of Technology University of California Cambridge, USA Berkeley, USA BOARD OF EDITORS Georgia Benkart University of Wisconsin, Madison, USA Susan Montgomery University of Southern California, USA Dave Benson University of Aberdeen, Scotland Shigefumi Mori RIMS, Kyoto University, Japan Richard E. Borcherds University of California, Berkeley, USA Raman Parimala Emory University, USA John H. Coates University of Cambridge, UK Jonathan Pila University of Oxford, UK J-L. Colliot-Thélène CNRS, Université Paris-Sud, France Anand Pillay University of Notre Dame, USA Brian D. Conrad Stanford University, USA Victor Reiner University of Minnesota, USA Hélène Esnault Freie Universität Berlin, Germany Peter Sarnak Princeton University, USA Hubert Flenner Ruhr-Universität, Germany Joseph H. Silverman Brown University, USA Sergey Fomin University of Michigan, USA Michael Singer North Carolina State University, USA Edward Frenkel University of California, Berkeley, USA Vasudevan Srinivas Tata Inst. of Fund. Research, India Andrew Granville Université de Montréal, Canada J. Toby Stafford University of Michigan, USA Joseph Gubeladze San Francisco State University, USA Ravi Vakil Stanford University, USA Roger Heath-Brown Oxford University, UK Michel van den Bergh Hasselt University, Belgium Craig Huneke University of Virginia, USA Marie-France Vignéras Université Paris VII, France Kiran S. Kedlaya Univ. of California, San Diego, USA Kei-Ichi Watanabe Nihon University, Japan János Kollár Princeton University, USA Efim Zelmanov University of California, San Diego, USA Yuri Manin Northwestern University, USA Shou-Wu Zhang Princeton University, USA Philippe Michel École Polytechnique Fédérale de Lausanne PRODUCTION [email protected] Silvio Levy, Scientific Editor See inside back cover or msp.org/ant for submission instructions.
    [Show full text]
  • Lms Elections to Council and Nominating Committee 2017: Candidate Biographies
    LMS ELECTIONS TO COUNCIL AND NOMINATING COMMITTEE 2017: CANDIDATE BIOGRAPHIES Candidate for election as President (1 vacancy) Caroline Series Candidates for election as Vice-President (2 vacancies) John Greenlees Catherine Hobbs Candidate for election as Treasurer (1 vacancy) Robert Curtis Candidate for election as General Secretary (1 vacancy) Stephen Huggett Candidate for election as Publications Secretary (1 vacancy) John Hunton Candidate for election as Programme Secretary (1 vacancy) Iain A Stewart Candidates for election as Education Secretary (1 vacancy) Tony Gardiner Kevin Houston Candidate for election as Librarian (Member-at-Large) (1 vacancy) June Barrow-Green Candidates for election as Member-at-Large of Council (6 x 2-year terms vacant) Mark AJ Chaplain Stephen J. Cowley Andrew Dancer Tony Gardiner Evgenios Kakariadis Katrin Leschke Brita Nucinkis Ronald Reid-Edwards Gwyneth Stallard Alina Vdovina Candidates for election to Nominating Committee (2 vacancies) H. Dugald Macpherson Martin Mathieu Andrew Treglown 1 CANDIDATE FOR ELECTION AS PRESIDENT (1 VACANCY) Caroline Series FRS, Professor of Mathematics (Emeritus), University of Warwick Email address: [email protected] Home page: http://www.maths.warwick.ac.uk/~cms/ PhD: Harvard University 1976 Previous appointments: Warwick University (Lecturer/Reader/Professor)1978-2014; EPSRC Senior Research Fellow 1999- 2004; Research Fellow, Newnham College, Cambridge 1977-8; Lecturer, Berkeley 1976-77. Research interests: Hyperbolic Geometry, Kleinian Groups, Dynamical Systems, Ergodic Theory. LMS service: Council 1989-91; Nominations Committee 1999- 2001, 2007-9, Chair 2009-12; LMS Student Texts Chief Editor 1990-2002; LMS representative to various other bodies. LMS Popular Lecturer 1999; Mary Cartwright Lecture 2000; Forder Lecturer 2003.
    [Show full text]
  • Moving Codimension-One Subvarieties Over Finite Fields
    Moving codimension-one subvarieties over finite fields Burt Totaro In topology, the normal bundle of a submanifold determines a neighborhood of the submanifold up to isomorphism. In particular, the normal bundle of a codimension-one submanifold is trivial if and only if the submanifold can be moved in a family of disjoint submanifolds. In algebraic geometry, however, there are higher-order obstructions to moving a given subvariety. In this paper, we develop an obstruction theory, in the spirit of homotopy theory, which gives some control over when a codimension-one subvariety moves in a family of disjoint subvarieties. Even if a subvariety does not move in a family, some positive multiple of it may. We find a pattern linking the infinitely many obstructions to moving higher and higher multiples of a given subvariety. As an application, we find the first examples of line bundles L on smooth projective varieties over finite fields which are nef (L has nonnegative degree on every curve) but not semi-ample (no positive power of L is spanned by its global sections). This answers questions by Keel and Mumford. Determining which line bundles are spanned by their global sections, or more generally are semi-ample, is a fundamental issue in algebraic geometry. If a line bundle L is semi-ample, then the powers of L determine a morphism from the given variety onto some projective variety. One of the main problems of the minimal model program, the abundance conjecture, predicts that a variety with nef canonical bundle should have semi-ample canonical bundle [15, Conjecture 3.12].
    [Show full text]
  • Horospherical Stacks a Algebraic to of Isomorphic Examples Substack Open Dense a T := N Hspoieacaso Tcswihaees Ohnl.M Handle
    HOROSPHERICAL STACKS ARIYAN JAVANPEYKAR, KEVIN LANGLOIS, AND RONAN TERPEREAU Abstract. We prove structure theorems for algebraic stacks with a reductive group action and a dense open substack isomorphic to a horospherical homogeneous space, and thereby obtain new examples of algebraic stacks which are global quotient stacks. Our results partially generalize the work of Iwanari, Fantechi-Mann-Nironi, and Geraschenko-Satriano for abstract toric stacks. Contents 1. Introduction 1 2. Group actions on algebraic stacks 4 3. Abstract horospherical stacks 7 4. Describing toroidal abstract horospherical stacks 10 5. Toroidification 12 6. Towards the general case 13 References 20 1. Introduction Several theories of abstract toric stacks, i.e., algebraic stacks with a torus action and a dense open substack isomorphic to the torus, have been introduced over the last years; see [Laf02, BCS05, Iwa09, FMN10, Tyo12, GS15a, GS15b, GM]. These stacks admit a simple combinatorial description, via stacky fans, and thus provide a class of stacks which are easy to handle. Moreover, in some cases they have a natural interpretation in terms of moduli spaces (e.g. as the parameter space of certain tuples of effective Cartier divisors on toric varieties in [GS15b, Section 7]). Also, certain toric stacks appear naturally as Mori dream stacks; see [HM15]. The aim of this paper is to generalize some structure results from the setting of abstract toric stacks to the more general setting of abstract horospherical stacks. More precisely, we characterize algebraic stacks with a reductive group action and a dense open substack isomorphic to a horospher- ical homogeneous space as stacky quotients of horospherical varieties.
    [Show full text]
  • Algebraic Stacks Many of the Geometric Properties That Are Defined for Schemes (Smoothness, Irreducibility, Separatedness, Properness, Etc...)
    Algebraic stacks Tom´as L. G´omez Tata Institute of Fundamental Research Homi Bhabha road, Mumbai 400 005 (India) [email protected] 9 November 1999 Abstract This is an expository article on the theory of algebraic stacks. After intro- ducing the general theory, we concentrate in the example of the moduli stack of vector budles, giving a detailed comparison with the moduli scheme obtained via geometric invariant theory. 1 Introduction The concept of algebraic stack is a generalization of the concept of scheme, in the same sense that the concept of scheme is a generalization of the concept of projective variety. In many moduli problems, the functor that we want to study is not representable by a scheme. In other words, there is no fine moduli space. Usually this is because the objects that we want to parametrize have automorphisms. But if we enlarge the category of schemes (following ideas that go back to Grothendieck and Giraud, and were developed by Deligne, Mumford and Artin) and consider algebraic stacks, then we can construct the “moduli stack”, that captures all the information that we would like in a fine moduli space. The idea of enlarging the category of algebraic varieties to study moduli problems is not new. In fact A. Weil invented the concept of abstract variety to give an algebraic arXiv:math/9911199v1 [math.AG] 25 Nov 1999 construction of the Jacobian of a curve. These notes are an introduction to the theory of algebraic stacks. I have tried to emphasize ideas and concepts through examples instead of detailed proofs (I give references where these can be found).
    [Show full text]
  • Arxiv:1005.2171V2 [Math.AG]
    ETALE´ DEVISSAGE,´ DESCENT AND PUSHOUTS OF STACKS DAVID RYDH Abstract. We show that the pushout of an ´etale morphism and an open immersion exists in the category of algebraic stacks and show that such pushouts behave similarly to the gluing of two open substacks. For example, quasi-coherent sheaves on the pushout can be described by a simple gluing procedure. We then outline a powerful d´evissage method for representable ´etale morphisms using such pushouts. We also give a variant of the d´evissage method for representable quasi-finite flat morphisms. Introduction Let X be a scheme and let X = U ∪ V be an open cover of X. It is well-known that: (i) Many objects over X (such as quasi-coherent sheaves) correspond to objects over U and V with a gluing datum over U ∩V . No cocycle condition is needed as there are no non-trivial triple intersections. (ii) The scheme X is the pushout of the open immersions U ∩ V → U and U ∩ V → V . (iii) Given two open immersions W ⊆ U and W ⊆ V of schemes we can glue these to a scheme X = U ∪W V . The scheme X is the pushout of W ⊆ U and W ⊆ V and we recover W as the intersection of U and V . In (i)–(iii), we can also replace “scheme” by “algebraic space” or “algebraic stack”. The purpose of this paper is to show that in the category of algebraic spaces or algebraic stacks we can further extend these results, taking one open immersion and one ´etale morphism instead of two open immersions.
    [Show full text]