This Is a Collection of Mathematical Constants Evaluated to Many Digits
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Amazing Prime Heuristic.Pdf
This document has been moved to https://arxiv.org/abs/2103.04483 Please use that version instead. AN AMAZING PRIME HEURISTIC CHRIS K. CALDWELL 1. Introduction The record for the largest known twin prime is constantly changing. For example, in October of 2000, David Underbakke found the record primes: 83475759 264955 1: · The very next day Giovanni La Barbera found the new record primes: 1693965 266443 1: · The fact that the size of these records are close is no coincidence! Before we seek a record like this, we usually try to estimate how long the search might take, and use this information to determine our search parameters. To do this we need to know how common twin primes are. It has been conjectured that the number of twin primes less than or equal to N is asymptotic to N dx 2C2N 2C2 2 2 Z2 (log x) ∼ (log N) where C2, called the twin prime constant, is approximately 0:6601618. Using this we can estimate how many numbers we will need to try before we find a prime. In the case of Underbakke and La Barbera, they were both using the same sieving software (NewPGen1 by Paul Jobling) and the same primality proving software (Proth.exe2 by Yves Gallot) on similar hardware{so of course they choose similar ranges to search. But where does this conjecture come from? In this chapter we will discuss a general method to form conjectures similar to the twin prime conjecture above. We will then apply it to a number of different forms of primes such as Sophie Germain primes, primes in arithmetic progressions, primorial primes and even the Goldbach conjecture. -
Prime Numbers in Logarithmic Intervals
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PORTO Publications Open Repository TOrino Prime numbers in logarithmic intervals Danilo Bazzanella Dipartimento di Matematica, Politecnico di Torino, Italy [email protected] Alessandro Languasco Dipartimento di Matematica Pura e Applicata Universit`adi Padova , Italy [email protected] Alessandro Zaccagnini Dipartimento di Matematica Universit`adi Parma, Italy [email protected] First published in Transactions of the American Mathematical Society 362 (2010), no. 5, 2667-2684 published by the American Mathematical Society DOI: 10.1090/S0002-9947-09-05009-0 The original publication is available at http://www.ams.org/ 1 TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 362, Number 5, May 2010, Pages 2667–2684 S0002-9947(09)05009-0 Article electronically published on November 17, 2009 PRIME NUMBERS IN LOGARITHMIC INTERVALS DANILO BAZZANELLA, ALESSANDRO LANGUASCO, AND ALESSANDRO ZACCAGNINI Abstract. Let X be a large parameter. We will first give a new estimate for the integral moments of primes in short intervals of the type (p, p + h], where p X is a prime number and h = o(X). Then we will apply this to prove that ≤ for every λ>1/2thereexistsapositiveproportionofprimesp X such that ≤ the interval (p, p+λ log X]containsatleastaprimenumber.Asaconsequence we improve Cheer and Goldston’s result on the size of real numbers λ> 1 with the property that there is a positive proportion of integers m X ≤ such that the interval -
Mathematical Constants and Sequences
Mathematical Constants and Sequences a selection compiled by Stanislav Sýkora, Extra Byte, Castano Primo, Italy. Stan's Library, ISSN 2421-1230, Vol.II. First release March 31, 2008. Permalink via DOI: 10.3247/SL2Math08.001 This page is dedicated to my late math teacher Jaroslav Bayer who, back in 1955-8, kindled my passion for Mathematics. Math BOOKS | SI Units | SI Dimensions PHYSICS Constants (on a separate page) Mathematics LINKS | Stan's Library | Stan's HUB This is a constant-at-a-glance list. You can also download a PDF version for off-line use. But keep coming back, the list is growing! When a value is followed by #t, it should be a proven transcendental number (but I only did my best to find out, which need not suffice). Bold dots after a value are a link to the ••• OEIS ••• database. This website does not use any cookies, nor does it collect any information about its visitors (not even anonymous statistics). However, we decline any legal liability for typos, editing errors, and for the content of linked-to external web pages. Basic math constants Binary sequences Constants of number-theory functions More constants useful in Sciences Derived from the basic ones Combinatorial numbers, including Riemann zeta ζ(s) Planck's radiation law ... from 0 and 1 Binomial coefficients Dirichlet eta η(s) Functions sinc(z) and hsinc(z) ... from i Lah numbers Dedekind eta η(τ) Functions sinc(n,x) ... from 1 and i Stirling numbers Constants related to functions in C Ideal gas statistics ... from π Enumerations on sets Exponential exp Peak functions (spectral) .. -
Survey of Math: Chapter 21: Consumer Finance Savings Page 1
Survey of Math: Chapter 21: Consumer Finance Savings Page 1 Geometric Series Consider the following series: 1 + x + x2 + x3 + ··· + xn−1. We need to figure out a way to write this without the ···. Here’s how: s = 1 + x + x2 + x3 + ··· + xn−1 subtract xs = x + x2 + x3 + ··· + xn−1 + xn s − sx = 1 − 0 − 0 − 0 − · · · − 0 − xn s − sx = 1 − xn Now solve for s: 1 − xn xn − 1 s(1 − x) = 1 − xn ⇒ s = = . 1 − x x − 1 xn − 1 Therefore, a geometric series has the following sum: 1 + x + x2 + x3 + ··· + xn−1 = . x − 1 Exponential and Natural Logarithms As we have seen, some of our equations involve exponents. To effectively deal with exponents, we need to be able to work with exponentials and logarithms. The exponential and natural logarithm functions are inverse functions, and related by the following rules 1 m e = 1 + for m large m e = 2.71828 ... ln(eA) = A where A is a constant eln(A) = A If the base of the exponent is not e, we can use the following rule: ln(bA) = A ln(b) where A and b are constants ln(2A) = A ln(2) ln((1 + r)A) = A ln(1 + r) Note: • The natural logarithm acts on a number, so we read ln(2) as “The natural logarithm of 2”. • We would never write ln(2) = 2 ln, since this loses the fact that the natural logarithm must act on something. It is a functional evaluation, not a multiplication. • This is similar to trigonometric functions, like sin(π). -
Multiplication Modulo N Along the Primorials with Its Differences And
Multiplication Modulo n Along The Primorials With Its Differences And Variations Applied To The Study Of The Distributions Of Prime Number Gaps A.K.A. Introduction To The S Model Russell Letkeman r. letkeman@ gmail. com Dedicated to my son Panha May 19, 2013 Abstract The sequence of sets of Zn on multiplication where n is a primorial gives us a surprisingly simple and elegant tool to investigate many properties of the prime numbers and their distributions through analysis of their gaps. A natural reason to study multiplication on these boundaries is a construction exists which evolves these sets from one primorial boundary to the next, via the sieve of Eratosthenes, giving us Just In Time prime sieving. To this we add a parallel study of gap sets of various lengths and their evolution all of which together informs what we call the S model. We show by construction there exists for each prime number P a local finite probability distribution and it is surprisingly well behaved. That is we show the vacuum; ie the gaps, has deep structure. We use this framework to prove conjectured distributional properties of the prime numbers by Legendre, Hardy and Littlewood and others. We also demonstrate a novel proof of the Green-Tao theorem. Furthermore we prove the Riemann hypoth- esis and show the results are perhaps surprising. We go on to use the S model to predict novel structure within the prime gaps which leads to a new Chebyshev type bias we honorifically name the Chebyshev gap bias. We also probe deeper behavior of the distribution of prime numbers via ultra long scale oscillations about the scale of numbers known as Skewes numbers∗. -
Primes Counting Methods: Twin Primes 1. Introduction
Primes Counting Methods: Twin Primes N. A. Carella, July 2012. Abstract: The cardinality of the subset of twin primes { p and p + 2 are primes } is widely believed to be an infinite subset of prime numbers. This work proposes a proof of this primes counting problem based on an elementary weighted sieve. Mathematics Subject Classifications: 11A41, 11N05, 11N25, 11G05. Keywords: Primes, Distribution of Primes, Twin Primes Conjecture, dePolignac Conjecture, Elliptic Twin Primes Conjecture, Prime Diophantine Equations. 1. Introduction The problem of determining the cardinality of the subset of primes { p = f (n) : p is prime and n !1 }, defined by a function f : ℕ → ℕ, as either finite or infinite is vastly simpler than the problem of determining the primes counting function of the subset of primes (x) # p f (n) x : p is prime and n 1 " f = { = # $ } The cardinality of the simplest case of the set of all primes P = { 2, 3, 5, … } was settled by Euclid over two millennia ago, see [EU]. After that event,! many other proofs have been discovered by other authors, see [RN, Chapter 1], and the literature. In contrast, the determination of the primes counting function of the set of all primes is still incomplete. Indeed, the current asymptotic formula (25) of the " (x) = #{ p # x : p is prime } primes counting function, also known as the Prime Number Theorem, is essentially the same as determined by delaVallee Poussin, and Hadamard. ! The twin primes conjecture claims that the Diophantine equation q = p + 2 has infinitely many prime pairs solutions. More generally, the dePolignac conjecture claims that for any fixed k ≥ 1, the Diophantine equation q = p + 2k has infinitely many prime pairs solutions, confer [RN, p. -
New Bounds and Computations on Prime-Indexed Primes Jonathan Bayless Husson University
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarWorks at Central Washington University Central Washington University ScholarWorks@CWU Mathematics Faculty Scholarship College of the Sciences 2013 New Bounds and Computations on Prime-Indexed Primes Jonathan Bayless Husson University Dominic Klyve Central Washington University, [email protected] Tomas Oliveira e Silva Universidade de Aveiro Follow this and additional works at: http://digitalcommons.cwu.edu/math Part of the Mathematics Commons Recommended Citation Bayless, J., Klyve, D. & Oliveira e Silva, T. (2013). New bounds and computations on prime-indexed primes. Integers 13(A43), 1-21. This Article is brought to you for free and open access by the College of the Sciences at ScholarWorks@CWU. It has been accepted for inclusion in Mathematics Faculty Scholarship by an authorized administrator of ScholarWorks@CWU. #A43 INTEGERS 13 (2013) NEW BOUNDS AND COMPUTATIONS ON PRIME-INDEXED PRIMES Jonathan Bayless Department of Mathematics, Husson University, Bangor, Maine [email protected] Dominic Klyve Dept. of Mathematics, Central Washington University, Ellensburg, Washington [email protected] Tom´as Oliveira e Silva Electronics, Telecommunications, and Informatics Department, Universidade de Aveiro, Aveiro, Portugal [email protected] Received: 5/25/12, Revised: 5/15/13, Accepted: 5/16/13, Published: 7/10/13 Abstract In a 2009 article, Barnett and Broughan considered the set of prime-index primes. If the prime numbers are listed in increasing order (2, 3, 5, 7, 11, 13, 17, . .), then the prime-index primes are those which occur in a prime-numbered position in the list (3, 5, 11, 17, . -
List of Numbers
List of numbers This is a list of articles aboutnumbers (not about numerals). Contents Rational numbers Natural numbers Powers of ten (scientific notation) Integers Notable integers Named numbers Prime numbers Highly composite numbers Perfect numbers Cardinal numbers Small numbers English names for powers of 10 SI prefixes for powers of 10 Fractional numbers Irrational and suspected irrational numbers Algebraic numbers Transcendental numbers Suspected transcendentals Numbers not known with high precision Hypercomplex numbers Algebraic complex numbers Other hypercomplex numbers Transfinite numbers Numbers representing measured quantities Numbers representing physical quantities Numbers without specific values See also Notes Further reading External links Rational numbers A rational number is any number that can be expressed as the quotient or fraction p/q of two integers, a numerator p and a non-zero denominator q.[1] Since q may be equal to 1, every integer is a rational number. The set of all rational numbers, often referred to as "the rationals", the field of rationals or the field of rational numbers is usually denoted by a boldface Q (or blackboard bold , Unicode ℚ);[2] it was thus denoted in 1895 byGiuseppe Peano after quoziente, Italian for "quotient". Natural numbers Natural numbers are those used for counting (as in "there are six (6) coins on the table") and ordering (as in "this is the third (3rd) largest city in the country"). In common language, words used for counting are "cardinal numbers" and words used for ordering are -
Calculating Logs Manually
calculating logs manually File Name: calculating logs manually.pdf Size: 2113 KB Type: PDF, ePub, eBook Category: Book Uploaded: 3 May 2019, 12:21 PM Rating: 4.6/5 from 561 votes. Status: AVAILABLE Last checked: 10 Minutes ago! In order to read or download calculating logs manually ebook, you need to create a FREE account. Download Now! eBook includes PDF, ePub and Kindle version ✔ Register a free 1 month Trial Account. ✔ Download as many books as you like (Personal use) ✔ Cancel the membership at any time if not satisfied. ✔ Join Over 80000 Happy Readers Book Descriptions: We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with calculating logs manually . To get started finding calculating logs manually , you are right to find our website which has a comprehensive collection of manuals listed. Our library is the biggest of these that have literally hundreds of thousands of different products represented. Home | Contact | DMCA Book Descriptions: calculating logs manually And let’s start with the logarithm of 2. As a kid I always wanted to know how to calculate log 2 and nobody was able to tell me. Can we guess the logarithm of 19,683.Let’s follow the chain. We are looking for 1225, so to account for the difference let’s round 3.0876 up to 3.088. How to calculate log 11. Here is a way to do this. We can take the geometric mean of 10 and 12. -
1 Introduction
1 Introduction Definition 1. A rational number is a number which can be expressed in the form a/b where a and b are integers with b > 0. Theorem 1. A real number α is a rational number if and only if it can be expressed as a repeating decimal, that is if and only if α = m.d1d2 . dkdk+1dk+2 . dk+r, where m = [α] if α ≥ 0 and m = −[|α|] if α < 0, where k and r are non-negative integers with r ≥ 1, and where the dj are digits. Proof. If α = m.d1d2 . dkdk+1dk+2 . dk+r, then (10k+r − 10k)α ∈ Z and it easily follows that α is rational. If α = a/b with a and b integers and b > 0, then α = m.d1d2 ... for some digits dj. If {x} denotes the fractional part of x, then j {10 |α|} = 0.dj+1dj+2 .... (1) On the other hand, {10j|α|} = {10ja/b} = u/b for some u ∈ {0, 1, . , b − 1}. Hence, by the pigeon-hole principle, there exist non-negative integers k and r with r ≥ 1 and {10k|α|} = {10k+r|α|}. From (1), we deduce that 0.dk+1dk+2 ··· = 0.dk+r+1dk+r+2 ... so that α = m.d1d2 . dkdk+1dk+2 . dk+r, and the result follows. Definition 2. A number is irrational if it is not rational. Theorem 2. A real number α which can be expressed as a non-repeating decimal is irrational. Proof 1. From the argument above, if α = m.d1d2 .. -
Introducing Mathematica
Introducing Mathematica John H. Lowenstein Preface This informal introduction to Mathematica®(a product of Wolfram Research, Inc.) is offered as a downloadable resource for users of the textbook Essentials of Hamiltonian Dynamics (Cambridge University Press, 2012). The aim is to familiarize the student with the core concepts and functions of Mathematica programming, so that he or she can very quickly become comfortable with computational methods in dealing with the illustrative examples and exercises in the textbook. The scope of Mathematica obviously greatly exceeds what can be covered in these few pages, and so it is highly recommended that the student take full advantage of the excellent documentation which is included with the software (accessible via the Help menu). 1. Getting started Mathematica conducts a dialogue with the user: you type in a mathematical expression, press Enter , and Mathemat- ica evaluates the expression according to rules which are either built-in or have been prescribed by you, displaying the result as output. The input/output alternation continues until you quit the session, with all steps recorded in the cells of your notebook. The simplest expressions involve ordinary numbers (e.g. 1, 2, 3, . , 1/2, 2/3, . , 3.14159), and the familiar operations and relations of arithmetic and logic. Elementary numerical operations: + (plus), - (minus), * (times), / (divided by), ^ (to the power) Elementary numerical relations: == (is equal to), != (is not equal to), < (is less than), > (is greater than), <= (is less than or equal to), >= (is greater than or equal to) Elementary logical relations: || (or), && (and), ! (not) For example, 2+2 evaluates to 4 , 1<2 evaluates to True , and !(2>1) evaluates to False . -
ON the GENESIS of BBP FORMULAS 3 Where R0 and R1 Are Rational Numbers
ON THE GENESIS OF BBP FORMULAS DANIEL BARSKY, VICENTE MUNOZ,˜ AND RICARDO PEREZ-MARCO´ Abstract. We present a general procedure to generate infinitely many BBP and BBP-like formu- las for the simplest transcendental numbers. This provides some insight and a better understanding into their nature. In particular, we can derive the main known BBP formulas for π. We can under- stand why many of these formulas are rearrangements of each other. We also understand better where some null BBP formulas representing 0 come from. We also explain what is the observed re- lation between some BBP formulas for log 2 and π, that are obtained by taking real and imaginary parts of a general complex BBP formula. Our methods are elementary, but motivated by transal- gebraic considerations, and offer a new way to obtain and to search many new BBP formulas and, conjecturally, to better understand transalgebraic relations between transcendental constants. 1. Introduction More than 20 years ago, D.H. Bailey, P. Bowein and S. Plouffe ([5]) presented an efficient algorithm to compute deep binary or hexadecimal digits of π without the need to compute the previous ones. Their algorithm is based on a series representation for π given by a formula discovered by S. Plouffe, +∞ 1 4 2 1 1 π = . (1) 16k 8k +1 − 8k +4 − 8k +5 − 8k +6 kX=0 Formulas of similar form for other transcendental constants were known from long time ago, like the classical formula for log 2, that was known to J. Bernoulli, +∞ 1 1 log 2 = . 2k k Xk=1 arXiv:1906.09629v3 [math.NT] 22 Jul 2020 The reader can find in [4] an illustration of the way to extract binary digits from this type of formulae.