Phosphotungstic Acid Modified Expanded PTFE Based Nafion Composites

Total Page:16

File Type:pdf, Size:1020Kb

Phosphotungstic Acid Modified Expanded PTFE Based Nafion Composites Journal of New Materials for Electrochemical Systems 14, 217-222 (2011) © J. New Mat. Electrochem. Systems Phosphotungstic Acid Modified Expanded PTFE based Nafion Composites K. Pattabiraman and K. Ramya Centre For Fuel Cell Technology, ARC- International, IIT M Research Park, Phase I, 2nd Floor, No.6 Kanagam Road, Taramani, Chennai 600113, India. Received: May 06, 2011, Accepted: May 30, 2011, Available online: July 06, 2011 Abstract: Composite membranes have been prepared by impregnation of PFSI( perfluorosulphonic acid ionomer) solution (Nafion®) into the expanded polytetrafluoroethylene (EPTFE) matrix. The matrix was modified by Na/Naphthalene treatment and with phosphotung- stic acid (PTA). The matrix modifications helped in reducing the contact angle thereby improving the impregnation process by reducing the hydrophobicity of the matrix. The fuel cell made with these composite membranes showed that the performance of PTA modified matrix is comparable to that of Na/ naphthalene modified matrix. Further the performances of matrix modified membranes were higher than that of the as received matrix-composites. PTA treatment offers a simple method of matrix modification to achieve high performance. Keywords: Polymer electrolyte membrane fuel cells, Composite ionomers, expanded PTFE, Phosphotungstic acid, surface modification 1. INTRODUCTION high temperature performance of the most commonly used per- fluorosulphonic acid based polymer electrolyte in fuel cells Perfluorosulphonic acid ionomers (PFSI) are fast ion conductors [13,14]. Malhotra and Dutta [15] showed that incorporation of and are widely used as an electrolyte in many electrochemical inorganic solid acids (phosphotungstic acid) in Nafion resulted in devices [1]. Recent literature reports have shown that composite improved water retention capacity due to additional acid sites and membranes of PFSI offer many advantages in terms of lower cost, good fuel cell performance at elevated temperatures. Kannan et al higher thermal stability and good mechanical strength [2], im- [16] have prepared modified Nafion membranes with phospho- proved durability and performance [3], reduced swelling character- silicate for improved water retention and proton conduction. They istics [4] etc. A composite membrane prepared using a porous also found that samples with higher phosphate content exhibited framework substrate with the pores filled with a PFSI such as high water uptake and proton conductivity. Nafion offers all the benefits described above [5,6]. Nafion has a Literature studies thus cite the advantages of using hydrophobic tetrafluoroethylene backbone and hydrophilic side Nafion/EPTFE composite membranes and the use of heteropolya- chains that aggregate making it difficult to fill the porous EPTFE cids as additives for improvement in properties. Further surface substrates with Nafion solutions. Various methods to improve modified EPTFE have been shown to have better wetting charac- impregnation include use of solvents having solubility parameters teristics and improved properties due to better interactions between suitable to backbone/ ionomer[2,7], use of surfactants [8], surface the substrate and Nafion. As EPTFE substrate is very stable it modification of EPTFE through etching [9,10] etc. requires a strong radical ion (sodium Naphthalene radical) to ab- Heteropolyacids (HPAs) are the most attractive inorganic modi- stract the fluoride ion from backbone. The process requires the use fiers because these materials in crystalline form are highly conduc- of a number of solvents and the localized heat generated during tive [11] and thermally stable. The use of heteropolyacids in defluorination may damage the membrane. A simpler process for preparation of composite polymer electrolytes for fuel cell offer surface modification would hence be advantages. This paper sug- many advantages as they improve conductivity and decrease the gests a non-reactive surface modification method using phospho- dependence of the membrane on humidity for optimum perform- tungstic acid. The EPTFE substrate treated with PTA solution ance [12]. In addition, they have also been proven to improve the would have a coating of PTA molecules in the pores of the sample. *To whom correspondence should be addressed: Email: [email protected] Due to good interactions between the PTA and Nafion all the Phone: +91-44-66632710 , Fax: +91-44-66632702 pores of substrate would get coated and an improved membrane 217 218 K. Pattabiraman and K. Ramya / J. New Mat. Electrochem. Systems would be obtained. The results of these modifications are presented in this paper. To the best of our knowledge this is the only paper where PTA has been used first to treat the matrix to be coated with Nafion later. 2. EXPERIMENTAL 2.1. Preparation of Nafion/EPTFE composites Porous EPTFE ( Yeu Ming Tai Chemical Industrial Co., Ltd., Taiwan, thickness 25±5µm, porosity 85%) was first washed with alcohol and dried in oven. The EPTFE film was then mounted on a frame and soaked in acetone for 30 min. Nafion solution (5%) ob- tained from Dupont Co, with an equivalent weight of 1000 was used for impregnating the porous EPTFE film. To minimize the aggregation of Nafion in the solution it was mixed with a high boil- ing solvent ( dimethylformamide / etylene glycol) to make the solu- tion into 2.5% of polymer in the solvent. The Nafion loading in the porous EPTFE film was maintained constant at 2mg/cm2 for all the membranes. Impregnation was carried out in steps to ensure that all the pores of the membrane were fully blocked to avoid gas cross- over. Membrane post treatment procedure included pressing the mem- branes at 30kg/cm2 at 120°C for 3 minutes followed by annealing. The membranes were soaked in water for 24 hrs and then in dilute H2SO4 for 4 hrs. The membranes were washed free of acid and used for further studies. The average thickness of the membranes was 27±5µm. For preparation of etched membranes the procedure adopted by Tang et al [9] and Jie et al [10] were used. The etched membranes were impregnated with Nafion using the procedure mentioned above. Fig 1 shows the schematic for the preparation of PTA modi- fied membranes. The impregnation procedure and the post treat- ment procedures followed were the same as that for other mem- Figure 1. Schematic for the preparation of PTA modified PTFE branes. composite 2.2. Characterization of Nafion/EPTFE composites The morphology of the surface of the composite membranes was studied using scanning electron microscope (SEM). The surface of fabrication of the MEA. the sample was coated with gold before the morphology of the The composite membranes prepared by the above techniques membranes was observed. EDAX analysis was carried out to study were used for the preparation of membrane electrode assemblies. the various elements present on the surface. FTIR studies were The membrane electrode assemblies were made by a proprietary carried out to study the functional groups present and the interac- technique developed in our lab using 40% Pt/C( Arora Mathey, tion between the various groups present. Thermogravimetry studies India), 5% Nafion Solution (DuPont, USA) and Carbon substrate were carried out to study the thermal stability of the various mem- from Ballard, USA. The catalyst layers were coated on a Gas diffu- branes prepared. Contact angle measurements were carried out to sion layer by brush and the catalyst loading (total) was 1mg/sq cm. 2 study the effect of various surface modifications on the porous The performance data were obtained from a 6.75 cm active area PTFE substrate. Conductivity measurements were carried out in the cell. Pure hydrogen and air were used as fuel and the oxidant. The transverse direction using two probe techniques. The membrane cells were operated at ambient pressure conditions. The inlet gases resistance was obtained by AC impedance technique in the fre- were humidified to temperatures higher by 10°C and 5°C than cell quency range of 100kHz to 100 Hz. temperature for hydrogen and air respectively. 2.3. Gas permeability and Fuel cell polarization 3. RESULTS AND DISCUSSION studies Three types of composite membranes based on Nafion/EPTFE Gas permeability across the membranes were tested by assem- were prepared. This included impregnation of pure EPTFE with bling the membrane in a fuel cell set up and passing the gas on one Nafion solution, fabrication of etched EPTFE/ Nafion composite 2 side of the cell. The test consisted of applying a 1kg/cm differen- and third non-interacting PTA modified EPTFE/Nafion composite. tial over pressure on one side while capping the other inlet and Although etching is a good surface modification method, it requires leading the outlet to a water reservoir[3]. If any bubble was ob- the use of Na/naphthalene radical synthesis and many solvents. The served in the water reservoir the membranes were not used for process may also not lead to uniform etching when large area mem- Phosphotungstic Acid Modified Expanded PTFE based Nafion Composites / J. New Mat. Electrochem. Systems 219 a) b) c) d) e) Figure 2. SEM pictures of a) Plain EPTFE, b) Etched EPTFE and c) PTA modified EPTFE d) Nafion coated EPTFE e) Transverse section of Nafion- ePTFE branes have to be processed. A non-reactive surface modification son to that of pure PTFE film the pores have become smaller. The method is suggested and the properties are compared with that decrease in the pore size has been reported to be due to structure obtained in other methods. The PTA modification was expected to and stress change as a result of Na/Naphthalene treatment [9]. The improve coatability and reduce interfacial resistance due to de- reduction in pore size was also reported to be advantageous for crease in contact angle as a result of PTA coating on the pores and impregnation of the pores due to higher capillary force. The smooth surface of the matrix when treated with a dilute solution of PTA in surface of the etched film shows that the film has not been dam- a wetting liquid and due to interaction of Nafion with PTA.
Recommended publications
  • A Review on the Effect of Proton Exchange Membranes in Microbial Fuel Cells
    Biofuel Research Journal 1 (2014) 7-15 Review A review on the effect of proton exchange membranes in microbial fuel cells Mostafa Rahimnejad *1, Gholamreza Bakeri1, Ghasem Najafpour1, Mostafa Ghasemi2, Sang-Eun Oh3 1Biotechnology Research Lab., Faculty of Chemical Engineering, Babol University of Technology, Babol, Iran 2Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia 3Department of Biological Environment, Kangwon National University, Chuncheon, Kangwon-do, Republic of Korea HIGHLIGHTS MFC is a novel knowledge that can be used to obtain bioenergy in the form bioelectricity. Transfer of produced electrons to anode is one of the main parts in MFCs. Some MFCs needs artificial electron shuttle in their anaerobic anode compartment. The important goal of MFCs is to reach a suitable power for application in small electrical devices. ARTICLE INFO ABSTRACT Article history: Microorganisms in microbial fuel cells (MFC) liberate electrons while the electron donors are consumed. In the anaerobic Received 3 December 2013 anode compartment, substrates such as carbohydrates are utilized and as a result bioelectricity is produced in the MFC. MFCs Received in revised form 5 January 2014 may be utilized as electricity generators in small devices such as biosensors. MFCs still face practical barriers such as low Accepted 6 January 2014 generated power and current density. Recently, a great deal of attention has been given to MFCs due to their ability to operate Available online 17 February 2014 at mild conditions and using different biodegradable substrates as fuel. The MFC consists of anode and cathode compartments. Active microorganisms are actively catabolized to carbon sources, therefore generating bioelectricity.
    [Show full text]
  • Advances in PNNL's Mixed Acid Redox Flow Battery Stack
    Advances in PNNL’s Mixed Acid Redox Flow Battery Stack David Reed, Ed Thomsen, Wei Wang, Zimin Nie, Bin Li, Brian Koeppel, Kurt Recknagle, and Vincent Sprenkle. Pacific Northwest National Laboratory Electrochemical Materials and Systems DOE Office of Electricity Energy Storage Program – Imre Gyuk Program Manager. OE Energy Storage Systems Program Review September 16-19th, 2014 Topics FY 14 Objectives and Goals Background Nafion membrane thickness development. Low cost interdigitated flow design 4 KW stack Conclusion and Future Work FY14 Redox Objectives and Goal Operate at 240 mA/cm2 with improved stack energy efficiency and lower stack pressure drop. Greater stack efficiency Use of 212/211 membrane versus 115. Greater system efficiency Use of interdigitated flow field Understand influence of temperature on stack efficiency Vanadium Mixed Acid Electrolyte 70% increase in capacity 2+ - Charge + Catholyte: VO + Cl + H2O – e Discharge VO2Cl + 2H εco=1.0 V . V2+, V3+, V4+, V5+ stable >2.8M, Anolyte: V3+ + e V2+ ε =-0.25 ao in SO2- and Cl- mixed solutions 2+ - 3+ + 2+ Overall: VO + Cl + H O + V VO Cl + 2H + V Eo=1.25 V 2 2 Power and Energy are separate enabling 80% increase in operating greater flexibility and safety. temperature window. Suitable for wide range of applications 10’s MW to ~ 5 kw . -5 – 50°C Wide range of chemistries available. Low energy density ~ 30 Whr/kg Redox Flow Battery Objectives Develop the technologies, tools, and system understanding required to move the mixed acid electrolyte chemistry from basic chemistry
    [Show full text]
  • Alkali Metal Ion-Proton Exchange Equilibria and Water Sorption
    2 Abstract Alkali metal ion - H +exchanges on Nafion 117 membrane treated differently, Dowex 50 W x 4 and Dowex 50 W x 8 resins have been studied at a total ionic strength of 0.1 mol dm-3. The water sorption isotherms of these exchangers in different ionic forms generated over the entire range of water activity, have been analysed by the D’Arcy and Watt equation (DWE). Water sorption studies have shown that the physical structure of the exchangers have changed due to long - storage or aging, resulting in poorer water sorption and even formation of pores in the case of Dowex 50 W x 8 resin. As a result, the counter ions in the exchangers are not hydrated and the water is present in a free form, albeit structured, in the resin phase. The selectivity sequence for the alkali metal ions with reference to the H + (Li+<Na+<K+) for the exchangers used in the present study is in accordance with that reported in the literature for the ionomers having sulphonic acid as the functional group. In view of the absence of hydration of the cations in the resin phase, the driving force for the selectivity of the cation, namely, the net gain in entropy, is expected to come from the loss of structured water during the exchange process. Pre treating the Nafion 117 membrane with boiling acid solution activates the clustered region of the membrane in the H + form, while pretreatment with boiling water expands the non-ionic domain (the region connecting the clusters). These modifications influence the state of water present in the Nafion 117 membrane and the ion exchange equilibria.
    [Show full text]
  • Thermodynamic Equilibrium Constants of Alkali Metal Ion-Hydrogen Ion
    Indian Journal of Chemistry Vol. 31A,June 1992, pp. 317-322 Thermodynamic equilibrium constants of alkali metal ion-hydrogen ion exchanges and related swelling free energies in perfluorosulphonate ionomer membrane (Nafion-117) in aqueous medium Sita T Iyer, Deoki Nandan & R M Iyer" Chemistry Division, Bhabha Atomic Research Centre, Trombav. Bombay 400 085 Li + IH + , Na + IH t , K + IH + , Rb + IH + and Cs + IH + exchange equilibria on a perfluorosulphonate ex- changer (Nafion-1l7) have been investigated at 0.1 M ionic strength in aqueous medium and thermody- namic equilibrium constants of 0.78 to 12.6 (Li + IH t to Cs + IH + ) have been evaluated and the alkali me- tal selectivity sequence has been found to be Cs + > Rh + > K + > Na + > Li ". The various ionic forms of Nafion-1l7 involved have also been subjected to isopiestic water vapour sorption investigations and the hydration numbers and swelling free energies determined. The exchange selectivities have been found to be consistent with the sequence of ionic hydration and swelling free energies, the exchange free energies showing a linear relationship with the difference in free energies of hydration of the exchanging ions as per Eisenman's model. The expanded selectivity as well as swelling free energy ranges observed in Nafion- 117 compared to Dowex SOW type of resins have been interpreted in terms of hydrative and osmotic swelling behaviours of the two exchangers. Existence of a solvent shared ion pair in Nafion-1l7. i.e. - SO; (H20)Cs + observed in an earlier study has been supported
    [Show full text]
  • Uranium-Free X Solution
    www.nature.com/scientificreports OPEN Uranium‑free X solution: a new generation contrast agent for biological samples ultrastructure Aldo Moscardini1,6, Sebastiano Di Pietro 2,6, Giovanni Signore3*, Paola Parlanti4, Melissa Santi5, Mauro Gemmi5 & Valentina Cappello5* Biological samples are mainly composed of elements with a low atomic number which show a relatively low electron scattering power. For Transmission Electron Microscopy analysis, biological samples are generally embedded in resins, which allow thin sectioning of the specimen. Embedding resins are also composed by light atoms, thus the contrast diference between the biological sample and the surrounding resin is minimal. Due to that reason in the last decades, several staining solutions and approaches, performed with heavy metal salts, have been developed with the purpose of enhancing both the intrinsic sample contrast and the diferences between the sample and resin. The best staining was achieved with the uranyl acetate (UA) solution, which has been the election method for the study of morphology in biological samples. More recently several alternatives for UA have been proposed to get rid of its radiogenic issues, but to date none of these solutions has achieved efciencies comparable to UA. In this work, we propose a diferent staining solution (X Solution or X SOL), characterized by lanthanide polyoxometalates (LnPOMs) as heavy atoms source, which could be used alternatively to UA in negative staining (NS), in en bloc staining, and post sectioning staining (PSS) of biological samples. Furthermore, we show an extensive chemical characterization of the LnPOM species present in the solution and the detailed work for its fnal formulation, which brought remarkable results, and even better performances than UA.
    [Show full text]
  • D520CS/521CS, D2020CS/2021CS Ion Exchange Materials Polymer Dispersions
    Product Bulletin P-14 D520CS/521CS, D2020CS/2021CS Ion Exchange Materials Polymer Dispersions Product Information Nafion™ perfluorosulfonic acid (PFSA) polymer and dispersant compositions. Typical uses include dispersions are made from chemically stabilized PFSA/ fabrication of thin films, coating formulations for fuel cell polytetrafluoroethylene (PTFE) copolymer in the acid membranes, catalyst coatings, sensors, and a variety of (H+) form and are available in several polymer content electrochemical applications. Typical Composition Nafion™ PFSA Polymer Dispersions by Composition Property D520CS D521CS D2020CS D2021CS 5.0 min. 5.0 min. 20.0 min. 20.0 min. Polymer Content, wt% 5.4 max. 5.4 max. 22.0 max. 22.0 max. Water Content, wt% 45 ± 3 45 ± 3 34 ± 2 34 ± 2 VOC Content, wt% 50 ± 3 50 ± 3 46 ± 2 46 ± 2 1-Propanol 48 ± 3 48 ± 3 44 ± 2 44 ± 2 Ethanol <4 <4 <2 <2 Mixed Ethers and Other VOCs <1 <1 <1 <1 Specific Gravity 0.92−0.94 0.92−0.94 1.01−1.03 1.01−1.03 Available Acid Capacity, meq/g, >1.00 >0.92 >1.00 >0.92 H+ polymer basis Total Acid Capacity, meq/g, 1.03−1.12 0.95−1.03 1.03−1.12 0.95−1.03 H+ polymer basis Viscosity, cP, at 25 °C (77 °F) and 10−40 10−40 50−500 50−500 40 sec–1 Shear Rate* *1 cP = 1 MPa·sec Nafion™ Ion Exchange Materials Order Information Handling Practices Dispersions are available in the following containers Ventilation should be provided for safe handling and (4-L minimum order): processing of Nafion™ dispersion.
    [Show full text]
  • PVDF-Modified Nafion Membrane for Improved Performance Of
    membranes Article PVDF-Modified Nafion Membrane for Improved Performance of MFC Liping Fan 1,2,*, Junyi Shi 2 and Yaobin Xi 2 1 College of Information Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China 2 College of Environment and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China; [email protected] (J.S.); [email protected] (Y.X.) * Correspondence: [email protected] Received: 9 July 2020; Accepted: 12 August 2020; Published: 13 August 2020 Abstract: Low power production and unstable power supply are important bottlenecks restricting the application of microbial fuel cells (MFCs). It is necessary to explore effective methods to improve MFC performance. By using molasses wastewater as fuel, carbon felt as an electrode, and the mixture of K3[Fe(CN)6] and NaCl as a catholyte, an MFC experimental system was set up to study the performance of MFCs with three different proton exchange membranes. A Nafion membrane was used as the basic material, and polyvinylidene fluoride (PVDF) and acetone-modified PVDF were used to modify it, respectively. The experimental results show that a PVDF-modified membrane can improve the water absorption effectively and, thus, make the MFC have greater power generation and better wastewater treatment effect. The acetone-modified PVDF can further improve the stability of output power of the MFC. When the acetone-modified PVDF was used to modify the Nafion membrane, the steady output voltage of the MFC was above 0.21 V, and the Chemical Oxygen Demand (COD) removal rate for molasses wastewater was about 66.7%, which were 96.3% and 75.1% higher than that of the MFC with the ordinary Nafion membrane.
    [Show full text]
  • Synthesis and Characterization of Novel Hybrid Polysulfone/Silica Membranes Doped with Phosphomolybdic Acid for Fuel Cell Applications
    This is a postprint version of the following published document: M.J. Martínez-Morlanes, A.M. Martos, A. Várez, B. Levenfeld. Synthesis and characterization of novel hybrid polysulfone/silica membranes doped with phosphomolybdic acid for fuel cell applications. Journal of Membrane Science, 492 (2015) , pp 371–379 © 2015 Elsevier B.V. All rights reserved. DOI: 10.1016/j.memsci.2015.05.031 Synthesis and characterization of novel hybrid polysulfone/silica membranes doped with phosphomolybdic acid for fuel cell applications M.J. Martínez-Morlanes n, A.M. Martos, A. Várez, B. Levenfeld Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avda. Universidad, 30, E-28911 Leganés, Spain abstract Novel proton conducting composite membranes based on sulfonated polysulfone (sPSU)/SiO2 doped with phosphomolybdic acid (PMoA) were synthesized, and their proton conductivity in acid solutions was evaluated. The hybrid membranes were prepared by casting and the characterization by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and X ray diffraction (XRD) confirmed the presence of the inorganic charges into the polymer. Thermal properties and proton conductivity were also studied by means of thermogravimetric analysis (TGA) and electrochemical impedance spectro Keywords: scopy (EIS), respectively. The incorporation of the inorganic particles modified the thermal and Proton-exchange membrane fuel cell mechanical properties of the sPSU as well as its proton conductivity. Taking into account that a Polysulfone compromise between these properties is necessary, the hybrid membrane with 2%SiO2 and 20%PMoA Silicon oxide seems to be a promising candidate for its application in proton exchange membrane in fuel cells Heteropolyacid (PEMFCs) operated at high temperatures.
    [Show full text]
  • Total Phenolic Contents and Antioxidant Capacities of Selected Chinese Medicinal Plants
    Int. J. Mol. Sci. 2010, 11, 2362-2372; doi:10.3390/ijms11062362 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Total Phenolic Contents and Antioxidant Capacities of Selected Chinese Medicinal Plants Feng-Lin Song, Ren-You Gan, Yuan Zhang, Qin Xiao, Lei Kuang and Hua-Bin Li * Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; E-Mails: [email protected] (F.-L.S.); [email protected] (R.-Y.G.); [email protected] (Y.Z.); [email protected] (Q.X.); [email protected] (L.K.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-20-8733-2391; Fax: +86-20-8733-0446. Received: 14 April 2010 / Accepted: 21 May 2010 / Published: 1 June 2010 Abstract: Antioxidant capacities of 56 selected Chinese medicinal plants were evaluated using the Trolox equivalent antioxidant capacity (TEAC) and ferric reducing antioxidant power (FRAP) assays, and their total phenolic content was measured by the Folin-Ciocalteu method. The strong correlation between TEAC value and FRAP value suggested that the antioxidants in these plants possess free radical scavenging activity and oxidant reducing power, and the high positive correlation between antioxidant capacities and total phenolic content implied that phenolic compounds are a major contributor to the antioxidant activity of these plants. The results showed that Dioscorea bulbifera, Eriobotrya japonica, Tussilago farfara and Ephedra sinica could be potential rich sources of natural antioxidants. Keywords: medicinal plant; phenolic content; antioxidant capacity 1. Introduction Free radicals are produced as a part of normal metabolic processes.
    [Show full text]
  • Title Synthetic Studies on Perfluorinated Compounds
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Synthetic Studies on Perfluorinated Compounds by Direct Title Fluorination( Dissertation_全文 ) Author(s) Okazoe, Takashi Citation Kyoto University (京都大学) Issue Date 2009-01-23 URL http://dx.doi.org/10.14989/doctor.r12290 Right Type Thesis or Dissertation Textversion author Kyoto University Synthetic Studies on Perfluorinated Compounds by Direct Fluorination Takashi Okazoe Contents Chapter I. General Introduction 1 I-1. Historical Background of Organofluorine Chemistry -Industrial Viewpoint- 2 I-1-1. Incunabula 2 I-1-2. Development with material industry 5 I-1-3. Development of fine chemicals 17 I-2. Methodology for Synthesis of Fluorochemicals 24 I-2-1. Methods used in organofluorine industry 24 I-2-2. Direct fluorination with elemental fluorine 27 I-3. Summary of This Thesis 33 I-4. References 38 Chapter II. A New Route to Perfluoro(Propyl Vinyl Ether) Monomer: Synthesis of Perfluoro(2-propoxypropionyl) Fluoride from Non-fluorinated Compounds 47 II-1. Introduction 48 II-2. Results and Discussion 49 II-3. Conclusions 55 II-4. Experimental 56 II-5. References 60 i Chapter III. A New Route to Perfluorinated Vinyl Ether Monomers: Synthesis of Perfluoro(alkoxyalkanoyl) Fluorides from Non-fluorinated Substrates 63 III-1. Introduction 64 III-2. Results and Discussion 65 III-2-1. Synthesis of PPVE precursors 65 III-2-2. Synthesis of perfluoro(alkoxyalkanoyl) fluorides via perfluorinated mixed esters 69 III-3. Conclusions 75 III-4. Experimental 77 III-5. References 81 Chapter IV. Synthesis of Perfluorinated Carboxylic Acid Membrane Monomers by Liquid-phase Direct Fluorination 83 IV-1.
    [Show full text]
  • Technical Information Safety in Handling And
    Technical Bulletin T-01 Ion Exchange Materials Safety in Handling and Use Technical Information Introduction The analogous structure for Teflon™ PTFE fluoropolymer The purpose of this technical bulletin is to provide resins is: guidelines for the safe handling and use of Nafion™ F F F F F perfluorinated membranes from Chemours. The complete | | | | | contents should be reviewed before Nafion™ membranes — C — C — C — C — C — are processed or used at elevated temperatures. For | | | | | general background on fluoropolymer resins, reference F F F F F can be made to the “Fluoropolymers Safe Handling Guide” —published by The Society of the Plastics Industry. The Nafion™ perfluorinated membranes have the ™ Nafion™ perfluorinated membranes are fabricated from extraordinary chemical and thermal stability of Teflon ™ copolymers of tetrafluoroethylene and perfluorinated resins. While Teflon resin is one of the most hydrophobic ™ monomers containing sulfonic acid end groups or from substances known, Nafion membranes are one of the copolymers containing both sulfonic acid and carboxylic most hydrophilic. They absorb water and some polar acid groups. The safety considerations for these organics rapidly, even at room temperature, in amounts membranes are based on the thermal and combustion dependent upon the number of sulfonic and carboxylic ™ decomposition products of the copolymers. groups. Whereas Teflon resin is chemically inert, the Nafion™ membranes are strong polymeric acids, which The perfluorinated membranes are composed of carbon- react with organic and inorganic bases. However, the fluorine backbone chains with perfluoro side chains sulfonic and carboxylic acid groups in the polymer are containing sulfonic acid groups. The chemical structure is essentially immobile and immersed in a fluoropolymer shown below: matrix.
    [Show full text]
  • Fast Pyrolysis and Hydrotreating Bio-Oil Pathway
    Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels Fast Pyrolysis and Hydrotreating Bio-oil Pathway November 2013 Susanne Jones, Pimphan Meyer, Lesley Snowden-Swan, Asanga Padmaperuma Pacific Northwest National Laboratory Eric Tan, Abhijit Dutta National Renewable Energy Laboratory Jacob Jacobson, Kara Cafferty Idaho National Laboratory PNNL-23053 NREL/TP-5100-61178 Prepared for the U.S. Department of Energy Bioenergy Technologies Office NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor the Alliance for Sustainable Energy, LLC, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof, or the Alliance for Sustainable Energy, LLC, or Battelle Memorial Institute. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:[email protected] Available for sale to the public, in paper, from: U.S.
    [Show full text]