Inhibition of Renal Glucose Reabsorption As a Novel Treatment for Diabetes Patients

Total Page:16

File Type:pdf, Size:1020Kb

Inhibition of Renal Glucose Reabsorption As a Novel Treatment for Diabetes Patients ARTIGO DE REVISÃO | REVIEW ARTICLE Inhibition of renal glucose reabsorption as a novel treatment for diabetes patients Inibição da reabsorção renal de glicose como uma nova forma de tratamento para pacientes com diabetes Autores ABSTRACT RESUMO Eugenio Cersosimo1 Carolina Solis-Herrera1 The importance of the kidney in gluco- A importância do rim na homeostase de Curtis Triplitt1 se homeostasis has been recognized for glicose é reconhecida desde há muitos many years. Recent observations indi- anos. Observações recentes, indicando cating a greater role of renal glucose um papel maior do metabolismo renal 1 University of Texas Health metabolism in various physiologic and da glicose em várias condições fisiológi- Science Center San Antonio, pathologic conditions have rekindled cas e patológicas, reavivaram o interesse Texas. no manuseio renal de glicose como um the interest in renal glucose handling as alvo em potencial para o tratamento do a potential target for the treatment of diabetes. A enorme capacidade das célu- diabetes. The enormous capacity of the las tubulares proximais para reabsorver a proximal tubular cells to reabsorb the carga total de glicose filtrada, utilizando o filtered glucose load entirely, utilizing sistema de co-transporte de sódio e glicose the sodium-glucose co-transporter sys- (SGLT), tornou-se o foco de atenção. Es- tem (primarily SGLT-2), became the fo- tudos originais realizados em animais ex- cus of attention. Original studies con- perimentais com o uso do inibidor não-es- ducted in experimental animals with pecífico da SGLT florizina, demonstraram the nonspecific SGLT inhibitor phlo- que a hiperglicemia após pancreatectomia rizin showed that hyperglycemia after diminuiu como resultado de glicosúria for- çada. Posteriormente, foram desenvolvidas pancreatectomy decreased as a result of diversas substâncias com propriedades forced glycosuria. Subsequently, several mais seletivas de inibição da SGLT-2 ("se- compounds with more selective SGLT-2 gunda geração"). Vários agentes foram inhibition properties (“second-gene- usados em ensaios pré-clínicos e clínicos, ration”) were developed. Some agents e alguns já foram aprovados para uso co- made it into pre-clinical and clinical mercial no tratamento da diabetes tipo 2. trials and a few have already been ap- Em geral, os dados clinicos mostram que proved for commercial use in the treat- um período de 6 meses de tratamento com ment of type 2 diabetes. In general, a inibidores da SGLT-2 é seguido por uma 6-month period of therapy with SGLT- taxa de excreção de glicose urinária média 2 inhibitors is followed by a mean uri- de ~ 80 g/dia, acompanhado por uma que- da na glicemia de jejum e pós-prandial e nary glucose excretion rate of ~80 g/day com redução média na HbA1C de - 1.0%. accompanied by a decline in fasting and Também foram relatados perda concomi- postprandial glucose with average de- tante no peso corpóreo e uma leve mas creases in HgA1C ~1.0%. Concomi- consistente queda da pressão arterial. Em tant body weight loss and a mild but contraste, eventos adversos transitórios Data de submissão: 30/11/2013. consistent drop in blood pressure also como poliúria, sede com desidratação e Data de aprovação: 06/01/2014. have been reported. In contrast, tran- hipotensão ocasional foram descritos na sient polyuria, thirst with dehydration fase inicial de tratamento. Além disso, um aumento significativo na ocorrência Correspondência para: and occasional hypotension have been Eugenio Cersosimo. described early in the treatment. In de infecções urogenitais, particularmente Associate Professor of Medicine, addition, a significant increase in the em mulheres, foi documentado com o Medical Director for Clinical uso de inibidores da SGLT-2. Os efeitos Research, Texas Diabetes Institute. occurrence of uro-genital infections, 7703 Floyd Curl Drive, MC 7886 cardiovasculares, renais e ósseo/minerais San Antonio, TX, USA. particularly in women has been docu- 78229-3900. a longo prazo destes agentes ainda são E-mail: [email protected] mented with the use of SGLT-2 inhibi- desconhecidos. Conclusão: Os inibidores [email protected] tors. Conclusion: Although long-term da SGLT-2, se usados de forma criteriosa e Phone: 1 (210) 567 6691 or (210) 358 7200. Fax: 1 (210) 358 7235. cardiovascular, renal and bone/mineral em pacientes adequados, representam uma effects are unknown SGLT-2 inhibitors, opção terapêutica única, que explora um DOI: 10.5935/0101-2800.20140014 80 Inhibition of Renal Glucose Reabsorption in Diabetes if used with caution and in the proper patient novo mecanismo de ação anti-hiperglicêmico indepen- provide a unique insulin-independent therapeutic dente da insulina. Estão portanto indicados, tanto na option in the management of obese type 2 diabetes monoterapia ou em combinação com outros agentes patients. no tratamento de pacientes obesos com diabetes tipo 2. Keywords: diabetes mellitus, type 2/therapy; glycosuria; Palavras-chave: diabetes mellitus tipo 2/terapia; kidney, sodium-glucose transporter 2. glicosúria; rim; transportador 2 de glucose-sódio. INTRODUCTION enzymatic activity for concomitant glucose utiliza- tion, storage or oxidation has ever been identified in The importance of the kidney in glucose homeostasis proximal tubules.14 has been recognized for many years.1,2 A critical observation indicating that the renal contribution Figure 1. Schematic representation of the nephron showing the to glucose regulation and counter-regulation might heterogeneity of glucose handling by the kidney. Plasma glucose is perhaps be of greater significance than previous- freely filtered at the glomerulus and completely reabsorbed in the proximal tubules. The SGLT-2 transporters located at the luminal ly anticipated was reported in the early 1990’s.3 membrane of cells in the S1 and S2 segments are responsible for This publication rekindled the interest in the role 90% of total glucose re-uptake. The SGLT-1 transporters located downstream in the S3 segment of the proximal tubules account of the kidney in glucose metabolism and several for the remainder 10% of the glucose load reabsorbed into the studies in animals4-6 and humans7-10 subsequently renal interstitial fluid. The process of renal gluconeogenesis occurs exclusively in the proximal tubular cells, whereas glucose utilization is demonstrated the potential impact of renal glucose limited to the distal nephron. Glycogen synthesis and storage, as well handling in various physiologic and pathologic con- as complete glucose oxidation are detected only in cells of the distal nephron and, partial oxidation (anaerobic glycolysis) with formation ditions. Concomitantly, the pharmacological deve- and release of lactate is a characteristic of the hypoxic medullary lopment of new agents capable of inhibiting renal regions of the kidney. glucose reabsorption was accelerated and has now reached clinical relevance. As a result, the kidney has become an additional target for anti-diabetic medications. Renal glucose handling includes free glomerular fil- tration with complete proximal tubular reabsorption into the renal interstitial fluid space. Renal gluconeo- genesis that takes place in the proximal tubular cells adds a small fraction to the glucose load that exchan- ges with the peri-tubular capillaries along the proximal nephron. In the distal nephron, glucose extracted can be either stored in the form of glycogen or oxidized to In contrast, the distal nephron has sufficient generate energy. In turn, no glucose is excreted in the biochemical capability to metabolize the glucose urine and nearly all filtered glucose load perfusing the extracted from the peri-tubular fluid and, the renal distal nephron is restored to the peripheral circulation, medulla is in fact an obligatory site for glucose oxi- after mixing in the renal vein with the remainder 80% dation.13,14 Because most of the energy required by the 11 of unfiltered blood. mega-transport tubular activity is supplied primarily The evidence for the heterogeneity of glucose from the oxidation of fatty acids, glucose sparing by handling within the nephron (Figure 1) is substantiated the kidney is enabled and represents a critical aspect in 1,12-15 by numerous reports in the literature. Several the maintenance of whole-body glucose homeostasis. studies have defined the molecular structure and the enormous enzymatic and transport capacity of the RENAL GLUCOSE TRANSPORT AND METABOLISM renal tubules. The sodium-glucose co-transport sys- Various glucose transmembrane transport systems and tem (SGLT) is located at the luminal membrane of intracellular metabolic pathways have been well charac- 15 the proximal renal tubular cells. These cells con- terized in the kidney. Most information is derived from tain specific enzymes that enable glucose synthesis in vitro cell preparations16-18 and renal perfusion studies 1,12 de novo [renal gluconeogenesis], although no using experimental animal models.19-21 Analogous 81 J Bras Nefrol 2014;36(1):80-92 Inhibition of Renal Glucose Reabsorption in Diabetes findings have been reported in a few studies conducted This same system is also utilized to carry amino in human kidney.22,23 Glucose is actively transported acids from the lumen into the proximal tubular cells. from the lumen to the tubular cells essentially by two The SGLT-2 transport activity across the luminal transmembrane proteins: one with high capacity-low membrane is driven by an electro-chemical gradient, affinity termed sodium-glucose transport SGLT-2 and which
Recommended publications
  • Relationship Between Energy Requirements for Na+Reabsorption
    Kidney international, Vol. 29 (1986), pp. 32—40 Relationship between energy requirements for Na reabsorption and other renal functions JULIUS J. COHEN Department of Physiology, University of Rochester, Rochester, New York, USA In the intact organism, while the kidney is only —1% of totalkidney in that: (I) Na transport is inhibited by amiloride [7, 81 body weight, it utilizes approximately 10% of the whole bodyand (2) only a small fraction (5 to 10%) of the Na transported 02 consumption (Q-02).Becausethere is a linear relationshipfrom the mucosal to serosal side leaks back to the inucosal side between change in Na reabsorption and suprabasal renal 02[7, 81. In such a tight epithelium, net Na flux is therefore a consumption, the high suprabasal renal Q-02 has been attrib-close approximation of the unidirectional active Na flux. If no uted principally to the energy requirements for reabsorption ofother energy-requiring functions are changed when Na trans- the filtered load of Na [1—31. The basal metabolism is theport is varied, then a reasonable estimate of the energy require- energy which is required for the maintenance of the renal tissuement for both net and unidirectional active Na transport may integrity and turnover of its constituents without measurablebe obtained from measurements of the ratio, Anet T-Na5/AQ- external (net transport or net synthetic) work being done.02. However, there is now considerable evidence that there are Assuming that 3 moles of ADP are phosphorylated to form other suprabasal functions of the kidney which change inATP per atom of 02 reduced in the aerobic oxidation of I mole parallel with Na reabsorption and which require an energyof NADH by the mitochondrial electron transport chain (that is, input separate from that used for Na transport.
    [Show full text]
  • Regulation of Skeletal Muscle Glucose Transport and Glucose Metabolism by Exercise Training
    nutrients Review Regulation of Skeletal Muscle Glucose Transport and Glucose Metabolism by Exercise Training Parker L. Evans 1,2,3, Shawna L. McMillin 1,2,3 , Luke A. Weyrauch 1,2,3 and Carol A. Witczak 1,2,3,4,* 1 Department of Kinesiology, East Carolina University, Greenville, NC 27858, USA; [email protected] (P.L.E.); [email protected] (S.L.M.); [email protected] (L.A.W.) 2 Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA 3 East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC 27834, USA 4 Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA * Correspondence: [email protected]; Tel.: +1-252-744-1224 Received: 8 September 2019; Accepted: 8 October 2019; Published: 12 October 2019 Abstract: Aerobic exercise training and resistance exercise training are both well-known for their ability to improve human health; especially in individuals with type 2 diabetes. However, there are critical differences between these two main forms of exercise training and the adaptations that they induce in the body that may account for their beneficial effects. This article reviews the literature and highlights key gaps in our current understanding of the effects of aerobic and resistance exercise training on the regulation of systemic glucose homeostasis, skeletal muscle glucose transport and skeletal muscle glucose metabolism. Keywords: aerobic exercise; blood glucose; functional overload; GLUT; hexokinase; insulin resistance; resistance exercise; SGLT; type 2 diabetes; weightlifting 1. Introduction Exercise training is defined as planned bouts of physical activity which repeatedly occur over a duration of time lasting from weeks to years.
    [Show full text]
  • Kidney Questions
    Kidney Questions Maximum Mark Question Mark Awarded 1 12 2 11 3 14 4 12 5 15 6 15 7 16 8 16 9 14 10 14 11 18 Total Mark Page 1 of 44 | WJEC/CBAC 2017 pdfcrowd.com 1. Page 2 of 44 | WJEC/CBAC 2017 pdfcrowd.com Page 3 of 44 | WJEC/CBAC 2017 pdfcrowd.com 2. Roughly 60% of the mass of the body is water and despite wide variation in the quantity of water taken in each day, body water content remains incredibly stable. One hormone responsible for this homeostatic control is antidiuretic hormone (ADH). (a) Describe the mechanisms that are triggered in the mammalian body when water intake is reduced. [6] (b) The graph below shows how the plasma concentration of antidiuretic hormone changes as plasma solute concentration rises. (i) Describe the relationship shown in the graph opposite. Page 4 of 44 | WJEC/CBAC 2017 pdfcrowd.com [2] (ii) Suggest why a person only begins to feel thirsty at a plasma solute concentration of 293 AU. [2] Secretion of antidiuretic hormone is stimulated by decreases in blood pressure and volume. These are conditions sensed by stretch receptors in the heart and large arteries. Severe diarrhoea is one condition which stimulates ADH secretion. (c) Suggest another condition which might stimulate ADH secretion. [1] Page 5 of 44 | WJEC/CBAC 2017 pdfcrowd.com 3. The diagram below shows a single nephron, with its blood supply, from a kidney. (a) (i) Name A, B and C shown on the diagram above. [3] A . B . C . (ii) Use two arrows, clearly labelled, on the nephron above, to show where the following processes take place: [2] I ultrafiltration; Page 6 of 44 | WJEC/CBAC 2017 pdfcrowd.com II selective reabsorption.
    [Show full text]
  • L5 6 -Renal Reabsorbation and Secretation [PDF]
    Define tubular reabsorption, Identify and describe tubular secretion, Describe tubular secretion mechanism involved in transcellular and paracellular with PAH transport and K+ Glucose reabsorption transport. Identify and describe Identify and describe the Study glucose titration curve mechanisms of tubular characteristic of loop of in terms of renal threshold, transport & Henle, distal convoluted tubular transport maximum, Describe tubular reabsorption tubule and collecting ducts splay, excretion and filtration of sodium and water for reabsorption and secretion Identify the tubular site and Identify the site and describe Revise tubule-glomerular describe how Amino Acids, the influence of aldosterone feedback and describe its HCO -, P0 - and Urea are on reabsorption of Na+ in the physiological importance 3 4 reabsorbed late distal tubules. Mind Map As the glomerular filtrate enters the renal tubules, it flows sequentially through the successive parts of the tubule: The proximal tubule → the loop of Henle(1) → the distal tubule(2) → the collecting tubule → finally ,the collecting duct, before it is excreted as urine. A long this course, some substances are selectively reabsorbed from the tubules back into the blood, whereas others are secreted from the blood into the tubular lumen. The urine represent the sum of three basic renal processes: glomerular filtration, tubular reabsorption, and tubular secretion: Urinary excretion = Glomerular Filtration – Tubular reabsorption + Tubular secretion Mechanisms of cellular transport in the nephron are: Active transport Pinocytosis\ Passive Transport Osmosis “Active transport can move a solute exocytosis against an electrochemical gradient and requires energy derived from metabolism” Water is always reabsorbed by a Simple diffusion passive (nonactive) (Additional reading) Primary active (without carrier physical mechanism Secondary active The proximal tubule, reabsorb protein) called osmosis , transport large molecules such as transport Cl, HCO3-, urea , which means water proteins by pinocytosis.
    [Show full text]
  • Ludwig's Theory of Tubular Reabsorption: the Role of Physical Factors in Tubular Reabsorption
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Kidney International, Vol. 9 (1976) p. 313—322 EDITORIAL REVIEW Ludwig's theory of tubular reabsorption: The role of physical factors in tubular reabsorption From the very origins of physiology as a science, chet [2] created a sensation among physiologists and interest was focused on flow of body fluids. Beginning physicians alike. Quoting from a review [3], appear- with movement of fluid inside blood vessels and later ing in 1828 in the first volume of the American Jour- extending to that across membranes, physiologists nal of Medical Science, of Dutrochet's experiments: have sought mechanical explanations for these phe- "M. Dutrochet has recently published a work on vital nomena. The action of physicochemical forces across motion, in which he details experiments and discov- endothelial membrane structures is reasonably well eries, of a most interesting and extraordinary char- understood, at least in a qualitative sense; it is essen- acter, calculated to throw a new light upon an tially the same as for certain collodion membranes. important portion of physiology. ... M.Dutrochet On the other hand, there is as yet no general con- was, as yet, unable to assign a cause for this physico- sensus regarding the means by which physicochemical organic phenomenon, to which he applied the name forces influence convective flux (volume flux) across of endosmose." It appears to have been Graham who epithelial membranes. In fact,
    [Show full text]
  • Excretory Products and Their Elimination
    290 BIOLOGY CHAPTER 19 EXCRETORY PRODUCTS AND THEIR ELIMINATION 19.1 Human Animals accumulate ammonia, urea, uric acid, carbon dioxide, water Excretory and ions like Na+, K+, Cl–, phosphate, sulphate, etc., either by metabolic System activities or by other means like excess ingestion. These substances have to be removed totally or partially. In this chapter, you will learn the 19.2 Urine Formation mechanisms of elimination of these substances with special emphasis on 19.3 Function of the common nitrogenous wastes. Ammonia, urea and uric acid are the major Tubules forms of nitrogenous wastes excreted by the animals. Ammonia is the most toxic form and requires large amount of water for its elimination, 19.4 Mechanism of whereas uric acid, being the least toxic, can be removed with a minimum Concentration of loss of water. the Filtrate The process of excreting ammonia is Ammonotelism. Many bony fishes, 19.5 Regulation of aquatic amphibians and aquatic insects are ammonotelic in nature. Kidney Function Ammonia, as it is readily soluble, is generally excreted by diffusion across 19.6 Micturition body surfaces or through gill surfaces (in fish) as ammonium ions. Kidneys do not play any significant role in its removal. Terrestrial adaptation 19.7 Role of other necessitated the production of lesser toxic nitrogenous wastes like urea Organs in and uric acid for conservation of water. Mammals, many terrestrial Excretion amphibians and marine fishes mainly excrete urea and are called ureotelic 19.8 Disorders of the animals. Ammonia produced by metabolism is converted into urea in the Excretory liver of these animals and released into the blood which is filtered and System excreted out by the kidneys.
    [Show full text]
  • Alterations in Net Glucose Uptake and in the Pancreatic B-Cell GLUT2 Transporter Induced by Diazoxide and by Secretory Stimuli
    291 Alterations in net glucose uptake and in the pancreatic B-cell GLUT2 transporter induced by diazoxide and by secretory stimuli L Zhao, Z Li, M Kullin,LAHBorg1 and F A Karlsson Department of Medical Sciences, University Hospital, SE-751 85 Uppsala, Sweden 1Department of Medical Cell Biology, University of Uppsala, PO Box 571, SE-751 23 Uppsala, Sweden (Requests for offprints should be addressed to L A H Borg; Email: [email protected]) Abstract The pancreatic B-cell GLUT2 transporter and glucose which may reflect a lowered energy requirement. Con- metabolism were examined in isolated rat islets subjected versely, islets subjected to a stimulated insulin secretion to treatments affecting insulin secretion. Diazoxide was with glipizide or a high extracellular K+ concentration used to inhibit, while glipizide or depolarization of the showed a reduced staining of the GLUT2 transporter. The plasma membrane with a high extracellular K+ concen- net glucose uptake and glucose oxidation were also tration were used to stimulate insulin release in short-term reduced. In islets exposed to the high K+ concentration no experiments. Islet GLUT2 and insulin were determined change in the molecular weight or phosphorylation of by quantitative immunohistochemistry and GLUT2 was GLUT2 was observed but a lesser amount of the trans- also determined by Western blot analysis. Islet net glucose porter was found by Western blot analysis. Thus, GLUT2 uptake and glucose oxidation were measured using radio- and glucose uptake in the pancreatic B-cell are modified actively labelled glucose. Exposure of the islets to diaz- by the secretory process, which suggests that changes in oxide was associated with a marked increase in the B-cell the glucose transporter have a functional role in normal plasma membrane staining for GLUT2 and increased net B-cell physiology.
    [Show full text]
  • Glomerular Filtration I DR.CHARUSHILA RUKADIKAR Assistant Professor Physiology GFR 1
    Glomerular filtration I DR.CHARUSHILA RUKADIKAR Assistant Professor Physiology GFR 1. Definition 2. Normal value 3. Variation 4. Calculation (different pressures acting on glomerular membrane) 5. Factors affecting GFR 6. Regulation of GFR 7. Measurement of GFR QUESTIONS LONG QUESTION 1. GFR 2. RENIN ANGIOTENSIN SYSTEM SHORT NOTE 1. DYNAMICS OF GFR 2. FILTRATION FRACTION 3. ANGIOTENSIN II 4. FACTORS AFFECTING GLOMERULAR FILTRATION RATE 5. REGULATION OF GFR 6. RENAL CLEARANCE TEST 7. MEASUREMENT OF GFR Collecting duct epithelium P Cells – Tall, predominant, have few organelles, Na reabsorption & vasopressin stimulated water reabsorption I cells- CT and DCT, less, having more cell organelles, Acid secretion and HCO3 transport CHARACTERISTICS OF RENAL BLOOD FLOW 600-1200 ml/min (high) AV O2 difference low (1.5 mL/dL) During exercise increases 1.5 times Low basal tone, not altered in denervated / innervated kidney VO2 in kidneys is directly proportional to RBF, Na reabsorption & GFR Not homogenous flow, cortex more & medulla less Vasa recta hairpin bend like structure, hyperosmolarity inner medulla Transplanted kidney- cortical blood flow show autoregulation & medullary blood flow don’t show autoregulation, so no TGF mechanism Neurogenic vasodilation not exist 20% of resting cardiac output, while the two kidneys make < 0.5% of total body weight. Excretory function rather than its metabolic requirement. Remarkable constancy due to autoregulation. Processes concerned with urine formation. 1. Glomerular filtration, 2. Tubular reabsorption and 3. Tubular secretion. • Filtration Fluid is squeezed out of glomerular capillary bed • Reabsorption Most nutrients, water and essential ions are returned to blood of peritubular capillaries • Secretion Moves additional undesirable molecules into tubule from blood of peritubular capillaries Glomerular filtration Glomerular filtration refers to process of ultrafiltration of plasma from glomerular capillaries into the Bowman’s capsule.
    [Show full text]
  • REVIEW the Molecular Basis of Insulin
    1 REVIEW The molecular basis of insulin-stimulated glucose uptake: signalling, trafficking and potential drug targets Sophie E Leney and Jeremy M Tavare´ Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK (Correspondence should be addressed to J M Tavare´; Email: [email protected]) Abstract The search for the underlying mechanism through which GLUT4 translocation and will attempt to address the spatial insulin regulates glucose uptake into peripheral tissues has relationship between the signalling and trafficking com- unveiled a highly intricate network of molecules that function ponents of this event. We will also explore the degree to in concert to elicit the redistribution or ‘translocation’ of which components of the insulin signalling and GLUT4 the glucose transporter isoform GLUT4 from intracellular trafficking machinery may serve as potential targets for membranes to the cell surface. Following recent technological the development of orally available insulin mimics for the advances within this field, this review aims to bring together treatment of diabetes mellitus. the key molecular players that are thought to be involved in Journal of Endocrinology (2009) 203, 1–18 Introduction Levine & Goldstein 1958). However, the mechanism by which insulin is able to stimulate glucose uptake was not Glucose homeostasis and diabetes mellitus elucidated until the early 1980s when two independent groups demonstrated that insulin promoted the movement of The ability of insulin to stimulate glucose uptake into muscle and adipose tissue is central to the maintenance of whole- a ‘glucose transport activity’ from an intracellular membrane body glucose homeostasis. Autoimmune destruction of the pool to the plasma membrane (Cushman & Wardzala 1980, pancreatic b-cells results in a lack of insulin production Suzuki & Kono 1980).
    [Show full text]
  • Beta Cell Physiological Dynamics and Dysfunctional Transitions in Response to Islet Inflammation in Obesity and Diabetes
    H OH metabolites OH Review Beta Cell Physiological Dynamics and Dysfunctional Transitions in Response to Islet Inflammation in Obesity and Diabetes Marlon E. Cerf 1,2,3 1 Grants, Innovation and Product Development, South African Medical Research Council, Tygerberg 7505, South Africa; [email protected] 2 Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa 3 Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg 7505, South Africa Received: 14 August 2020; Accepted: 10 October 2020; Published: 10 November 2020 Abstract: Beta cells adapt their function to respond to fluctuating glucose concentrations and variable insulin demand. The highly specialized beta cells have well-established endoplasmic reticulum to handle their high metabolic load for insulin biosynthesis and secretion. Beta cell endoplasmic reticulum therefore recognize and remove misfolded proteins thereby limiting their accumulation. Beta cells function optimally when they sense glucose and, in response, biosynthesize and secrete sufficient insulin. Overnutrition drives the pathogenesis of obesity and diabetes, with adverse effects on beta cells. The interleukin signaling system maintains beta cell physiology and plays a role in beta cell inflammation. In pre-diabetes and compromised metabolic states such as obesity, insulin resistance, and glucose intolerance, beta cells biosynthesize and secrete more insulin, i.e., hyperfunction. Obesity is entwined with inflammation, characterized by compensatory hyperinsulinemia, for a defined period, to normalize glycemia. However, with chronic hyperglycemia and diabetes, there is a perpetual high demand for insulin, and beta cells become exhausted resulting in insufficient insulin biosynthesis and secretion, i.e., they hypofunction in response to elevated glycemia.
    [Show full text]
  • Development of Insulin-Responsive Glucose Uptake and GLUT4 Expression in Differentiating Human Adipocyte Precursor Cells
    International Journal of Obesity (1998) 22, 448±453 ß 1998 Stockton Press All rights reserved 0307±0565/98 $12.00 http://www.stockton-press.co.uk/ijo Development of insulin-responsive glucose uptake and GLUT4 expression in differentiating human adipocyte precursor cells H Hauner, K RoÈhrig, M Spelleken, LS Liu and J Eckel Diabetes Research Institute at the Heinrich-Heine-University DuÈsseldorf, D-40225 DuÈsseldorf, Germany OBJECTIVE: In differentiating human preadipocytes glucose uptake in the presence of insulin is a prerequisite for lipid accumulation. The aim of this study was to characterize the insulin-regulated glucose transport system during and after differentiation. DESIGN AND METHODS: Human adipocyte precursor cells kept in primary culture were allowed to differentiate into fat cells under serum-free hormone-supplemented conditions. 2-Deoxy-glucose uptake was measured as a functional parameter of the glucose transport system, the amount of GLUT1 and GLUT4 protein was determined by Western blotting. RESULTS: In the undifferentiated state, cells did not increase 2-deoxy-glucose uptake in response to insulin. On day 16, when cells have acquired the adipocyte phenotype, there was a 3±4-fold stimulation of glucose transport by insulin compared to basal rates, whereas basal glucose uptake was dramatically diminished. Measurement of GLUT4 protein in cell extracts, showed a marked increase in the amount of this insulin-regulated transporter isoform during the differentiation period. On average, the amount of GLUT4 was 16.7-fold greater after than before differentiation. In contrast, the amount of GLUT1 protein decreased during differentiation to almost undetectable levels on day 16. When newly developed adipocytes were maintained in culture for another 14 d, the stimulation of glucose uptake and the amount of GLUT4 remained stable.
    [Show full text]
  • Urea and Renal Function in the 21St Century: Insights from Knockout Mice
    Review Urea and Renal Function in the 21st Century: Insights from Knockout Mice Robert A. Fenton* and Mark A. Knepper† *Water and Salt Research Center, Institute of Anatomy, University of Aarhus, Aarhus, Denmark; and †Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institutes, National Institutes of Health, Bethesda, Maryland Since the turn of the 21st century, gene knockout mice have been created for all major urea transporters that are expressed in the kidney: the collecting duct urea transporters UT-A1 and UT-A3, the descending thin limb isoform UT-A2, and the descending vasa recta isoform UT-B. This article discusses the new insights that the results from studies in these mice have produced in the understanding of the role of urea in the urinary concentrating mechanism and kidney function. Following is a summary of the major findings: (1) Urea accumulation in the inner medullary interstitium depends on rapid transport of urea from the inner medullary collecting duct (IMCD) lumen via UT-A1 and/or UT-A3; (2) as proposed by Robert Berliner and colleagues in the 1950s, the role of IMCD urea transporters in water conservation is to prevent a urea-induced osmotic diuresis; (3) the absence of IMCD urea transport does not prevent the concentration of NaCl in the inner medulla, contrary to what would be predicted from the passive countercurrent multiplier mechanism in the form proposed by Kokko and Rector and Stephenson; (4) deletion of UT-B (vasa recta isoform) has a much greater effect on urinary concentration than deletion of UT-A2 (descending limb isoform), suggesting that the recycling of urea between the vasa recta and the renal tubules quantitatively is less important than classic countercurrent exchange; and (5) urea reabsorption from the IMCD and the process of urea recycling are not important elements of the mechanism of protein-induced increases in GFR.
    [Show full text]