Estimating Fractional Cover of Tundra Vegetation at Multiple Scales Using

Total Page:16

File Type:pdf, Size:1020Kb

Estimating Fractional Cover of Tundra Vegetation at Multiple Scales Using Remote Sensing of Environment 224 (2019) 119–132 Contents lists available at ScienceDirect Remote Sensing of Environment journal homepage: www.elsevier.com/locate/rse Estimating fractional cover of tundra vegetation at multiple scales using T unmanned aerial systems and optical satellite data ⁎ Henri Riihimäkia, , Miska Luotoa, Janne Heiskanena,b a Department of Geosciences and Geography, University of Helsinki, 00014, PO Box 64, Helsinki, Finland b Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Finland ARTICLE INFO ABSTRACT Keywords: Fractional cover of green vegetation (FCover) is a key variable when observing Arctic vegetation under a Unmanned aerial vehicles changing climate. Vegetation changes over large areas are traditionally monitored by linking plot-scale mea- UAV surements to satellite data. However, integrating field and satellite data is not straightforward. Typically, the Drones satellite data are at a much coarser scale in comparison to field measurements. Here, we studied how Unmanned Modifiable Area Unit Problem (MAUP) Aerial Systems (UASs) can be used to bridge this gap. We covered three 250 m × 250 m sites in Fennoscandian Upscaling tundra with varying productivity and FCover, ranging from barren vegetation to shrub tundra. The UAS sites Resolution Arctic were then used to train satellite data-based FCover models. High-latitude First, we created a binary vegetation classification (absent, present) by using UAS-derived RGB-orthomosaics Monitoring and logistic regression. Secondly, we used the classification to calculate FCover to Planet CubeSat (3m), Sentinel-2A MSI (10 m, 20 m), and Landsat 8 OLI (30 m) grids, and examined how well FCover is explained by various spectral vegetation indices (VI) derived from satellite data. The overall classification accuracies for the UAS sites were ≥90%. The UAS-FCover were strongly related to the tested VIs (D2 89% at best). The explained deviance was generally higher for coarser resolution data, in- dicating that the effect of data resolution should be taken into account when comparing results from different sensors. VIs based on red-edge (at 740 nm, 783 nm), or near-infrared and shortwave infrared (SWIR) had the highest performance. We recommend wider inspection of red-edge and SWIR bands for future Arctic vegetation research. Our results demonstrate that UASs can be used for observing FCover at multiple scales. Individual UAS sites can serve as focus areas, which provide information at the finest resolution (e.g. individual plants), whereas a sample of several UAS sites can be used to train satellite data and examine vegetation over larger extents. 1. Introduction feedbacks, for example surface albedo and temperatures (Blok et al., 2011; Farbrot et al., 2013). Due to rapidly advancing climate change, there is a great need for Satellite-based spectral vegetation indices (VIs) are known to be monitoring Arctic vegetation. Substantial changes in vegetation cover sensitive to FCover and are commonly used to examine vegetation and composition have been observed in many areas across the Arctic change (Carlson and Ripley, 1997; Epstein et al., 2012; Jia et al., 2003; (e.g. Myers-Smith et al., 2011; Sturm et al., 2001). One of the key Tucker et al., 2001; Zeng et al., 2003). It is well recognized that more variables characterizing Arctic vegetation is the fractional cover of effort is needed to evaluate circumpolar VI(Guay et al., 2014). Col- green vegetation (hereafter FCover). Monitoring FCover can reveal the lecting ground reference data for coarse resolution data is challenging dynamics of vegetation expansion or loss (Epstein et al., 2013; Lara due to differences in scale between field observations and satellite data et al., 2018; Phoenix and Bjerke, 2016). These changes can be related to (Epstein et al., 2012; Walker et al., 2016). Vegetation survey plot size disturbance caused by herbivores, extreme weather events or earth typically varies from 1 to 104 m2 (Walker et al., 2016), but even smaller surface processes, or recovery from earlier disturbance (Virtanen et al., plots have been used. For example, Liu and Treitz (2016) used a subplot 2010; Phoenix and Bjerke, 2016). Furthermore, vegetation is crucially size of 0.125 m2 when collecting reference data for FCover. Obtaining linked to permafrost dynamics, and earth surface-atmosphere reference data even for a single pixel usually requires sampling and ⁎ Corresponding author. E-mail address: [email protected] (H. Riihimäki). https://doi.org/10.1016/j.rse.2019.01.030 Received 11 May 2018; Received in revised form 24 January 2019; Accepted 26 January 2019 0034-4257/ © 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/). H. Riihimäki, et al. Remote Sensing of Environment 224 (2019) 119–132 Fig. 1. Scales of field observation and commonly used remote sensing data. UAS-assisted ground reference data collection can be used to bridge the gapbetweenplot data and medium and coarse resolution satellite data. multiple field observations, i.e. a plot consisting of several point ob- to vegetation monitoring remains largely unexplored. servations or subplots. Thus, novel methods are needed in order to Thus far, several studies have examined Arctic FCover based on dif- bridge this gap between scales. ferent remote sensing data sources (e.g. Laidler et al., 2008; Liu et al., During the past decade, advances in both the development of un- 2017; Liu and Treitz, 2016). Laidler et al. (2008) investigated the re- manned aerial systems (UASs) and photogrammetric methods have lationship between FCover and Normalized Difference Vegetation Index opened new avenues for many fields of research (Anderson and Gaston, (NDVI), and its relationship derived from three data sources; field 2013; Colomina and Molina, 2014; Cruzan et al., 2016; Pajares, 2015). spectrometer, IKONOS, and Landsat 7 ETM+ satellite data. The study UASs can be used as personal remote sensing systems, which can map showed a strong linear relationship between FCover and NDVI for all of the environment with unprecedented accuracy over large areas (Fig. 1). the instruments (R2 = 0.72–0.78). Liu and Treitz (2016) modelled Arctic Several studies have demonstrated that UASs are excellent tools for FCover with WorldView-2-derived VIs, and found similar results mapping and monitoring different vegetation properties (Dandois and (R2 = 0.74–0.81). Liu et al. (2017) modelled FCover for five different Ellis, 2013; Dunford et al., 2009; Wallace et al., 2016). Furthermore, Arctic vegetation types with hyperspectral Hyperion and multispectral UAS-based vegetation classification studies have been successfully WorldView-3 VIs, and found that narrowband indices performed better executed in different environments (Ahmed et al., 2017; Cruzan et al., than broadband indices. The optimal bands were located at the absorp- 2016; Laliberte et al., 2010), including the Arctic (Fraser et al., 2016; tion areas of leaf pigments (681.20 nm; red), water (1174.77 nm and Juszak et al., 2017; Palace et al., 2018). 1184.87 nm; near-infrared [NIR]), cellulose (2072.65 nm; shortwave in- A completely new set of scales is now available for analysis since the frared [SWIR]) and lignin (2102.94 nm; SWIR). In addition, the red-edge emergence of UASs (Anderson and Gaston, 2013; Tømmervik et al., slope (721.90 nm and 732.07 nm) was important for modelling FCover. 2014). Traditional Earth observation is limited by the predefined scale Nevertheless, the application of Landsat 8, Sentinel-2 and Planet of the observations, as the only scales available for analysis are those in CubeSat satellites for FCover modelling remains untested. The Sentinel- which the instruments record the data – regardless of whether these 2 and Planet CubeSat constellations could advance Arctic observation scales are appropriate for the analysis (Dark and Bram, 2007). Because due to their higher revisit time and resolution compared to the Landsat of their low operating altitude, UASs can produce ultrahigh-resolution series. Since the availability of cloud-free imagery in the Arctic is low data, which can be upscaled (i.e. aggregated) to a desired resolution. compared to other regions (Wulder et al., 2015), more frequent ob- The data can be matched with global-coverage satellite data, enabling servation can greatly advance Arctic monitoring. Sentinel-2 offers ad- FCover estimation at multiple scales (Fig. 1). ditional bands, also within the red-edge, which may improve the re- Most of the pan-Arctic vegetation studies are based on coarse-re- mote sensing of vegetation attributes, including those related to FCover solution satellite data, such as Advanced Very-High Resolution (Liu et al., 2017). On the other hand, the Landsat series offers a unique Radiometer (AVHRR, 1.09 km resolution at nadir) or Moderate time series extending back to the 1970s, which is essential for long-term Resolution Imaging Spectrometer (MODIS, resolution ≥ 250 m) change monitoring (Wulder et al., 2012). (Epstein et al., 2013; Guay et al., 2014). However, gradual changes in In this study, we demonstrate the utilization of UASs for estimating vegetation are hard to detect from coarse-resolution data due to land- FCover at multiple scales. Our main motivation was to improve the scape heterogeneity and lack of pure pixels (Jia et al., 2009). Medium- integration of field and satellite data, and to advance the monitoring resolution satellites (e.g. Landsat, Sentinel-2, SPOT) offer much higher methods of Arctic vegetation by using modern remote sensing methods. resolution to reveal more of the fine-scale variability of the Arctic ve- Our first aim was to create and test a simple workflow for estimating getation (Ju and Masek, 2016; Lara et al., 2018). Sentinel-2 and Landsat FCover from UAS-derived RGB-orthomosaics created by low-cost, easy- data are particularly relevant for vegetation monitoring, since both are to-operate UASs. Orthomosaics were classified as presence or absence freely distributed and have global coverage.
Recommended publications
  • Spatiotemporal Continuous Impervious Surface Mapping by Fusion of Landsat Time Series Data and Google Earth Imagery
    remote sensing Article Spatiotemporal Continuous Impervious Surface Mapping by Fusion of Landsat Time Series Data and Google Earth Imagery Rui Chen 1,2, Xiaodong Li 1,* , Yihang Zhang 1, Pu Zhou 1,2, Yalan Wang 1,2, Lingfei Shi 3 , Lai Jiang 4, Feng Ling 1 and Yun Du 1 1 Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China; [email protected] (R.C.); [email protected] (Y.Z.); [email protected] (P.Z.); [email protected] (Y.W.); [email protected] (F.L.); [email protected] (Y.D.) 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Henan Agricultural University School of Resources and Environment, Zhengzhou 450002, China; [email protected] 4 Hubei Water Resources Research Institute, Hubei Water Resources and Hydropower Science and Technology Promotion Center, Wuhan 430070, China; [email protected] * Correspondence: [email protected]; Tel./Fax: +86-27-6888-1075 Abstract: The monitoring of impervious surfaces in urban areas using remote sensing with fine spatial and temporal resolutions is crucial for monitoring urban development and environmental changes in urban areas. Spatiotemporal super-resolution mapping (STSRM) fuses fine-spatial-coarse- temporal remote sensing data with coarse-spatial-fine-temporal data, allowing for urban impervious surface mapping at both fine-spatial and fine-temporal resolutions. The STSRM involves two main steps: unmixing the coarse-spatial-fine-temporal remote sensing data to class fraction images, and Citation: Chen, R.; Li, X.; Zhang, Y.; downscaling the fraction images to sub-pixel land cover maps.
    [Show full text]
  • Early Analysis of Landsat-8 Thermal Infrared Sensor Imagery of Volcanic Activity
    Remote Sens. 2014, 6, 2282-2295; doi:10.3390/rs6032282 OPEN ACCESS remote sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Early Analysis of Landsat-8 Thermal Infrared Sensor Imagery of Volcanic Activity Matthew Blackett Centre for Disaster Management and Hazards Research, Coventry University, Priory Street, Coventry, CV1 5FB, UK; E-Mail: [email protected]; Tel.: +44-2476-887-692 Received: 18 October 2013; in revised form: 21 February 2014 / Accepted: 10 March 2014 / Published: 12 March 2014 Abstract: The Landsat-8 satellite of the Landsat Data Continuity Mission was launched by the National Aeronautics and Space Administration (NASA) in April 2013. Just weeks after it entered active service, its sensors observed activity at Paluweh Volcano, Indonesia. Given that the image acquired was in the daytime, its shortwave infrared observations were contaminated with reflected solar radiation; however, those of the satellite’s Thermal Infrared Sensor (TIRS) show thermal emission from the volcano’s summit and flanks. These emissions detected in sensor’s band 10 (10.60–11.19 µm) have here been quantified in terms of radiant power, to confirm reports of the actual volcanic processes operating at the time of image acquisition, and to form an initial assessment of the TIRS in its volcanic observation capabilities. Data from band 11 have been neglected as its data have been shown to be unreliable at the time of writing. At the instant of image acquisition, the thermal emission of the volcano was found to be 345 MW. This value is shown to be on the same order of magnitude as similarly timed NASA Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer thermal observations.
    [Show full text]
  • Year in Review 2013
    SM_Dec_2013 cover Worldwide Satellite Magazine December 2013 SatMagazine 2013 YEAR IN REVIEW SatMagazine December 2013—Year In Review Publishing Operations Senior Contributors This Issue’s Authors Silvano Payne, Publisher + Writer Mike Antonovich, ATEME Mike Antonovich Robert Kubbernus Hartley G. Lesser, Editorial Director Tony Bardo, Hughes Eran Avni Dr. Ajey Lele Richard Dutchik Dave Bettinger Tom Leech Pattie Waldt, Executive Editor Chris Forrester, Broadgate Publications Don Buchman Hartley Lesser Jill Durfee, Sales Director, Editorial Assistant Karl Fuchs, iDirect Government Services Eyal Copitt Timothy Logue Simon Payne, Development Director Bob Gough, 21 Carrick Communications Rich Currier Jay Monroe Jos Heyman, TIROS Space Information Tommy Konkol Dybvad Tore Morten Olsen Donald McGee, Production Manager David Leichner, Gilat Satellite Networks Chris Forrester Kurt Peterhans Dan Makinster, Technical Advisor Giles Peeters, Track24 Defence Sima Fishman Jorge Potti Bert Sadtler, Boxwood Executive Search Simen K. Frostad Sally-Anne Ray David Gelerman Susan Sadaat Samer Halawi Bert Sadtler Jos Heyman Patrick Shay Jack Jacobs Mike Towner Casper Jensen Serge Van Herck Alexandre Joint Pattie Waldt Pradman Kaul Ali Zarkesh Published 11 times a year by SatNews Publishers 800 Siesta Way Sonoma, CA 95476 USA Phone: (707) 939-9306 Fax: (707) 838-9235 © 2013 SatNews Publishers We reserve the right to edit all submitted materials to meet our content guidelines, as well as for grammar or to move articles to an alternative issue to accommodate publication space requirements, or removed due to space restrictions. Submission of content does not constitute acceptance of said material by SatNews Publishers. Edited materials may, or may not, be returned to author and/or company for review prior to publication.
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • Spire's Cubesat Constellation of GNSS, AIS, and ADS-B Sensors
    Seizing Opportunity: Spire’s CubeSat Constellation of GNSS, AIS, and ADS-B Sensors Dallas Masters, Director of GNSS, Spire Global, Inc. Stanford PNT Symposium, 2018-11-08 WHO & WHAT IS SPIRE? We’re a new, innovative satellite & data services company that you might not have heard of… We’re what you get when you mix agile development with nanosatellites... We’re the transformation of a single , crowd-sourced nanosatellite into one of the largest constellations of satellites in the world... Stanford PNT Symposium, 2018-11-08 OUTLINE 1. Overview of Spire 2. Spire satellites and PNT payloads & products a. AIS ship tracking b. GNSS-based remote sensing measurements: radio occultation (RO), ionosphere electron density, bistatic radar (reflections) c. ADS-B aircraft tracking (early results) 3. Spire’s lofty long-term goals Stanford PNT Symposium, 2018-11-08 AN OVERVIEW OF SPIRE Stanford PNT Symposium, 2018-11-08 SPIRE TODAY • 150 people across five offices (a distributed start-up) - San Francisco, Boulder, Glasgow, Luxembourg, and Singapore • 60+ LEO 3U CubeSats (10x10x30 cm) in orbit with passive sensing payloads, 30+ global ground stations - 16 launch campaigns completed with seven different launch providers - Ground station network owned and operated in-house for highest level of security and resilience • Observing each point on Earth 100 times per day, everyday - Complete global coverage, including the polar regions • Deploying new applications within 6-12 month timeframes • World’s largest ship tracking constellation • World’s largest weather
    [Show full text]
  • Landsat Data Continuity Mission (LDCM)
    National Aeronautics and Space Administration —PHOTO BY NASA Landsat Data Continuity Mission (LDCM) VOLUME 11, NUMBER 3 | SUMMER 2013 IN THIS ISSUE: 2 From the Chief 16 SBIR/STTR Success Story 3 Landsat Data Continuity Mission 18 Patenting Perspectives 5 Applications for Landsat Data 20 Networking and Outreach 9 Interview with Dr. James Irons and 23 NASA Goddard in the News Dr. Murzy Jhabvala 25 Disclosures and Patents 13 Landsat Technology Transfer NASA Goddard Tech Transfer News | volume 11, number 3 | summer 2013 [ 1 Landsat 8 [ FROM THE Chief Nona Cheeks Landsat represents a highly visible and compelling success story, both for NASA in general and NASA Goddard Space Flight Center in particular. Since the launch of Landsat 1 in 1972, this ongoing program has provided an incomparable wealth of data about the land surface of our planet. A complete review of all the benefi ts Landsat has provided to humanity over the years would require far more space than we have available to us here; a few examples include climate research, environmental monitoring, agriculture, and disaster recovery just to name a few. The Landsat Data Continuity Mission (LDCM) is the latest satellite in the Landsat series. Successfully launched on February 11, 2013, LDCM – which is now known throughout the world as Landsat 8 – carries onboard two primary instruments, the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The former observes the Earth in visible light, while the latter operates in the infrared. These instruments signifi cantly enhance Landsat’s ability to collect and process vast amounts of high-quality data.
    [Show full text]
  • Processing Image to Geographical Information Systems (PI2GIS)—A Learning Tool for QGIS
    education sciences Article Processing Image to Geographical Information Systems (PI2GIS)—A Learning Tool for QGIS Rui Correia 1 ID , Lia Duarte 1,2,* ID , Ana Cláudia Teodoro 1,2 ID and António Monteiro 3 ID 1 Department of Geosciences, Environment and Land Planning, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; [email protected] (R.C.); [email protected] (A.C.T.) 2 Earth Sciences Institute (ICT), Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal 3 Research Center in Biodiversity and Genetic Resources, University of Porto, 4169-007 Porto, Portugal; [email protected] * Correspondence: [email protected] Received: 26 April 2018; Accepted: 31 May 2018; Published: 6 June 2018 Abstract: Education, together with science and technology, is the main driver of the progress and transformations of a country. The use of new technologies of learning can be applied to the classroom. Computer learning supports meaningful and long-term learning. Therefore, in the era of digital society and environmental issues, a relevant role is provided by open source software and free data that promote universality of knowledge. Earth observation (EO) data and remote sensing technologies are increasingly used to address the sustainable development goals. An important step for a full exploitation of this technology is to guarantee open software supporting a more universal use. The development of image processing plugins, which are able to be incorporated in Geographical Information System (GIS) software, is one of the strategies used on that front. The necessity of an intuitive and simple application, which allows the students to learn remote sensing, leads us to develop a GIS open source tool, which is integrated in an open source GIS software (QGIS), in order to automatically process and classify remote sensing images from a set of satellite input data.
    [Show full text]
  • Characterization of Landsat-7 to Landsat-8 Reflective Wavelength And
    *Revised Manuscript with no Changes Highlighted Click here to download Revised Manuscript with no Changes Highlighted: rev_rev_L7_L8_paper_Royetal.docx 1 Characterization of Landsat-7 to Landsat-8 reflective wavelength and 2 normalized difference vegetation index continuity 3 Roy, D.P. 1, Kovalskyy, V.1, Zhang, H.K. 1, Vermote, E.F. 2, 4 Yan, L. 1, Kumar, S.S. 1, Egorov, A. 1 5 6 1 Geospatial Science Center of Excellence, 7 South Dakota State University Brookings, SD 57007, USA 8 2 NASA Goddard Space Flight Center, 9 Terrestrial Information Systems Branch, MD 20771, USA 10 11 At over 40 years, the Landsat satellites provide the longest temporal record of space-based land 12 surface observations, and the successful 2013 launch of the Landsat-8 is continuing this legacy. 13 Ideally, the Landsat data record should be consistent over the Landsat sensor series. The 14 Landsat-8 Operational Land Imager (OLI) has improved calibration, signal to noise 15 characteristics, higher 12-bit radiometric resolution, and spectrally narrower wavebands than the 16 previous Landsat-7 Enhanced Thematic Mapper (ETM+). Reflective wavelength differences 17 between the two Landsat sensors depend also on the surface reflectance and atmospheric state 18 which are difficult to model comprehensively. The orbit and sensing geometries of the Landsat- 19 8 OLI and Landsat-7 ETM+ provide swath edge overlapping paths sensed only one day apart. 20 The overlap regions are sensed in alternating backscatter and forward scattering orientations so 21 Landsat bi-directional reflectance effects are evident but approximately balanced between the 22 two sensors when large amounts of time series data are considered.
    [Show full text]
  • Investigating the Potential of Landsat 8 OLI Satellite Imagery for Geological Mapping in Namibia
    Investigating the Potential of Landsat 8 OLI Satellite Imagery for Geological Mapping in Namibia Landsat 5-7(1999-2011) and especially Landsat 8 (2013+) offer new potential for Landsat 8 Operational Land Landsat 7 Enhanced Thematic Mapper Plus Imager (OLI) and (ETM+) spectral mapping of lithologies and structures. Reference spectral graphs for individual Only two academic papers relating to geological remote sensing in Namibia have Thermal Infrared Sensor (TIRS) been published (Lord et al., 1996, Gomez et al., 2005) despite the complex and minerals have been available for decades (Hunt and Salisbury 1970) but the spectral Wavelength Resolution Wavelength Resolution Bands Bands discrimination of rocks with variable types and quantities of mineral, variable varied geology, cloud free atmospheres, and the almost ideal surface conditions of (micrometres) (metres) (micrometres) (metres) Band 1 - Coastal 0.43 - 0.45 30 weathering, surface crusts, hybrids of rock types (shaly limestones) and frequently bedrock exposure. These two publications used moderate resolution sensors, aerosol Band 1 - blue 0.45-0.52 30 Landsat MSS (1972-82, 4 - 8 spectral bands - VIS/VNIR, 80m pixels) – and ASTER Band 2 - Blue 0.45 - 0.51 30 Band 2 - green 0.52-0.60 30 altering atmospheres is problematical for lithological discrimination. The capacity to Band 3 - Green 0.53 - 0.59 30 Band 3 - red 0.63-0.69 30 perform spectral mapping or spectral stratigraphy(Prost,1994) can assist field Band 4 – near ( 2000+ complex 14 spectral bands - VNIR/SWIR/TIR s 15-90m spatial resolution). Band 4 - Red 0.64 - 0.67 30 0.77-0.90 30 Infrared (NIR) mapping by using a mixture of spectral reflectance (colour), brightness and erosional Band 5 - Near 0.85 - 0.88 30 Band 5 - SWIR 1.55-1.75 30 Infrared (NIR) texture associated with lithologies.
    [Show full text]
  • IFC-AMC Motion to Dismiss
    Case 1:17-cv-01494-VAC-SRF Document 34-1 Filed 02/16/18 Page 1 of 1 PageID #: 1030 IN THE UNITED STATES DISTRICT COURT FOR THE DISTRICT OF DELAWARE JUANA DOE I et al., § § Plaintiffs, § § vs. § § C.A. No. 17-1494-VAC-SRF IFC ASSET MANAGEMENT COMPANY, § LLC, § § Defendant. § [PROPOSED] ORDER WHEREAS, Defendant IFC Asset Management Company, LLC, having moved to dismiss the claims in Plaintiff Juana Doe I et al.’s Complaint (D.I. 1); and, WHEREAS, the Court having considered the briefs and arguments in support of and in opposition to said Motion; IT IS HEREBY ORDERED this _______ day of ____________, 2018, that the Motion is GRANTED. Plaintiffs’ Complaint is dismissed with prejudice. _______________________________ United States District Judge RLF1 18887565v.1 Case 1:17-cv-01494-VAC-SRF Document 34-1 Filed 02/16/18 Page 1 of 1 PageID #: 1030 IN THE UNITED STATES DISTRICT COURT FOR THE DISTRICT OF DELAWARE JUANA DOE I et al., § § Plaintiffs, § § vs. § § C.A. No. 17-1494-VAC-SRF IFC ASSET MANAGEMENT COMPANY, § LLC, § § Defendant. § [PROPOSED] ORDER WHEREAS, Defendant IFC Asset Management Company, LLC, having moved to dismiss the claims in Plaintiff Juana Doe I et al.’s Complaint (D.I. 1); and, WHEREAS, the Court having considered the briefs and arguments in support of and in opposition to said Motion; IT IS HEREBY ORDERED this _______ day of ____________, 2018, that the Motion is GRANTED. Plaintiffs’ Complaint is dismissed with prejudice. _______________________________ United States District Judge RLF1 18887565v.1 Case 1:17-cv-01494-VAC-SRF Document 35 Filed 02/16/18 Page 1 of 51 PageID #: 1031 IN THE UNITED STATES DISTRICT COURT FOR THE DISTRICT OF DELAWARE JUANA DOE I et al., § § Plaintiffs, § § vs.
    [Show full text]
  • Quantification of Surface Water Volume Changes in the Mackenzie Delta
    Hydrol. Earth Syst. Sci., 22, 1543–1561, 2018 https://doi.org/10.5194/hess-22-1543-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 3.0 License. Quantification of surface water volume changes in the Mackenzie Delta using satellite multi-mission data Cassandra Normandin1, Frédéric Frappart2,3, Bertrand Lubac1, Simon Bélanger4, Vincent Marieu1, Fabien Blarel3, Arthur Robinet1, and Léa Guiastrennec-Faugas1 1EPOC, UMR 5805, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, 33615 Pessac, France 2GET-GRGS, UMR 5563, CNRS/IRD/UPS, Observatoire Midi-Pyrénées, 31400 Toulouse, France 3LEGOS-GRGS, UMR 5566, CNRS/IRD/UPS, Observatoire Midi-Pyrénées, 31400 Toulouse, France 4Dép. Biologie, Chimie et Géographie, groupe BOREAS and Québec-Océan, Université du Québec à Rimouski, 300 allée des ursulines, Rimouski, Qc, G5L 3A1, Canada Correspondence: Cassandra Normandin ([email protected]) Received: 22 March 2017 – Discussion started: 29 May 2017 Revised: 5 December 2017 – Accepted: 11 January 2018 – Published: 28 February 2018 Abstract. Quantification of surface water storage in exten- the surface water extents are produced. Results indicate a sive floodplains and their dynamics are crucial for a bet- high variability of the water height magnitude that can reach ter understanding of global hydrological and biogeochemi- 10 m compared to the lowest water height in the upstream cal cycles. In this study, we present estimates of both surface part of the delta during the flood peak in June. Furthermore, water extent and storage combining multi-mission remotely the total surface water volume is estimated and shows an sensed observations and their temporal evolution over more annual variation of approximately 8.5 km3 during the whole than 15 years in the Mackenzie Delta.
    [Show full text]
  • PROBA-V Satellite for Global Vegetation Monitoring Stefan Livens
    Comparison between Landsat-8 OLI and PROBA-V over Libya-4 Pseudo Invariant Calibration Site (PICS) Stefan Adriaensen(1), Mishra Nischal(2), Sindy Sterckx(1), Dennis Helder(2) (1) Vito, BELGIUM (2) South Dakota State University, USA Libya 4 scene with Region Of Interest PV Instrument Landsat 8 OLI and PROBA-V Sensor intercomparison is a technique often used for vicarious calibration. It is essential to estimate the performance of a spectral instrument with respect to others. Different initiatives exist, like the ESA/CEOS IVOS intercomparison workgroup, giving calibration and validation teams the opportunity to intercompare methods and sensors [1]. It is obvious to make a comparison between instruments that have equal or even overlapping response curves. With the Landsat8 OLI and PROBA-V instruments, such overlap is present for three visible (BLUE, RED,NIR) and one SWIR band. Direct comparison of both instruments is done using the OSCAR desert method. For OLI, the model of the South Dakota State University applied to all bands, as well the OSCAR method. The comparison has been done over the so called Lybia-4 PICS site. It is a well known site, often used for vicarious calibration. Figure 1 : overlapping RSR for PV and OLI. Comparison of both models applied to OLI Comparison between PROBA-V and OLI using OSCAR Method Method The method used in the comparison between PROBA-V and OLI is described in [2] and is part of the This empirical method is described in [4] and [5] and uses Terra MODIS as a calibrated radiometer OSCAR facilities developed at Vito [3].
    [Show full text]