Management of Incontinence in Older Adults*

Total Page:16

File Type:pdf, Size:1020Kb

Management of Incontinence in Older Adults* Incontinence Management Outline Management of Incontinence in Older Adults* Urinary incontinence is involuntary loss of urine of sufficient severity to be a social or health problem. There are several types of Objectives UI, but all are characterized by an inability • Identify and treat urinary incontinence (UI) to restrain or control urinary voiding. in the older adult • Enhance the utilization of appropriate treatment Definitions measures available to Highmark Medicare Incontinence is common among elderly women and men and Advantage members compromises quality of life (anxiety, reduced socialization). • Prevent the complications of incontinence Incontinence causes burden, cost, and caregiver stress and can precipitate institutionalization. Key Points Types of Incontinence • Patients may not report incontinence unless asked. • Stress: leakage with activities that increase intra-abdominal • Cause in any individual may be multifactorial. pressure; bladder outlet pressures insufficient to overcome • Cause may be intrinsic to lower urinary tract (sphincter, increased bladder pressures. detrusor dysfunction) and/or extrinsic, for example, • Urge: leakage associated with sensation of uncontrollable diabetes and neurologic disorders, medications. urgency; detrusor muscle hypercontractility. • Assessment in primary care can often identify • Mixed stress and urge; sphincter and detrusor disorder. contributory factors. • Overflow: continual leakage with sensation of incomplete • Management by primary care providers can often reduce emptying; bladder outlet obstruction and/or detrusor severity and burden. hypocontractility. • Behavioral, pharmacologic, and combination of both types of interventions can be implemented in primary care. • Specialists (urologists, gynecologists, and urogynecologists) can conduct more complete assessment, and offer procedural approaches where indicated. Caring for Seniors Primary Care Assessment Assess severity and burden (bother): • How many times a day do you have to change clothes History: Identify the type(s) of incontinence or protection? and look for remediable causes • Have you cut back on leaving the house because of this? Symptoms of urinary tract infection (increased frequency, • How bothered would you be if you had to live with this dysuria, change in odor or appearance of urine) for the rest of your life? • Precipitants of stress incontinence (cough, sneeze, laughter) • Are you bothered enough to consider taking medications/ and urge incontinence (arising from chair, entering home, seeing a specialist? running water) • Medication review: diuretics, anticholinergic medications, opiates, adrenergic agonists Management in Primary Care • Substance review: alcohol, caffeine Behavioral • Mobility and functional limitations that interfere with • Stress incontinence: crossing legs and tightening pelvic accessing and using toilet floor before cough, sneeze, etc. • Symptoms suggesting myelopathy (leg weakness, • Urge incontinence: scheduled voiding, for example, every saddle sensory loss, constipation) 3 hours; patients with cognitive impairment will need • Awareness, in women, of pelvic organ prolapse caregiver prompting • History of urinary tract surgery (prostatectomy) Therapy (Dedicated Clinician, e.g., Physical Therapist or Nurse with Training) Physical Examination • Kegel or pelvic floor muscle exercises • Cognitive impairment, acute (delirium) or chronic/progressive (dementia) • Urge suppression techniques • Functional impairment (arising from chair, walking, fine motor control for unbuttoning, unzipping) Pharmacologic • Distended bladder (abdominal obesity renders exam • Urge incontinence without increased post void residual: less useful) antimuscarinics such as oxybutynin, tolterodine; side effects include dry mouth and constipation mirabegron • Women: pelvic floor prolapse (cystocele, rectocele, uterine prolapse) • Frequency and urgency in men who do not have increased post void residual: • Men: prostatic enlargement (outlet obstruction can occur without detectable enlargement) – alpha antagonists such as tamsulosin, silodosin, terazosin: side effects include orthostatic hypotension • Rectal impaction – alpha-1 reductase inhibitors such as finasteride, • Signs of cord compression (leg weakness, dutasteride: side effects include sexual dysfunction perineal numbness) Note: This class is not particularly effective in reducing symptoms. Diagnostic studies in primary care: • Discontinuing medications which interfere with normal • Urinalysis to check for infection, hematuria bladder and sphincter function: • Post void residual by bladder scan or catheter, especially – Adrenergic agonists (e.g., decongestants): outlet if urinary retention is suspected obstruction in men – Adrenergic antagonists (doxazosin): stress incontinence in women – Anticholinergics (e.g., diphenhydramine) reduced detrusor contractility, constipation – Opioids: reduced detrusor contractility, constipation – Diuretics: increased urinary volume 2 Incontinence Management Outline Therapeutic Class: Anticholinergic/antispasmodic (refer to full prescribing information) Drug Recommended Dosing Oxybutinin chloride (Ditropan XL®) (extended release) Start with 5mg orally once daily and may titrate up to 20mg orally once daily Oxybutynin transdermal patch (Oxytrol®) Apply one 3.9mg/day transdermal patch twice weekly (extended release) (every 3–4 days) Oxybutynin chloride topical gel (Gelnique®) Apply contents of one sachet (100mg/g) topically once daily (10%, 100mg/g packet) to skin on abdomen, upper arms/shoulders, or thighs Tolterodine tartrate (Detrol® LA) (extended release) Start with 4mg orally once daily and may decrease to 2mg once daily, depending on tolerability Fesoterodine fumarate (Toviaz™) Start with 4mg once daily and may increase up to 8mg once daily Darifenacin hydrobromide (Enablex®) Start with 7.5mg orally once daily and titrate as appropriate to 15mg orally once daily (titrate 2 weeks after starting therapy) Solifenacin succinate (Vesicare®) Start with 5mg orally once daily and may increase up to 10mg/day Trospium chloride (Sanctura®) 20mg orally twice daily Trospium chloride (Sanctura XR®) 60mg orally once daily in the morning Mirabegron (Myrbetriq®) Start with 25mg once daily with or without food and may increase within 8 weeks to 50mg once daily based on efficacy and tolerability Note: Based on 2017 Prescribing Data. Incontinence Management Outline 3 Assess Response to Treatment References/Resources A pre- and post-treatment log of daily incontinence Incontinence episodes may document response. Ask about side effects Markland AD, Vaughan CP, Johnson TM 2nd, Burgio KL, of medications, especially antimuscarinics, which often cause Goode PS. dry mouth, constipation, and blurry vision. Med Clin North Am. 2011 May;95(3):539-54, x-xi. doi: 10.1016/j. mcna.2011.02.006. Review. Urologist or Urogynecologist Referral PMID: 21549877 [PubMed - indexed for MEDLINE] • Markedly increased PVR in men and women, when not acute and/or attributable to medication(s) Benefits and harms of pharmacologic • Stress incontinence not responsive to maneuvers or treatment for urinary incontinence in women: therapy (e.g., such as pessary placement, botox injections, A systematic review. or sling procedure) Shamliyan T, Wyman JF, Ramakrishnan R, Sainfort F, Kane RL. Ann Intern Med. 2012 Jun 19;156(12):861-74, W301-10. doi: 10.7326/0003-4819-156-12-201206190-00436. Review. Medication Issues PMID: 22711079 [PubMed - indexed for MEDLINE] • Antimuscarinics can interfere with cognitive function, directly oppose the activity of the cholinesterase inhibitors Urinary incontinence in frail elderly persons: • If first antimuscarinic is ineffective, a trial of a second Report from the 5th International Consultation member of class may be worthwhile on Incontinence. • Combination of alpha antagonist (e.g., tamsulosin) Wagg A, Gibson W, Johnson T 3rd, Markland A, Palmer MH, and alpha-1 reductase inhibitor (e.g., finasteride) is more Kuchel G, Szonyi G, Kirschner-Hermanns R. effective over time than either class alone in reducing Neurourol Urodyn. 2014 Apr 2. doi: 10.1002/nau.22602. voiding symptoms and need for procedural intervention [Epub ahead of print] in prostatic hyperplasia PMID: 24700771 [PubMed - as supplied by publisher] • Antimuscarinics may be used, with caution, in men with urge incontinence and low PVRs Websites www.AHRQ.gov Conclusion (Agency for Healthcare Research and Quality) Incontinence frequently accompanies aging, but its burden www.NAFC.org can be substantially reduced by feasible and generally safe (National Association for Continence) 800-BLADDER interventions, many of which can be initiated in the primary care setting. Clinical diagnosis for most patients can be www.niddk.nih.gov accomplished with a thorough patient history, physical (National Institute of Diabetes and Digestive and examination, post void residual determination, urinalysis, Kidney Diseases) and a few baseline laboratory tests. Treatment can be effective for most of the patients and if urinary incontinence recurs after successful treatment, look for a transient cause. Z 5/18 CS202442 4 Incontinence Management Outline.
Recommended publications
  • Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017
    Q UO N T FA R U T A F E BERMUDA PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 BR 111 / 2017 The Minister responsible for health, in exercise of the power conferred by section 48A(1) of the Pharmacy and Poisons Act 1979, makes the following Order: Citation 1 This Order may be cited as the Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017. Repeals and replaces the Third and Fourth Schedule of the Pharmacy and Poisons Act 1979 2 The Third and Fourth Schedules to the Pharmacy and Poisons Act 1979 are repealed and replaced with— “THIRD SCHEDULE (Sections 25(6); 27(1))) DRUGS OBTAINABLE ONLY ON PRESCRIPTION EXCEPT WHERE SPECIFIED IN THE FOURTH SCHEDULE (PART I AND PART II) Note: The following annotations used in this Schedule have the following meanings: md (maximum dose) i.e. the maximum quantity of the substance contained in the amount of a medicinal product which is recommended to be taken or administered at any one time. 1 PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 mdd (maximum daily dose) i.e. the maximum quantity of the substance that is contained in the amount of a medicinal product which is recommended to be taken or administered in any period of 24 hours. mg milligram ms (maximum strength) i.e. either or, if so specified, both of the following: (a) the maximum quantity of the substance by weight or volume that is contained in the dosage unit of a medicinal product; or (b) the maximum percentage of the substance contained in a medicinal product calculated in terms of w/w, w/v, v/w, or v/v, as appropriate.
    [Show full text]
  • Solifenacin Succinate Tablets PI
    465mm (18.31”) 32mm (1.26”) HIGHLIGHTS OF PRESCRIBING • Gastrointestinal Disorders: Use with 3 DOSAGE FORMS AND STRENGTHS Table 1. Percentages of Patients With Identified Adverse Reactions, Derived From Multiple dose studies of solifenacin succinate in elderly volunteers (65 to 80 years) FDA Approved Patient Labeling FDA Approved Patient Labeling INFORMATION caution in patients with decreased Solifenacin succinate tablets are available as follows: All Adverse Events Exceeding Placebo Rate and Reported by 1% or More Patients showed that Cmax, AUC and t1/2 values were 20 to 25% higher as compared to the These highlights do not include gastrointestinal motility (5.3) 5 mg – white, round, standard, normal convex, film-coated, unscored tablets, debossed for Combined Pivotal Studies younger volunteers (18 to 55 years). Solifenacin Succinate Tablets Solifenacin Succinate Tablets all the information needed to • Central Nervous System Effects: with “TV” on one side of the tablet and with “2N” on the other side of the tablet. Placebo Solifenacin Succinate Solifenacin Succinate 8.6 Renal Impairment Read the Patient Information that comes with Read the Patient Information that comes with use SOLIFENACIN SUCCINATE Somnolence has been reported with 10 mg – light-pink to pink, round, standard, normal convex, film-coated, unscored (%) 5 mg (%) 10 mg (%) Solifenacin succinate should be used with caution in patients with renal impairment. TABLETS safely and effectively. solifenacin succinate tablets before you start solifenacin succinate tablets before you start solifenacin succinate. Advise patients not tablets, debossed with “TV” on one side of the tablet and with “3N” on the other side Number of Patients 1216 578 1233 There is a 2.1 fold increase in AUC and 1.6 fold increase in t1/2 of solifenacin in patients See full prescribing information for to drive or operate heavy machinery until of the tablet.
    [Show full text]
  • Solifenacin-Induced Delirium and Hallucinations☆
    General Hospital Psychiatry 35 (2013) 682.e3–682.e4 Contents lists available at ScienceDirect General Hospital Psychiatry journal homepage: http://www.ghpjournal.com Case Report Solifenacin-induced delirium and hallucinations☆ Matej Štuhec, Pharm.D. ⁎ Ormoz Psychiatric Hospital, Department for Clinical Pharmacy, Slovenia, Ptujska Cesta 33, Ormoz, Slovenia article info abstract Article history: Solifenacin-induced cognitive adverse effects have not been reported frequently, but solifenacin-induced Received 11 April 2013 delirium and hallucinations with successful switching to darifenacin, without additional drug, have not been Revised 5 June 2013 reported in the literature. In this case report, we present an 80-year-old Caucasian male with insomnia and Accepted 5 June 2013 anxiety symptoms and overactive bladder who developed delirium and hallucinations when treated with Keywords: solifenacin and trazodone. After solifenacin discontinuation and switching to darifenacin, symptoms significantly improved immediately. Such a case has not yet been described in literature; however, an Solifenacin Delirium adverse effect associated with solifenacin can occur, as this report clearly demonstrates. Hallucinations © 2013 Elsevier Inc. All rights reserved. Darifenacin Antimuscarinic adverse effect Case report 1. Introduction tion of Diseases, 10th Revision (ICD-10)], and depression with psychotic features was ruled out with differential diagnosis. Patient reported Solifenacin is a competitive muscarinic receptor antagonist, which insomnia, fear, fatigue, nausea, chest pain, shortness of breath and is used for overactive bladder (OAB) treatment. It acts as an headache. Solifenacin (Vesicare) 5 mg daily in morning dose was antimuscarinic agent, showing the highest affinity for the muscarinic prescribed to him 1 week earlier by his physicians because of OAB. M(3) receptor, which mediates urinary bladder contraction.
    [Show full text]
  • 1: Gastro-Intestinal System
    1 1: GASTRO-INTESTINAL SYSTEM Antacids .......................................................... 1 Stimulant laxatives ...................................46 Compound alginate products .................. 3 Docuate sodium .......................................49 Simeticone ................................................... 4 Lactulose ....................................................50 Antimuscarinics .......................................... 5 Macrogols (polyethylene glycols) ..........51 Glycopyrronium .......................................13 Magnesium salts ........................................53 Hyoscine butylbromide ...........................16 Rectal products for constipation ..........55 Hyoscine hydrobromide .........................19 Products for haemorrhoids .................56 Propantheline ............................................21 Pancreatin ...................................................58 Orphenadrine ...........................................23 Prokinetics ..................................................24 Quick Clinical Guides: H2-receptor antagonists .......................27 Death rattle (noisy rattling breathing) 12 Proton pump inhibitors ........................30 Opioid-induced constipation .................42 Loperamide ................................................35 Bowel management in paraplegia Laxatives ......................................................38 and tetraplegia .....................................44 Ispaghula (Psyllium husk) ........................45 ANTACIDS Indications:
    [Show full text]
  • 170 Limited Use of Anticholinergic Drugs For
    170 Penning-van Beest F1, Sukel M1, Reilly K2, Kopp Z2, Erkens J1, Herings R1 1. PHARMO Institute, 2. Pfizer Inc LIMITED USE OF ANTICHOLINERGIC DRUGS FOR OVERACTIVE BLADDER: A PHARMO STUDY Hypothesis / aims of study The aim of the study was to determine the prevalence of use of anticholinergic drugs for overactive bladder (OAB) in men and women in the Netherlands in the period 1998-2003. Study design, materials and methods Data were obtained from the PHARMO Record Linkage System, which includes patient centric data of drug-dispensing records and hospital records of more than one million patients in the Netherlands. Currently four anticholinergic drugs are available on the Dutch market for the treatment of OAB: tolterodine immediate release (IR), since 1998, tolterodine extended release (ER), since 2001, oxybutynin, since 1986, and flavoxate, since 1979. All patients who were ever prescribed these OAB drugs in the period January 1998 until December 2003 were included in the study cohort. The prevalence of use of tolterodine ER, tolterodine IR, oxybutynin and flavoxate was determined per calendar year, stratified by gender, by counting the number of patients having a dispensing with a duration of use including a single fixed day a year. Results The number of OAB drug users included in the study cohort increased from about 3,800 in 1998 to 5,000 in 2003. About 60% of the OAB drug users in the study cohort were women and about 42% of the OAB drug users were 70 years or older. The use of OAB drugs increased from 100 users per 100,000 men in 1998 to 140 users per 100,000 men in 2003 (table).
    [Show full text]
  • Magellan Anticholinergic Risk Scale
    Magellan Anticholinergic Risk Scale 1 POINT 2 POINTS 3 POINTS GENERIC BRAND GENERIC BRAND GENERIC BRAND Alprazolam Xanax® Amantadine Symmetrel® Amitriptyline Elavil® Aripiprazole Abilify® Baclofen Lioresal® Amoxapine Asendin® Asenapine Saphris® Carbamazepine Tegretol® Atropine -- Captopril Capoten® Carisoprodol Soma® Benztropine Cogentin® Chlordiazepoxide Librium® Cetirizine Zyrtec® Brompheniramine Respa-BR® Chlorthalidone Diuril® Cimetidine Tagamet® Carbinoxamine Arbinoxa® Clonazepam Klonopin® Clidinium & Librax® Chlorpheniramine Chlor-Trimeton® Chlordiazepoxide Clorazepate Tranxene® Cyclizine Cyclivert® Chlorpromazine Thorazine® Codeine -- Cyclobenzaprine Flexeril® Clemastine Tavist® Diazepam Valium® Cyproheptadine Periactin® Clomipramine Anafranil® Digoxin Lanoxin® Disopyramide Norpace® Clozapine Clozaril® Dipyridamole Persantine® Fluphenazine Prolixin® Darifenacin Enablex® Famotidine Pepcid® Loperamide Diamode® Desipramine Norpramin® Fentanyl Duragesic® Loratadine Claritin® Dicyclomine Bentyl® Fluoxetine Prozac® Loxapine Loxitane® Dimenhydrinate Dramamine® Flurazepam Dalmane® Meperidine Demerol® Diphenhydramine Benadryl® Fluvoxamine Luvox® Methocarbamol Robaxin® Doxepin Sinequan® Furosemide Lasix® Oxcarbazepine Trileptal® Flavoxate Urispas® Haloperidol Haldol® Pimozide Orap® Glycopyrrolate Robinul® Hydralazine Apresoline® Prochlorperazine Compazine® Hydroxyzine Atarax® Iloperidone Fanapt® Pseudoephedrine Sudafed® Hyoscyamine Anaspaz® Isosorbide Imdur® Quetiapine Seroquel® Imipramine Tofranil® Mirtazapine Remeron® Trimethobenzamide
    [Show full text]
  • 121 Comparative Evaluation of Human Mucosa And
    121 Oki T1, Luvsandorj O1, Suzuki K1, Kageyama A1, Otsuka A2, Shinbo H2, Ozono S2, Yamada S1 1. Department of Pharmacokinetics and Pharmacodynamics, Sch of Pharm Sci, University of Shizuoka, 2. Department of Urology, Hamamatsu University School of Medicine COMPARATIVE EVALUATION OF HUMAN MUCOSA AND DETRUSOR MUSCARINIC RECEPTOR BINDING BY ANTICHOLINERGIC AGENTS IN THE TREATMENT OF OVERACTIVE BLADDER Hypothesis / aims of study The urothelium is the epithelial lining of the urinary tract. Our traditional understanding of the function of this region was simply that of passive barrier between the urinary tract and its contents. In recent years, the urothelium exhibits neuron-like properties that contribute to sensory function. Although the function of such an innervation may be unclear, recent studies in humans and animals have indicated that muscarinic receptors (mAChRs) are present on both mucosa and detrusor of the urinary bladder [1, 2]. The mucosal mAChRs may represent a novel site of action of agents for the treatment of bladder disorders. Anticholinergic agents such as oxybutynin and propiverine are widely used for the treatment of overactive bladder. Tolterodine and darifenacin have been currently developed as novel anticholinergic agents that may exhibit pharmacological selectivity in the bladder. Furthermore, oxybutynin, propiverine and tolterodine are metabolized in the intestine and liver to form active metabolites, N-desethyl-oxybutynin (DEOB), 1- methyl-4-piperidyl benzilate N-oxide (DPr-P-4(N→O)) and 5-hydroxymethyl metabolite (5-HM), respectively. Although these metabolites are assumed to contribute to the mAChR blockade of parent compounds, their mAChR binding characteristics in the mucosa have not been examined.
    [Show full text]
  • Guideline for Preoperative Medication Management
    Guideline: Preoperative Medication Management Guideline for Preoperative Medication Management Purpose of Guideline: To provide guidance to physicians, advanced practice providers (APPs), pharmacists, and nurses regarding medication management in the preoperative setting. Background: Appropriate perioperative medication management is essential to ensure positive surgical outcomes and prevent medication misadventures.1 Results from a prospective analysis of 1,025 patients admitted to a general surgical unit concluded that patients on at least one medication for a chronic disease are 2.7 times more likely to experience surgical complications compared with those not taking any medications. As the aging population requires more medication use and the availability of various nonprescription medications continues to increase, so does the risk of polypharmacy and the need for perioperative medication guidance.2 There are no well-designed trials to support evidence-based recommendations for perioperative medication management; however, general principles and best practice approaches are available. General considerations for perioperative medication management include a thorough medication history, understanding of the medication pharmacokinetics and potential for withdrawal symptoms, understanding the risks associated with the surgical procedure and the risks of medication discontinuation based on the intended indication. Clinical judgement must be exercised, especially if medication pharmacokinetics are not predictable or there are significant risks associated with inappropriate medication withdrawal (eg, tolerance) or continuation (eg, postsurgical infection).2 Clinical Assessment: Prior to instructing the patient on preoperative medication management, completion of a thorough medication history is recommended – including all information on prescription medications, over-the-counter medications, “as needed” medications, vitamins, supplements, and herbal medications. Allergies should also be verified and documented.
    [Show full text]
  • The Pharmacology of Paediatric Incontinence
    BJU International (2000), 86, 581±589 The pharmacology of paediatric incontinence P.B. HOEBEKE* and J. VANDE WALLE² *Departments of Paediatric Urology and ²Paediatric Nephrology, Ghant University Hospital, Belgium Introduction ' the accommodation of increasing volumes of urine The clinical uropharmacology of the lower urinary tract at a low intravesical pressure and with appropriate is based on an appreciation of the innervation and sensation receptor content of the bladder and its related anatomical ' a bladder outlet that is closed and remains so during structures. The anatomy, neuroanatomy and neuro- increases in intra-abdominal pressures physiology of the bladder is reviewed. Classes of drugs are ' and absence of involuntary bladder contractions [2]. discussed in relation to the possible functional targets of pharmacological intervention and ®nally some speci®c In children the development of continence and applications in paediatric voiding dysfunction are voluntary voiding involves maturation of the nervous discussed. system and behavioural learning. Toilet training mainly depends on the cognitive perception of the maturing urinary tract. This implies a high sensibility for the Pharmacological interactions development of dysfunctions [3]. The storage and A short review of anatomy, neuroanatomy and neuro- evacuation of urine are controlled by two functional physiology is essential to understand pharmacological units in the lower urinary tract, i.e. the reservoir (the interactions. These interactions with effects on bladder bladder) and an outlet (consisting of the bladder neck, function can occur on different levels, i.e. on bladder urethra and striated muscles of the pelvic ¯oor). In the mucosa, bladder smooth muscle or bladder outlet striated bladder, two regions (Fig.
    [Show full text]
  • Anticholinergics for Overactive Bladder Evidence, Clinical Issues and Comparisons
    Anticholinergics for Overactive Bladder Evidence, Clinical Issues and Comparisons RxFiles Academic Detailing Program March 2008 Saskatoon City Hospital 701 Queen Street, Saskatoon, SK S7K 0M7 www.RxFiles.ca Recent Guidelines: Overactive Bladder – Background • Special caution should be used for the elderly who Canadian Urological1: • Overactive bladder (OAB) is also known as urge are especially sensitive to side effects from ACs. Can J Urol. 2006;13(3):3127-38 incontinence and occurs when there is an inability Some with dementia or cognitive impairment may 2 not tolerate ACs at all. If using an AC in the NICE (UK) 2006 : to delay voiding when an urge is perceived. elderly, start at the lowest dose, titrate up and www.nice.org.uk/nicemedia/pdf/CG • OAB is differentiated from stress urinary 40fullguideline.pdf reassess for effectiveness and adverse effects. incontinence (SUI) which is associated with a loss of Remember that many drugs contribute to the total urine secondary to intra-abdominal pressure such as anticholinergic load (e.g. antidepressants, antipsychotics).14 Systematic Reviews: occurs with coughing, sneezing and exercise.9 Cochrane: Hay-Smith J et al. • ACs should not be used with acetylcholinesterase • Anticholinergics (ACs) are useful drugs for Which anticholinergics drug for inhibitors (e.g. ARICEPT, REMINYL, EXELON) given treating OAB, however their use is limited by the overactive bladder symptoms in their opposing mechanisms.23 adults. Cochrane Systematic side effects of dry mouth and constipation. 3 Reviews 2005, Issue 3. 4 Oregon 2005 : Are non-drug treatment options effective? Oxybutynin (Oxy) vs Tolterodine (Tol) • A Cochrane systematic review found 3: www.ohsu.edu/drugeffectiveness/rep • Bladder training (a gradual time lengthening orts/documents/OAB%20Final%20 no statistically significant differences for Report%20Update%203.pdf between voids) or urge suppression may be useful 10 patient perceived improvement, leakage Canada in OAB, especially in addition to ACs.
    [Show full text]
  • Vesicare (Solifenacin Succinate)
    VESIcare® (solifenacin succinate) Tablets Description VESIcare® (solifenacin succinate) is a muscarinic receptor antagonist. Chemically, solifenacin succinate is butanedioic acid, compounded with (1S)-(3R)-1-azabicyclo[2.2.2]oct-3-yl 3,4­ dihydro-1-phenyl-2(1H)-iso-quinolinecarboxylate (1:1) having an empirical formula of C23H26N2O2•C4H6O4, and a molecular weight of 480.55. The structural formula of solifenacin succinate is: Solifenacin succinate is a white to pale-yellowish-white crystal or crystalline powder. It is freely soluble at room temperature in water, glacial acetic acid, dimethyl sulfoxide, and methanol. Each VESIcare tablet contains 5 or 10 mg of solifenacin succinate and is formulated for oral administration. In addition to the active ingredient solifenacin succinate, each VESIcare tablet also contains the following inert ingredients: lactose monohydrate, corn starch, hypromellose 2910, magnesium stearate, talc, polyethylene glycol 8000 and titanium dioxide with yellow ferric oxide (5 mg VESIcare tablet) or red ferric oxide (10 mg VESIcare tablet). Clinical Pharmacology Solifenacin is a competitive muscarinic receptor antagonist. Muscarinic receptors play an important role in several major cholinergically mediated functions, including contractions of urinary bladder smooth muscle and stimulation of salivary secretion. Pharmacokinetics Absorption After oral administration of VESIcare to healthy volunteers, peak plasma levels (Cmax) of solifenacin are reached within 3 to 8 hours after administration, and at steady state ranged from 32.3 to 62.9 ng/mL for the 5 and 10 mg VESIcare tablets, respectively. The absolute bioavailability of solifenacin is approximately 90%, and plasma concentrations of solifenacin are proportional to the dose administered. Effect of food There is no significant effect of food on the pharmacokinetics of solifenacin.
    [Show full text]
  • Oxybutynin: Dry Days for Patients with Hyperhidrosis
    r E v i E w oxybutynin: dry days for patients with hyperhidrosis G.S. Mijnhout1*, H. Kloosterman2, S. Simsek1, R.J.M. Strack van Schijndel3, J.C. Netelenbos1 Departments of 1Endocrinology and 3Internal Medicine, VU University Medical Centre, Amsterdam, the Netherlands, 2General Practitioner, Den Helder, the Netherlands, *corresponding author: tel.: +31 (0)20-444 41 01, fax: +31 (0)20-444 05 02, e-mail: [email protected] A b s T r act we report the case of a 56-year-old postmenopausal woman Table 1. Causes of hyperhidrosis who was referred to our Endocrinology outpatient Clinic generalised because of severe hyperhidrosis. she had a four-year history Menopausal of excessive sweating of her face and upper body. on Endocrine diseases: hyperthyroidism, carcinoid syndrome, presentation no sweating could be documented. physical pheochromocytoma, mastocytosis, diabetes mellitus, hypoglycaemia, acromegaly examination was also unremarkable. it appeared that Serotonin syndrome five days earlier her general practitioner had prescribed Chronic infections: e.g. endocarditis, tuberculosis, HIV oxybutynin for urge incontinence and this accidentally infection cured her hyperhidrosis. she was diagnosed with idiopathic Malignancy: lymphoma, bronchial carcinoma with compression of the sympathetic chain hyperhidrosis. we advised her to continue the oxybutynin Neurological: brain damage, spinal cord injuries, autonomic and six months later, she was still symptom-free. oral dysreflexia, Parkinson’s disease, Shapiro’s syndrome anticholinergic drugs are known to be effective for Drug-induced: antidepressants, antipyretics, antimigraine drugs, hyperhidrosis, but only anecdotal reports on oxybutynin cholinergic agonists, GnRH agonists, sympathomimetic agents, b-blockers, cyclosporine and many others can be found in the literature.
    [Show full text]