Diagnosis of Syphilis: Clinical and Laboratory Problems Syphilisdiagnostik: Klinische Und Labormedizinische Problematik

Total Page:16

File Type:pdf, Size:1020Kb

Diagnosis of Syphilis: Clinical and Laboratory Problems Syphilisdiagnostik: Klinische Und Labormedizinische Problematik 1058 Academy DOI: 10.1111/j.1610-0387.2006.06072.x CME Diagnosis of syphilis: Clinical and laboratory problems Syphilisdiagnostik: Klinische und labormedizinische Problematik Stephan Lautenschlager Department of Dermatology, City Hospital Triemli, Zurich, Switzerland Section Editor Prof. Dr. Michael Landthaler, Regensburg Introduction Due to HIV prevention campaigns there was a sharp decline in the incidence of classical sexually transmitted diseases in many Western European nations at the end of the 1980s and beginning of the 1990s. Also, the initially high mortality of AIDS contributed to the reduction of syphilis cases. After a dramatic increase of syphilis in the countries of the former Soviet Union since 1994, outbreaks have been registered in Great Britain, Ireland, France, Holland and Norway [1]. Similar trends can be observed in Germany and Switzerland [2–4]. The increase in syphilis observed for years continued in 2004 [2, 4] with 3,345 newly diagnosed cases being reported in Germany, an incidence rate of 4.1 cases per 100,000 population, a 14 % increase compared to 2003 [2]. Syphilis in Europe is observed mainly in large cities among young adults. Homosexual males in particular are affected, many of whom have known HIV infections [5]. The HIV co-infection rate varies greatly depending on country but ranges up to 50 %. Most recent trends also show a rise in syphilis among heterosexual men [2]. Particularly worrisome is that the rise in syphilis correlates with the renewed increase of sexually acquired HIV infection, which has risen by 20 % between 1995 and 2000 [1]. The return of syphilis presents a diagnostic challenge for young physicians who are often not familiar with the clinical presentation, diagnostic approach or treatment. We must re-familiarize ourselves with the diverse clinical features of syphilis [6] and the complex diagnostic approach to this disease [7, 8]. It is especially crucial to recognize the diverse clinical symptoms of each individual stage and to keep them in mind in considering differential diagnoses. The key to diagnosis is examination of the entire skin surface and its appendages, the anogenital region, the oral mucosa and regional lymph nodes while considering possible general and neurologic symptoms. The peculiarities in simultaneous HIV To stop the current spread of syphilis, co-infection must especially be considered. To stop the current spread of syphilis, we we must once more become familiar must once more become familiar with the complex clinical presentation and diagnostic with the complex clinical presenta- approach. Rapid diagnosis and treatment are essential to prevent further spread, late tion and diagnostic approach. complications, transfer to the newborn and may represent a key to reducing new sexually acquired HIV infections. Definition of the stages of syphilis The course of syphilis – caused by Treponema pallidum – is characterized by stages, where symptomatic periods are interrupted by sometimes very long asymptomatic phases (latent syphilis). Early syphilis comprises primary and secondary syphilis as well as early latent syphilis with a latency of < 1 year (definition of the Centers for Disease Control (CDC), Atlanta) or < 2 years (definition of the WHO) after infection. Late syphilis consists of late latent, tertiary and – depending on nomenclature – qua- ternary syphilis or metalues (Table 1). This classification in stages is a simplification which is not always applicable to the diverse clinical presentation. JDDG |12˙2006 (Band 4) © The Authors • Journal compilation © Blackwell Verlag, Berlin • JDDG • 1610-0379/2006/0412-1058 Academy 1059 Table 1: Definition of the stages of syphilis. Stage Duration Manifestations Incubation period 3 weeks (9–90 days) Ulcer at the site of Primary syphilis 6 weeks inoculation, regional infection Syphilids, general symptoms, Secondary syphilis Months further organ manifestations, hematogenous dissemination Early latency: < 1 year (CDC) < 2 years (WHO) Seropositivity, no clinical Latent syphilis Late latency: symptoms, spontaneous > 1 year (CDC) healing (two-thirds) > 2 years (WHO) Tuberoserpiginous syphilids, gummas in multiple organs, Tertiary syphilis Years cellular reaction in face of few pathogens Metasyphilis, quaternary syphilis Years Tabes dorsalis, general paresis Meningovascular syphilis (symptomatic/asymptomatic), Years, possible in stage basilar meningitis, acute Neurosyphilis II-IV transverse dorsal myelitis, cerebral gummas, general paresis, tabes dorsalis Early latent syphilis is defined as < 1 year according to the CDC and < 2 years Early latent syphilis is defined as according to the WHO. < 1 year according to the CDC and < 2 years according to the WHO. Clinical problems in syphilis diagnosis Primary syphilis The incubation period is 3 weeks, but can be as long as 3 months. After an average The incubation period is 3 weeks, but incubation period of 3 weeks (9–90 days) a dark red macule or papule develops at the can be as long as 3 months. site of inoculation and rapidly progresses to an erosion (Figure 1). Size and depth of the defect increase over the course of one to two weeks until a typical, indolent, well-circumscribed, flat ulcer with a yellow coated base and an indurated, non-undermined wall results [9]. This is followed by edema and bilateral asymptomatic lymphadenopathy. Classically, the chancre is located in the coronal sulcus in males and on the labia minora in females. Principally, primary syphilis may present with atypical morphology, symptoms and locations causing diagnostic difficulties, so that only 30 to 40 % of patients in the primary stage are diagnosed [4, 10]. Only 30 to 40 % of cases are Only 30 to 40 % of cases are diagnosed in the primary stage of syphilis. diagnosed in the primary stage of syphilis. a) Atypical morphology and symptoms The clinical diagnosis of syphilis in its primary stage is unreliable because of possible The clinical diagnosis of syphilis in its atypical presentations. DiCarlo and Martin [11] demonstrated that in 446 males with primary stage is unreliable because genital ulcer the classical, indurated and indolent syphilitic chancre was present in of possible atypical presentations. only 31% and that clinical features in the majority could not be differentiated from herpetic ulcers or from chancroid [11]. In a recent outbreak in Manchester, many JDDG |12˙2006 (Band 4) 1060 Academy Figure 1: Early eroded papule in primary syphilis. In industrialized lands, differentiation patients exhibited multiple, painful genital ulcers resembling genital herpes [12]. In from genital herpes is most important. industrialized lands, differentiation from genital herpes is important. Sometimes the chancre is totally absent or multiple ulcers occur or simply a nodular lesion is present. Examination of lymph nodes does not always aid clinical diagnosis, as the lympha- denopathy may be painful as in other infections [11]. The most important differen- tial diagnoses of genital ulcers are listed in Table 2. b) Atypical location Just as clinical presentation can be non-specific, so can the location of the chancre cause it to be overlooked. This is especially true for anal or rectal ulcers in homosexual Atypical locations as well as hidden males and vaginal or cervical ulcers in females. Atypical locations as well as hidden chancres (cervical or rectal forms) chancres (cervical or rectal forms) complicate diagnosis in primary syphilis. In rectal complicate diagnosis in primary ulcers, lymphadenopathy occurs in para-aortal and not in inguinal nodes, so that it is syphilis. not noticed. In a recent study in England, 20 % of homosexual patients with syphilis had an anal chancre [13]. The anal chancre tended to be located towards the peri- neum. Sometimes only swelling, induration (edema indurativum) (Figure 2) or fissu- res are present, making differentiation from hemorrhoids, anal fissures and other infections, e.g. herpes simple, necessary [14]. Examination of the anal canal – preferably with a proctoscope – should be part of the work-up for sexually transmit- Proctoscopy should be a routine part ted infections. Extragenital chancres are most frequent at anal or oral sites, but can of the work-up for sexually transmitted principally occur at any muco-cutaneous site coming into contact with an infectious infections. lesion. The incidence of extragenital chancres is reported at 5–14 % [6, 15–17]. Ab- out two-thirds occur in or around the mouth after unprotected oral sex. Among ho- mosexual syphilis patients, 12.5 % of chancres are oral [13]. Due to the increasing popularity of oral sex in recent years – in part because it supposedly is a safer-sex prac- Two-thirds of extragenital chancres tice – an increase of oral chancres has been observed. Case reports describe syphilitic are oral or perioral. chancres of fingers, mammillae, eyelid, arm, toe or presternal region (Figure 3) [6, 15, 18–20]. Decades ago extragenital chancres were no rarity; Fournier describes 642 from head to toe in his textbook [21]. Any indurated ulcer with regional lymphadenopathy An ulcer with lymphadenopathy should lead one to consider syphilis. An ulcer with lymphadenopathy should, regard- should, regardless of site, make one less of site, make one think of syphilis. Differential diagnosis of extragenital lesions think of syphilis. includes tularemia, cat scratch disease, sporotrichosis, mycobacteriosis, leishmaniosis, staphylococcal lymphangitis and neoplasia. A clinical diagnosis in primary syphilis is not reliable due to
Recommended publications
  • Official Nh Dhhs Health Alert
    THIS IS AN OFFICIAL NH DHHS HEALTH ALERT Distributed by the NH Health Alert Network [email protected] May 18, 2018, 1300 EDT (1:00 PM EDT) NH-HAN 20180518 Tickborne Diseases in New Hampshire Key Points and Recommendations: 1. Blacklegged ticks transmit at least five different infections in New Hampshire (NH): Lyme disease, Anaplasma, Babesia, Powassan virus, and Borrelia miyamotoi. 2. NH has one of the highest rates of Lyme disease in the nation, and 50-60% of blacklegged ticks sampled from across NH have been found to be infected with Borrelia burgdorferi, the bacterium that causes Lyme disease. 3. NH has experienced a significant increase in human cases of anaplasmosis, with cases more than doubling from 2016 to 2017. The reason for the increase is unknown at this time. 4. The number of new cases of babesiosis also increased in 2017; because Babesia can be transmitted through blood transfusions in addition to tick bites, providers should ask patients with suspected babesiosis whether they have donated blood or received a blood transfusion. 5. Powassan is a newer tickborne disease which has been identified in three NH residents during past seasons in 2013, 2016 and 2017. While uncommon, Powassan can cause a debilitating neurological illness, so providers should maintain an index of suspicion for patients presenting with an unexplained meningoencephalitis. 6. Borrelia miyamotoi infection usually presents with a nonspecific febrile illness similar to other tickborne diseases like anaplasmosis, and has recently been identified in one NH resident. Tests for Lyme disease do not reliably detect Borrelia miyamotoi, so providers should consider specific testing for Borrelia miyamotoi (see Attachment 1) and other pathogens if testing for Lyme disease is negative but a tickborne disease is still suspected.
    [Show full text]
  • Infectious Disease
    INFECTIOUS DISEASE Infectious diseases are caused by germs that are transmitted directly from person to NOTE: person; animal to person (zoonotic The following symbols are used throughout this Community Health Assessment Report to serve only as a simple and quick diseases); from mother to unborn child; or reference for data comparisons and trends for the County. indirectly, such as when a person touches Further analysis may be required before drawing conclusions about the data. a surface that some germs can linger on. The NYSDOH recommends several The apple symbol represents areas in which Oneida County’s status or trend is FAVORABLE or COMPARABLE to its effective strategies for preventing comparison (i.e., NYS, US) or areas/issues identified as infectious diseases,, including: ensuring STRENGTHS. procedures and systems are in place in The magnifying glass symbols represent areas in which Oneida County’s status or trend is UNFAVORABLE to its communities for immunizations to be up to comparison (i.e., NYS, US) or areas/issues of CONCERN date; enabling sanitary practices by or NEED that may warrant further analysis. conveniently located sinks for washing DATA REFERENCES: hands; influencing community resources • All References to tables are in Attachment A – Oneida County Data Book. and cultures to facilitate abstinence and • See also Attachment B – Oneida County Chart Book for risk reduction practices for sexual behavior additional data. and injection drug use, and setting up support systems to ensure medicines are taken as prescribed.453 The reporting of suspect or confirmed communicable diseases is mandated under the New York State Sanitary Code (10NYCRR 2.10).
    [Show full text]
  • Chlamydia-English
    URGENT and PRIVATE IMPORTANT INFORMATION ABOUT YOUR HEALTH DIRECTIONS FOR SEX PARTNERS OF PERSONS WITH CHLAMYDIA PLEASE READ THIS VERY CAREFULLY Your sex partner has recently been treated for chlamydia. Chlamydia is a sexually transmitted disease (STD) that you can get from having any kind of sex (oral, vaginal, or anal) with a person who already has it. You may have been exposed. The good news is that it’s easily treated. You are being given a medicine called azithromycin (sometimes known as “Zithromax”) to treat your chlamydia. Your partner may have given you the actual medicine, or a prescription that you can take to a pharmacy. These are instructions for how to take azithromycin. The best way to take care of this infection is to see your own doctor or clinic provider right away. If you can’t get to a doctor in the next several days, you should take the azithromycin. Even if you decide to take the medicine, it is very important to see a doctor as soon as you can, to get tested for other STDs. People can have more than one STD at the same time. Azithromycin will not cure other sexually transmitted infections. Having STDs can increase your risk of getting HIV, so make sure to also get an HIV test. SYMPTOMS Some people with chlamydia have symptoms, but most do not. Symptoms may include pain in your testicles, pelvis, or lower part of your belly. You may also have pain when you urinate or when having sex. Many people with chlamydia do not know they are infected because they feel fine.
    [Show full text]
  • Compendium of Measures to Control Chlamydia Psittaci Infection Among
    Compendium of Measures to Control Chlamydia psittaci Infection Among Humans (Psittacosis) and Pet Birds (Avian Chlamydiosis), 2017 Author(s): Gary Balsamo, DVM, MPH&TMCo-chair Angela M. Maxted, DVM, MS, PhD, Dipl ACVPM Joanne W. Midla, VMD, MPH, Dipl ACVPM Julia M. Murphy, DVM, MS, Dipl ACVPMCo-chair Ron Wohrle, DVM Thomas M. Edling, DVM, MSpVM, MPH (Pet Industry Joint Advisory Council) Pilar H. Fish, DVM (American Association of Zoo Veterinarians) Keven Flammer, DVM, Dipl ABVP (Avian) (Association of Avian Veterinarians) Denise Hyde, PharmD, RP Preeta K. Kutty, MD, MPH Miwako Kobayashi, MD, MPH Bettina Helm, DVM, MPH Brit Oiulfstad, DVM, MPH (Council of State and Territorial Epidemiologists) Branson W. Ritchie, DVM, MS, PhD, Dipl ABVP, Dipl ECZM (Avian) Mary Grace Stobierski, DVM, MPH, Dipl ACVPM (American Veterinary Medical Association Council on Public Health and Regulatory Veterinary Medicine) Karen Ehnert, and DVM, MPVM, Dipl ACVPM (American Veterinary Medical Association Council on Public Health and Regulatory Veterinary Medicine) Thomas N. Tully JrDVM, MS, Dipl ABVP (Avian), Dipl ECZM (Avian) (Association of Avian Veterinarians) Source: Journal of Avian Medicine and Surgery, 31(3):262-282. Published By: Association of Avian Veterinarians https://doi.org/10.1647/217-265 URL: http://www.bioone.org/doi/full/10.1647/217-265 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use.
    [Show full text]
  • Borrelia Burgdorferi and Treponema Pallidum: a Comparison of Functional Genomics, Environmental Adaptations, and Pathogenic Mechanisms
    PERSPECTIVE SERIES Bacterial polymorphisms Martin J. Blaser and James M. Musser, Series Editors Borrelia burgdorferi and Treponema pallidum: a comparison of functional genomics, environmental adaptations, and pathogenic mechanisms Stephen F. Porcella and Tom G. Schwan Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA Address correspondence to: Tom G. Schwan, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, Montana 59840, USA. Phone: (406) 363-9250; Fax: (406) 363-9445; E-mail: [email protected]. Spirochetes are a diverse group of bacteria found in (6–8). Here, we compare the biology and genomes of soil, deep in marine sediments, commensal in the gut these two spirochetal pathogens with reference to their of termites and other arthropods, or obligate parasites different host associations and modes of transmission. of vertebrates. Two pathogenic spirochetes that are the focus of this perspective are Borrelia burgdorferi sensu Genomic structure lato, a causative agent of Lyme disease, and Treponema A striking difference between B. burgdorferi and T. pal- pallidum subspecies pallidum, the agent of venereal lidum is their total genomic structure. Although both syphilis. Although these organisms are bound togeth- pathogens have small genomes, compared with many er by ancient ancestry and similar morphology (Figure well known bacteria such as Escherichia coli and Mycobac- 1), as well as by the protean nature of the infections terium tuberculosis, the genomic structure of B. burgdorferi they cause, many differences exist in their life cycles, environmental adaptations, and impact on human health and behavior. The specific mechanisms con- tributing to multisystem disease and persistent, long- term infections caused by both organisms in spite of significant immune responses are not yet understood.
    [Show full text]
  • Pdf/Bookshelf NBK368467.Pdf
    BMJ 2019;365:l4159 doi: 10.1136/bmj.l4159 (Published 28 June 2019) Page 1 of 11 Practice BMJ: first published as 10.1136/bmj.l4159 on 28 June 2019. Downloaded from PRACTICE CLINICAL UPDATES Syphilis OPEN ACCESS Patrick O'Byrne associate professor, nurse practitioner 1 2, Paul MacPherson infectious disease specialist 3 1School of Nursing, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; 2Sexual Health Clinic, Ottawa Public Health, Ottawa, Ontario K1N 5P9; 3Division of Infectious Diseases, Ottawa Hospital General Campus, Ottawa, Ontario What you need to know Box 1: Symptoms of syphilis by stage of infection (see fig 1) • Incidence rates of syphilis have increased substantially around the Primary world, mostly affecting men who have sex with men and people infected • Symptoms appear 10-90 days (mean 21 days) after exposure with HIV http://www.bmj.com/ • Main symptom is a <2 cm chancre: • Have a high index of suspicion for syphilis in any sexually active patient – Progresses from a macule to papule to ulcer over 7 days with genital lesions or rashes – Painless, solitary, indurated, clean base (98% specific, 31% sensitive) • Primary syphilis classically presents as a single, painless, indurated genital ulcer (chancre), but this presentation is only 31% sensitive; – On glans, corona, labia, fourchette, or perineum lesions can be painful, multiple, and extra-genital – A third are extragenital in men who have sex with men and in women • Diagnosis is usually based on serology, using a combination of treponemal and non-treponemal tests. Syphilis remains sensitive to • Localised painless adenopathy benzathine penicillin G Secondary on 24 September 2021 by guest.
    [Show full text]
  • WO 2014/134709 Al 12 September 2014 (12.09.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/134709 Al 12 September 2014 (12.09.2014) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/05 (2006.01) A61P 31/02 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/CA20 14/000 174 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 4 March 2014 (04.03.2014) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 13/790,91 1 8 March 2013 (08.03.2013) US (84) Designated States (unless otherwise indicated, for every (71) Applicant: LABORATOIRE M2 [CA/CA]; 4005-A, rue kind of regional protection available): ARIPO (BW, GH, de la Garlock, Sherbrooke, Quebec J1L 1W9 (CA). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (72) Inventors: LEMIRE, Gaetan; 6505, rue de la fougere, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Sherbrooke, Quebec JIN 3W3 (CA).
    [Show full text]
  • 2020 European Guideline on the Management of Syphilis
    DOI: 10.1111/jdv.16946 JEADV GUIDELINES 2020 European guideline on the management of syphilis M. Janier,1,* M. Unemo,2 N. Dupin,3 G.S. Tiplica,4 M. Potocnik, 5 R. Patel6 1STD Clinic, Hopital^ Saint-Louis AP-HP and Hopital^ Saint-Joseph, Paris, France 2WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, Department of Laboratory Medicine, Microbiology, Orebro€ University Hospital and Orebro€ University, Orebro,€ Sweden 3Syphilis National Reference Center, Hopital^ Tarnier-Cochin, AP-HP, Paris, France 42nd Dermatological Clinic, Carol Davila University, Colentina Clinical Hospital, Bucharest, Romania 5Department of Dermatovenereology, University Medical Centre Ljubljana, Ljubljana, Slovenia 6Department of Genitourinary Medicine, the Royal South Hants Hospital, Southampton, UK *Correspondence to: M. Janier. E-mail: [email protected] Abstract The 2020 edition of the European guideline on the management of syphilis is an update of the 2014 edition. Main modifications and updates include: - The ongoing epidemics of early syphilis in Europe, particularly in men who have sex with men (MSM) - The development of dual treponemal and non-treponemal point-of-care (POC) tests - The progress in non-treponemal test (NTT) automatization - The regular episodic shortage of benzathine penicillin G (BPG) in some European countries - The exclusion of azithromycin as an alternative treatment at any stage of syphilis - The pre-exposure or immediate post-exposure prophylaxis with doxycycline in populations at high risk of acquiring syphilis. Received: 12 June 2020; Accepted: 4 September 2020 Conflicts of interest The authors have no conflicts of interest related to this guideline. Funding sources None. Introduction EEA countries and particularly among men who have sex with Syphilis is a systemic human disease due to Treponema pallidum men (MSM).3 subsp.
    [Show full text]
  • Detection of Putative Periodontal Pathogens in Subgingival Specimens of Dogs
    Brazilian Journal of Microbiology (2007) 38:23-28 ISSN 1517-8283 DETECTION OF PUTATIVE PERIODONTAL PATHOGENS IN SUBGINGIVAL SPECIMENS OF DOGS Sheila Alexandra Belini Nishiyama1; Gerusa Neyla Andrade Senhorinho1; Marco Antônio Gioso2; Mario Julio Avila-Campos1,* 1Anaerobe Laboratory, Department of Microbiology, Institute of Biomedical Science; 2Veterinary and Zootechny School, University of São Paulo, São Paulo, SP, Brazil Submitted: April 07, 2006; Returned to authors for corrections: July 13, 2006; Approved: October 13, 2006 ABSTRACT In this study, the presence of putative periodontal organisms, Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythensis, Fusobacterium nucleatum, Dialister pneumosintes, Actinobacillus actinomycetemcomitans, Campylobacter rectus, Eikenella corrodens and Treponema denticola were examined from subgingival samples of 40 dogs of different breeds with (25) and without (15) periodontitis, by using the PCR method. The PCR products of each species showed specific amplicons. Of the 25 dogs with periodontitis, P. gingivalis was detected in 16 (64%) samples, C. rectus in 9 (36%), A. actinomycetemcomitans in 6 (24%), P. intermedia in 5 (20%), T. forsythensis in 5 (20%), F. nucleatum in 4 (16%) and E. corrodens in 3 (12%). T. denticola and D. pneumosintes were not detected in clinical samples from dogs with periodontitis. Moreover, P. gingivalis was detected only in one (6.66%) crossbred dog without periodontitis. Our results show that these microorganisms are present in periodontal microbiota of dogs with periodontitits, and it is important to evaluate the role of these putative periodontal microorganisms play in the periodontitis in household pets particularly, dogs in ecologic and therapeutic terms, since these animals might acquire these periodontopahogens from their respective owners.
    [Show full text]
  • Skin and Soft Tissue Infections Ohsuerin Bonura, MD, MCR Oregon Health & Science University Objectives
    Difficult Skin and Soft tissue Infections OHSUErin Bonura, MD, MCR Oregon Health & Science University Objectives • Compare and contrast the epidemiology and clinical presentation of common skin and soft tissue diseases • State the management for skin and soft tissue infections OHSU• Differentiate true infection from infectious disease mimics of the skin Casey Casey is a 2 year old boy who presents with this rash. What is the best treatment? A. Soap and Water B. Ibuprofen, it will self OHSUresolve C. Dicloxacillin D. Mupirocin OHSUImpetigo Impetigo Epidemiology and Treatment OHSU Ellen Ellen is a 54 year old morbidly obese woman with DM, HTN and venous stasis who presented with a painful left leg and fever. She has had 3 episodes in the last 6 months. What do you recommend? A. Cefazolin followed by oral amoxicillin prophylaxis B. Vancomycin – this is likely OHSUMRSA C. Amoxicillin – this is likely erysipelas D. Clindamycin to cover staph and strep cellulitis Impetigo OHSUErysipelas Erysipelas Risk: lymphedema, stasis, obesity, paresis, DM, ETOH OHSURecurrence rate: 30% in 3 yrs Treatment: Penicillin Impetigo Erysipelas OHSUCellulitis Cellulitis • DEEPER than erysipelas • Microbiology: – 6-48hrs post op: think GAS… too early for staph (days in the making)! – Periorbital – Staph, Strep pneumoniae, GAS OHSU– Post Varicella - GAS – Skin popping – Staph + almost anything! Framework for Skin and Soft Tissue Infections (SSTIs) NONPurulent Purulent Necrotizing/Cellulitis/Erysipelas Furuncle/Carbuncle/Abscess Severe Moderate Mild Severe Moderate Mild I&D I&D I&D I&D IV Rx Oral Rx C&S C&S C&S C&S Vanc + Pip-tazo OHSUEmpiric IV Empiric MRSA Oral MRSA TMP/SMX Doxy What Are Your “Go-To” Oral Options For Non-Purulent SSTI? Amoxicillin Doxycycline OHSUCephalexin Doxycycline Trimethoprim-Sulfamethoxazole OHSU Miller LG, et al.
    [Show full text]
  • Chlamydia Trachomatis Infection Is Driven by Nonprotective Immune Cells That Are Distinct from Protective Populations
    Pathology after Chlamydia trachomatis infection is driven by nonprotective immune cells that are distinct from protective populations Rebeccah S. Lijeka,b,1, Jennifer D. Helblea, Andrew J. Olivea,c, Kyra W. Seigerb, and Michael N. Starnbacha,1 aDepartment of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115; bDepartment of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075; and cDepartment of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605 Edited by Rafi Ahmed, Emory University, Atlanta, GA, and approved December 27, 2017 (received for review June 23, 2017) Infection with Chlamydia trachomatis drives severe mucosal immu- sequence identity, Chlamydia muridarum, the extent to which the nopathology; however, the immune responses that are required for molecular pathogenesis of C. muridarum represents that of Ct is mediating pathology vs. protection are not well understood. Here, unknown (6). Ct serovar L2 (Ct L2) is capable of infecting the we employed a mouse model to identify immune responses re- mouse upper genital tract when inoculated across the cervix into quired for C. trachomatis-induced upper genital tract pathology the uterus (7, 8) but it does not induce robust immunopathology. and to determine whether these responses are also required for This is consistent with the human disease phenotype caused by Ct L2, bacterial clearance. In mice as in humans, immunopathology was which disseminates to the lymph nodes causing lymphogranuloma characterized by extravasation of leukocytes into the upper genital venereum (LGV) and is not a major cause of mucosal immunopa- thology in the female upper genital tract (uterus and ovaries). tract that occluded luminal spaces in the uterus and ovaries.
    [Show full text]
  • Antibiotic Use Guidelines for Companion Animal Practice (2Nd Edition) Iii
    ii Antibiotic Use Guidelines for Companion Animal Practice (2nd edition) iii Antibiotic Use Guidelines for Companion Animal Practice, 2nd edition Publisher: Companion Animal Group, Danish Veterinary Association, Peter Bangs Vej 30, 2000 Frederiksberg Authors of the guidelines: Lisbeth Rem Jessen (University of Copenhagen) Peter Damborg (University of Copenhagen) Anette Spohr (Evidensia Faxe Animal Hospital) Sandra Goericke-Pesch (University of Veterinary Medicine, Hannover) Rebecca Langhorn (University of Copenhagen) Geoffrey Houser (University of Copenhagen) Jakob Willesen (University of Copenhagen) Mette Schjærff (University of Copenhagen) Thomas Eriksen (University of Copenhagen) Tina Møller Sørensen (University of Copenhagen) Vibeke Frøkjær Jensen (DTU-VET) Flemming Obling (Greve) Luca Guardabassi (University of Copenhagen) Reproduction of extracts from these guidelines is only permitted in accordance with the agreement between the Ministry of Education and Copy-Dan. Danish copyright law restricts all other use without written permission of the publisher. Exception is granted for short excerpts for review purposes. iv Foreword The first edition of the Antibiotic Use Guidelines for Companion Animal Practice was published in autumn of 2012. The aim of the guidelines was to prevent increased antibiotic resistance. A questionnaire circulated to Danish veterinarians in 2015 (Jessen et al., DVT 10, 2016) indicated that the guidelines were well received, and particularly that active users had followed the recommendations. Despite a positive reception and the results of this survey, the actual quantity of antibiotics used is probably a better indicator of the effect of the first guidelines. Chapter two of these updated guidelines therefore details the pattern of developments in antibiotic use, as reported in DANMAP 2016 (www.danmap.org).
    [Show full text]