Opening a New Window Onto the Cambrian Explosion of Animal Life

Total Page:16

File Type:pdf, Size:1020Kb

Opening a New Window Onto the Cambrian Explosion of Animal Life Newsletter 98 85 Opening a new window onto the Cambrian Explosion of animal life Ben J. Slater Department of Earth Sciences (Palaeobiology), Uppsala University Introduction The radiation of bilaterian animals near the beginning of the Cambrian Period is the evolutionary revolution that divides the ecologically ‘modern’ Phanerozoic world from that of the preceding microbial-dominated biosphere. Tracing how this radiation unfolded has to a large extent relied on the records of biomineralized taxa, simply because these organisms are more readily fossilized. The misleading picture afforded by the shelly fossil record is most famously revealed in Cambrian Burgess Shale-type Lagerstätten, where the diversity of unmineralized organisms greatly outnumbers that of biomineralizers (Butterfield 2003). Cambrian Burgess Shale-type Lagerstätten, however, do not appear until Cambrian Stage 3, post-dating the rapid radiation of biomineralized taxa and trace fossils recorded in the earliest Cambrian. This temporal restriction of Burgess Shale- type Lagerstätten and their absence from the Cambrian Terreneuvian Series (~541–521 Ma) severely limits our picture of earliest Cambrian ecosystems (Budd 2003). Small carbonaceous fossils (SCFs) are a polyphyletic assortment of organic microfossils preserved in siliciclastic sediments, encompassing the (usually) fragmented remains of metazoans, algae and protists (Butterfield and Harvey 2012). Often, SCFs capture elements of the biota that are otherwise only found among macrofossil-bearing Burgess Shale-type Lagerstätten. By contrast with these rare and restricted Lagerstätten sites, SCFs are preserved in a much broader array of sedimentary rocks, likely as a result of the relaxed biostratinomic demands on their fossilization. Consequently, SCFs offer the opportunity to greatly expand the fossil record of non-biomineralizing and cuticle-forming organisms in the Cambrian, particularly into parts of the Cambrian System which currently lack any known Burgess Shale-type Lagerstätten (Budd and Jensen 2003). Recent identification of a rich SCF record in sediments from eastern Scandinavia (southeast Sweden and the Baltic islands, see Figure 1) has shed new light on the non-biomineralized constituents of early Cambrian ecosystems from this region (Slater et al. 2017a; Guilbaud et al. 2018). In eastern Scandinavia, the record of these SCF-bearing sediments begins in Cambrian Stage 4 (approximately 514 Ma or younger). In western Scandinavia (e.g. in southern Norway, Figure 1), however, comparable siliciclastic sequences encompass more-or-less the full range of the early Cambrian. The problem with constructing a similar SCF record in western Scandinavia is not so much one of discontinuity, but of diagenesis – the significant thermal metamorphism encountered in strata closer to the epicentre of Caledonian orogenic deformation is liable to have volatilized any original organic remains in the worst affected rocks (Slater et al. 2017b). Fortunately, substantial packages Newsletter 98 86 of early Cambrian sediments in southern Norway have escaped such heating. This project focuses on sediments from the Mjøsa Lake region of southern Norway, alongside several other localities in southern Scandinavia. The aim is to extend the nascent SCF record in Scandinavia into the earliest Cambrian. Figure 1. Map of Scandinavia showing localities where Cambrian SCF assemblages have been recovered in the east (red stars), and new target regions for this study (blue stars). Methodology During fieldwork to key localities around the Mjøsa Lake region, samples were systematically collected from targeted members and formations, spanning the latest Ediacaran to early Cambrian Stage 4 (Figure 2). Figure 2. Field localities. A: River section at Lauselva showing gneissic Proterozoic basement overlain by Cambrian sediments. B: Cambrian section at Skyberg, (Sam Slater and Graham Budd in the foreground). C: Ediacaran sediments at Biri. D: early Cambrian mudstones and sandstones at Sollerud. >>Grant REPORTS Newsletter 98 87 An interesting aspect of some of the targeted sections is that fine-grained sediments bearing carbonaceous remains are intimately associated with shelly fossil deposits, permitting close spatial and temporal comparison of these contrasting preservation modes: this is unlike the situation for the majority of SCF-productive sediments in eastern Scandinavia (Slater et al. 2017a), which preserve only a limited variety of shelly fossils. Where permitted by the lithology, both mudstones (SCF-bearing) and interbedded limestones (bearing shelly fossil remains) were sampled. Collected mudstone samples were subsequently processed for organic remains using a low-manipulation procedure optimized for the recovery of SCFs (see Butterfield and Harvey 2012), while limestones were subject to treatment with weak formic and acetic acid to recover phosphatic shelly remains. Future work Preliminary results show that several of the target sections are productive for both SCFs and acritarch assemblages. Ongoing processing and preparation of samples aim to identify the most productive horizons within these sections for further analysis and imaging of microfossils using SEM. Since the data on earliest Cambrian SCFs is currently limited, the question remains as to whether initial reports of Terreneuvian SCFs assemblages (see Slater et al. 2018) give a representative picture from this time window more widely, or if they are the product of a more localized facies-controlled signal – further investigations of the sediments recovered in this study will help to resolve how widespread these seemingly characteristic assemblages are. Acknowledgements I sincerely thank the Palaeontological Association for funding this research (grant PA-RG201702) which allowed me to conduct fieldwork to collect essential data for this project. Thanks also to Graham E. Budd, Sam M. Slater and Dasiel Borroto Escuela for their support with fieldwork and logistical aspects of the project. REFERENCES BUDD, G. E. 2003. The Cambrian fossil record and the origin of the phyla. Integrative and Comparative Biology, 43, 157–165. BUDD, G. E. and JENSEN, S. 2003. The limitations of the fossil record and the dating of the origin of the Bilateria. Systematics Association Special Volume, 66, 166–189. BUTTERFIELD, N. J. 2003. Exceptional fossil preservation and the Cambrian Explosion. Integrative and Comparative Biology, 43, 166–177. BUTTERFIELD, N. J. and HARVEY, T. H. P. 2012. Small carbonaceous fossils (SCFs): A new measure of early Paleozoic paleobiology. Geology, 40, 71–74. GUILBAUD, R., SLATER, B. J., POULTON, S. W., HARVEY, T. H. P., BROCKS, J. J., NETTERSHEIM, B. J. and BUTTERFIELD, N. J. 2018. Oxygen minimum zones in the early Cambrian ocean. Geochemical Perspectives Letters, 6, 33–38. SLATER, B. J., HARVEY, T. H. P., GUILBAUD, R. and BUTTERFIELD, N. J. 2017a. A cryptic record of Burgess Shale-type diversity from the early Cambrian of Baltica. Palaeontology, 60, 117–140. SLATER, B. J., WILLMAN, S., BUDD, G. E. and PEEL, J. S. 2017b. Widespread preservation of small carbonaceous fossils (SCFs) in the early Cambrian of North Greenland. Geology, 46, 107–110. SLATER, B. J., HARVEY, T. H. P. and BUTTERFIELD, N. J. 2018. Small carbonaceous fossils (SCFs) from the Terreneuvian (lower Cambrian) of Baltica. Palaeontology, 61, 417–439..
Recommended publications
  • Plant Macrofossil Evidence for an Early Onset of the Holocene Summer Thermal Maximum in Northernmost Europe
    ARTICLE Received 19 Aug 2014 | Accepted 27 Feb 2015 | Published 10 Apr 2015 DOI: 10.1038/ncomms7809 OPEN Plant macrofossil evidence for an early onset of the Holocene summer thermal maximum in northernmost Europe M. Va¨liranta1, J.S. Salonen2, M. Heikkila¨1, L. Amon3, K. Helmens4, A. Klimaschewski5, P. Kuhry4, S. Kultti2, A. Poska3,6, S. Shala4, S. Veski3 & H.H. Birks7 Holocene summer temperature reconstructions from northern Europe based on sedimentary pollen records suggest an onset of peak summer warmth around 9,000 years ago. However, pollen-based temperature reconstructions are largely driven by changes in the proportions of tree taxa, and thus the early-Holocene warming signal may be delayed due to the geographical disequilibrium between climate and tree populations. Here we show that quantitative summer-temperature estimates in northern Europe based on macrofossils of aquatic plants are in many cases ca.2°C warmer in the early Holocene (11,700–7,500 years ago) than reconstructions based on pollen data. When the lag in potential tree establishment becomes imperceptible in the mid-Holocene (7,500 years ago), the reconstructed temperatures converge at all study sites. We demonstrate that aquatic plant macrofossil records can provide additional and informative insights into early-Holocene temperature evolution in northernmost Europe and suggest further validation of early post-glacial climate development based on multi-proxy data syntheses. 1 Department of Environmental Sciences, ECRU, University of Helsinki, P.O. Box 65, Helsinki FI-00014, Finland. 2 Department of Geosciences and Geography, University of Helsinki, P.O. Box 65, Helsinki FI-00014, Finland.
    [Show full text]
  • Standard Procedures for the Assessment and Mitigation of Adverse Impacts to Paleontological Resources
    Standard Procedures for the Assessment and Mitigation of Adverse Impacts to Paleontological Resources Society of Vertebrate Paleontology Impact Mitigation Guidelines Revision Committee Abstract Fossils are nonrenewable paleontological resources that are subject to impacts from land development. Procedures are presented for evaluating the potential for impacts of a proposed action on paleontological resources and for mitigating those impacts. Impact mitigation includes pre-project survey and salvage, monitoring and screen washing during excavation to salvage fossils, conservation and inventory, and final reports and specimen curation. The objective of these procedures is to offer standard methods for assessing potential impacts to fossils and mitigating these impacts. Introduction Fossils are nonrenewable paleontological resources that are afforded protection by federal, state, and local environmental laws and regulations. The Paleontological Resources Preservation Act (PRPA) of 2009 calls for uniform policies and standards that apply to fossils on all federal public lands. All federal land management agencies are required to develop regulations that satisfy the stipulations of the PRPA. Section 6302 of the PRPA mandates that federal agencies "shall manage and protect paleontological resources on Federal land using scientific principles and expertise." Thus, federal agencies need the help of the professional paleontological community in the formulation and implementation of these PRPA- mandated policies and regulations. The potential for destruction or degradation of paleontological resources on both public and private lands selected for development under the jurisdiction of various governmental planning agencies is recognized. The standard procedures below are intended to be applicable to both private and public lands under the jurisdiction of local, city, county, regional, state, and federal agencies.
    [Show full text]
  • PAL-3, Paleontological Resources Mitigation And
    DOCKETED Docket Number: 16-AFC-01C Project Title: Stanton Energy Reliability Center - Compliance TN #: 226417 PAL-3, Paleontological Resources Mitigation and Monitoring Program Document Title: (PRMMP) Description: N/A Filer: Marichka Haws Organization: California Energy Commission Submitter Role: Commission Staff Submission Date: 1/31/2019 11:24:15 AM Docketed Date: 1/31/2019 STATE OF CALIFORNIA – NATURAL RESOURCES AGENCY GAVIN NEWSOM, Governor CALIFORNIA ENERGY COMMISSION 1516 NINTH STREET SACRAMENTO, CA 95814-5512 www.energy.ca.gov January 14, 2019 Greg Lamberg Compliance Manager W Power 650 Bercut Drive, Suite A Sacramento, CA 95811 SUBJECT: Stanton Energy Reliability Center (16-AFC-01C), PAL-3, Paleontological Resources Mitigation and Monitoring Program (PRMMP) Dear Mr. Lamberg, In accordance with PAL-3, the CPM has reviewed and approved the Paleontological Resources Mitigation and Monitoring Plan (PRMMP). If you have any questions or concerns, please contact John Heiser, Compliance Project Manager, at (916) 653-8236, or by fax to (916) 654-3882, or via e-mail at [email protected]. Sincerely, John Heiser Compliance Office Manager Siting, Transmission, & Environmental Protection Division CONDITION OF CERTIFICATION PAL- 3 Stanton Energy Reliability Center (16-AFC-01) Paleontological Resources Mitigation and Monitoring Plan Prepared for California Energy Commission November 2018 Orange County Office 27001 La Paz Road, Suite 230 Mission Viejo, CA 92691 The undersigned is the primary author of this document: Dr. W. Geoffrey Spaulding
    [Show full text]
  • Grand Canyon National Park Centennial Paleontological Resource Inventory (Non-Sensitive Version)
    Grand Canyon National Park Centennial Paleontological Resource Inventory (Non-Sensitive Version) Natural Resource Report NPS/GRCA/NRR—2020/2103 Vincent L. Santucci1 and Justin S. Tweet,2 editors 1National Park Service Geologic Resources Division 1849 “C” Street, NW Washington, D.C. 20240 2National Park Service 9149 79th St. S. Cottage Grove, Minnesota 55016 March 2020 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado Chapter 1. Introduction and Summary: The Paleontological Heritage of Grand Canyon National Park By Vincent L. Santucci1 1National Park Service Geologic Resources Division 1849 “C” Street, NW Washington, D.C. 20240 Throughout my life I have been bestowed the privilege of experiencing the world-renowned landscape and resources of the Grand Canyon from many perspectives and viewsheds (Figure 1-1). My first views were standing and taking photos from the many vantage points and overlooks along the North and South rims. I have enjoyed many hikes into the canyon with colleagues from the National Park Service (NPS) or with academic geologists and paleontologists. On a few occasions I ventured down and then back up the trails of the canyon with my children Sarah, Bethany, Luke, Jacob, Brianna and Abigail, often carrying one or more in my arms on the climb against gravity. I traversed by foot to the base of the canyon at Phantom Ranch and gained a greater appreciation for the geologic story preserved in the park strata. I have gazed intensely out the window of many commercial aircraft from above this geologic wonder of Earth, contemplating the geomorphic “grandeur” created over "Deep Time" and the artistry of processes perfected by “Mother Nature.” I pinch myself when I recall the opportunity when my friend Justin Tweet and I were granted permission to fly into the western portion of the Grand Canyon on a small NPS plane operated by a pilot from Lake Mead National Recreation Area.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Active Research Grants
    Linda C. Ivany Professor Department of Earth and Environmental Sciences Heroy Geology Laboratory,Syracuse University, Syracuse, NY 13244 phone: (315) 443-3626 / fax: (315) 443-3363 / email: [email protected] http://thecollege.syr.edu/people/faculty/pages/ear/Ivany-Linda.html https://orcid.org/0000-0002-4692-3455 Education Ph.D. in Earth and Planetary Sciences, 1997, Harvard University Advisor: Stephen Jay Gould M.S. in Geology, minor in Zoology, 1990, University of Florida-Gainesville Advisor: Douglas S. Jones B.S. in Geology, minor in Zoology, 1988, Syracuse University Advisor: Cathryn R. Newton Academic Positions 2012-present Professor of Earth Sciences, Syracuse University 2005-2012 Associate Professor of Earth Sciences, Syracuse University 2001-2005 Assistant Professor of Earth Sciences, Syracuse University 2000-2001 Visiting Assistant Professor of Earth Sciences, Syracuse University 1997-2000 Michigan Society Fellow and Visiting Assistant Professor of Geological Sciences, University of Michigan General Research Interests Evolutionary Paleoecology, Paleoclimatology, Stable Isotopes in Paleobiology I am a marine paleoecologist and paleoclimatologist. My interests lie broadly in the evolution of the Earth-life system and how ecosystems and their component taxa evolve and respond to changes in the physical environment. Specific areas of interest include biotic and climatic change during the Paleogene (~65-24 million years ago); use of geochemical data, particularly stable isotopes, derived from accretionary biogenic materials for inference
    [Show full text]
  • Proposed Global Standard Stratotype-Section And
    PROPOSED GLOBAL STANDARD STRATOTYPE-SECTION AND POINT FOR THE DRUMIAN STAGE (CAMBRIAN) Prepared for the International Subcommission on Cambrian Stratigraphy by: Loren E. Babcock School of Earth Sciences The Ohio State University, 125 South Oval Mall Columbus, OH 43210, USA [email protected] Richard A. Robison Department of Geology, University of Kansas Lawrence, KS 66045, USA [email protected] Margaret N. Rees Department of Geoscience University of Nevada, Las Vegas Las Vegas, NV 89145, USA [email protected] Peng Shanchi Nanjing Institute of Geology and Palaeontology Chinese Academy of Sciences 39 East Beijing Road, Nanjing 210008, China [email protected] Matthew R. Saltzman School of Earth Sciences The Ohio State University, 125 South Oval Mall Columbus, OH 43210, USA [email protected] 31 July 2006 CONTENTS Introduction …………………………………………………………………………. 2 Proposal: Stratotype Ridge, Drum Mountains (Millard County, Utah, USA) as the GSSP for the base of the Drumian Stage ……………………………………………………. 3 1. Stratigraphic rank of the boundary …………………..…………………………… 3 2. Proposed GSSP – geography and physical geology ……………………………… 3 2.1. Geographic location …………………………………………………...….. 3 2.2. Geological location ………………..……………………...…………...….. 4 2.3. Location of level and specific point ……………………..……………...… 4 2.4. Stratigraphic completeness ………………...……………………………… 5 2.5. Thickness and stratigraphic extent …………………...……………...……. 5 2.6. Provisions for conservation, protection, and accessibility ……………..…. 5 3. Motivation for selection of the boundary level and of the potential stratotype section ………………………………………………………………………………. 6 3.1. Principal correlation event (marker) at GSSP level ………...…………..… 6 3.2. Potential stratotype section …………………………………………....….. 7 3.3. Demonstration of regional and global correlation ………………………... 8 3.3.1. Agnostoid trilobite biostratigraphy ………………………………… 9 3.3.2. Polymerid trilobite biostratigraphy …………....…………….…….
    [Show full text]
  • Abstract Volume
    https://doi.org/10.3301/ABSGI.2019.04 Milano, 2-5 July 2019 ABSTRACT BOOK a cura della Società Geologica Italiana 3rd International Congress on Stratigraphy GENERAL CHAIRS Marco Balini, Università di Milano, Italy Elisabetta Erba, Università di Milano, Italy - past President Società Geologica Italiana 2015-2017 SCIENTIFIC COMMITTEE Adele Bertini, Peter Brack, William Cavazza, Mauro Coltorti, Piero Di Stefano, Annalisa Ferretti, Stanley C. Finney, Fabio Florindo, Fabrizio Galluzzo, Piero Gianolla, David A.T. Harper, Martin J. Head, Thijs van Kolfschoten, Maria Marino, Simonetta Monechi, Giovanni Monegato, Maria Rose Petrizzo, Claudia Principe, Isabella Raffi, Lorenzo Rook ORGANIZING COMMITTEE The Organizing Committee is composed by members of the Department of Earth Sciences “Ardito Desio” and of the Società Geologica Italiana Lucia Angiolini, Cinzia Bottini, Bernardo Carmina, Domenico Cosentino, Fabrizio Felletti, Daniela Germani, Fabio M. Petti, Alessandro Zuccari FIELD TRIP COMMITTEE Fabrizio Berra, Mattia Marini, Maria Letizia Pampaloni, Marcello Tropeano ABSTRACT BOOK EDITORS Fabio M. Petti, Giulia Innamorati, Bernardo Carmina, Daniela Germani Papers, data, figures, maps and any other material published are covered by the copyright own by the Società Geologica Italiana. DISCLAIMER: The Società Geologica Italiana, the Editors are not responsible for the ideas, opinions, and contents of the papers published; the authors of each paper are responsible for the ideas opinions and con- tents published. La Società Geologica Italiana, i curatori scientifici non sono responsabili delle opinioni espresse e delle affermazioni pubblicate negli articoli: l’autore/i è/sono il/i solo/i responsabile/i. ST3.2 Cambrian stratigraphy, events and geochronology Conveners and Chairpersons Per Ahlberg (Lund University, Sweden) Loren E.
    [Show full text]
  • Paleontology and Stratigraphy of Eocene Rocks at Pulali Point, Jefferson County, Eastern Olympic Peninsula, Washington
    PALEONTOLOGY AND STRATIGRAPHY OF EOCENE ROCKS AT PULALI POINT, JEFFERSON COUNTY, EASTERN OLYMPIC PENINSULA, WASHINGTON by RICHARD L. SQUIRES, JAMES L. GOEDERT, and KEITH L. KALER WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES REPORT OF INVESTIGATIONS 31 1992 ., WASHINGTON STATE DEPARTMENT OF Natural Resources Brian Boyle • Commhstoner of Public Lands An Steo_r0$ - Superv1sor Division ol Geology and Earth Resources Raymond Lcmnanls. State Geologlsl PALEONTOLOGY AND STRATIGRAPHY OF EOCENE ROCKS AT PULALI POINT, JEFFERSON COUNTY, EASTERN OLYMPIC PENINSULA, WASHINGTON by RICHARD L. SQUIRES, JAMES L. GOEDERT, AND KEITH L. KALER WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES REPORT OF INVESTIGATIONS 31 1992 W>.SHING'TON STAT1r OEPARTMDIT or Natural Resources 8ncll) Bov,. · COmmmioner ot Pu!xk: tancb M $i.atni; S\lp$1'WOJ' DtY!llcn 01 Gtology ahCS £artti ~ Raymond l.mlMn.:I ~Geologist Cover: From left, ?Falsifusus marysvillensis; Pachycrommium clarki; large bivalve, Veneri­ cardia hornii s.s.; Delectopecten cf. D. vancouverensis sanjuanensis; Turritella uvasana hendoni. These specimens are shown at 150 percent of the dimensions on Plates 1 and 3. Use of trade, product, or firm names in this report is for descriptive purposes only and does not consitute endorsement by the Washington Division of Geology and Earth Resources. This report is available from: Publications Washington Department of Natural Resources Division of Geology and Earth Resources P.O. Box 47007 Olympia, WA 98504-7007 Price $ 1.85 Tax (Stale residenl.t only) .15 Total $ 2.00 Mail orders must be prepaid; please add $1.00 to each order for postage and handling. Make checks payable to the Department of Natural Resources.
    [Show full text]
  • Ediacaran and Cambrian Stratigraphy in Estonia: an Updated Review
    Estonian Journal of Earth Sciences, 2017, 66, 3, 152–160 https://doi.org/10.3176/earth.2017.12 Ediacaran and Cambrian stratigraphy in Estonia: an updated review Tõnu Meidla Department of Geology, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Ravila 14a, 50411 Tartu, Estonia; [email protected] Received 18 December 2015, accepted 18 May 2017, available online 6 July 2017 Abstract. Previous late Precambrian and Cambrian correlation charts of Estonia, summarizing the regional stratigraphic nomenclature of the 20th century, date back to 1997. The main aim of this review is updating these charts based on recent advances in the global Precambrian and Cambrian stratigraphy and new data from regions adjacent to Estonia. The term ‘Ediacaran’ is introduced for the latest Precambrian succession in Estonia to replace the formerly used ‘Vendian’. Correlation with the dated sections in adjacent areas suggests that only the latest 7–10 Ma of the Ediacaran is represented in the Estonian succession. The gap between the Ediacaran and Cambrian may be rather substantial. The global fourfold subdivision of the Cambrian System is introduced for Estonia. The lower boundary of Series 2 is drawn at the base of the Sõru Formation and the base of Series 3 slightly above the former lower boundary of the ‘Middle Cambrian’ in the Baltic region, marked by a gap in the Estonian succession. The base of the Furongian is located near the base of the Petseri Formation. Key words: Ediacaran, Cambrian, correlation chart, biozonation, regional stratigraphy, Estonia, East European Craton. INTRODUCTION The latest stratigraphic chart of the Cambrian System in Estonia (Mens & Pirrus 1997b, p.
    [Show full text]
  • PALEONTOLOGY Editor David S Berman Managing Editor Mary Ann Schmidt, ELS Coordinating Editors: International -
    OFFICERS President - William A. Clemens, Jr. Vice President - David W. Krause Past President - C. S. Churcher Members-at-Large - Annalisa Berta OF Brent H. Breithaupt SOCIETY Kathleen M. Scott Secretary - John J. Flynn VERTEBRATE Treasurer - John R. Bolt NEWS BULLETIN EDITORS PALEONTOLOGY Editor David S Berman Managing Editor Mary Ann Schmidt, ELS Coordinating Editors: International - -. Miao Desui Canada Kevin Seymour Northeast USA Judy A. Massare Southeast Editor William P. Wall Midwest USA Russell W. Graham Rocky Mountain Region USA Brent H. Breithaupt Southwest USA Nicholas Czaplewski Pacific Coast USA George Callison Mexico Shelton P. Applegate COPY DEADLINES January 1, May 1, September 1 Send members' news to coordinating editors Send notices directly to Editor Published in Pittsburgh, Pennsylvania Subscription rate: $25.00 per year SOCIETY OF VERTEBRATE PALEONTOLOGY 401 N. Michigan Avenue Non-Protit Org. Chicago, IL 6061 1-4267 USA U.S. Postage Paid Pittsburgh, PA Pem~tNo. 307 I I 4 '. , r' ' NUMBER 163 JANUARY 1995 University of California - Berkeley 20874820 (JVP) 1734640X (NB) Main Library 01 - Periodicals NEWS BULLETIN Division BERKELEY CA 94720 USA It is extremely important to distinguish betwen archaeological and paleontological (=fossil) resource sites when defining the sensitivity of rock units. The boundaries of archaeological sites define the areal extent of the resource. Paleontologic sites, however, indicab that the containing sedimentary rock unit or formation is Conformable Impact Mitigation Guidelines Committee fossili8rous. The limik of the entire rock formation, both areal and stratigraphic, therefore detine the scope of The Committee for Conformable Impact Mitigation Guidelines has been active for five the paleontologic potential in each case.
    [Show full text]
  • Geologic, Climatic, and Vegetation History of California
    GEOLOGIC, CLIMATIC, AND VEGETATION HISTORY OF CALIFORNIA Constance I. Millar I ntroduction The dawning of the “Anthropocene,” the era of human-induced climate change, exposes what paleoscientists have documented for decades: earth’s environment—land, sea, air, and the organisms that inhabit these—is in a state of continual flux. Change is part of global reality, as is the relatively new and disruptive role humans superimpose on environmental and climatic flux. Historic dynamism is central to understanding how plant lineages exist in the present—their journey through time illuminates plant ecology and diversity, niche preferences, range distributions, and life-history characteristics, and is essential grounding for successful conservation planning. The editors of the current Manual recognize that the geologic, climatic, and vegetation history of California belong together as a single story, reflecting their interweaving nature. Advances in the sci- ences of geology, climatology, and paleobotany have shaken earlier interpretations of earth’s history and promoted integrated understanding of the origins of land, climate, and biota of western North America. In unraveling mysteries about the “what, where, and when” of California history, the respec- tive sciences have also clarified the “how” of processes responsible for geologic, climatic, and vegeta- tion change. This narrative of California’s prehistory emphasizes process and scale while also portraying pic- tures of the past. The goal is to foster a deeper understanding of landscape dynamics of California that will help toward preparing for changes coming in the future. This in turn will inform meaningful and effective conservation decisions to protect the remarkable diversity of rock, sky, and life that is our California heritage.
    [Show full text]