Proceedings of the 9Th Python in Science Conference

Total Page:16

File Type:pdf, Size:1020Kb

Proceedings of the 9Th Python in Science Conference Proceedings of the 9th Python in Science Conference June 28 - July 3 Austin, Texas • Stefan´ van der Walt Jarrod Millman PROCEEDINGS OF THE 9TH PYTHON IN SCIENCE CONFERENCE Edited by Stefan´ van der Walt and Jarrod Millman. SciPy 2010 Austin, Texas June 28 - July 3, 2010 Copyright c 2010. The articles in the Proceedings of the Python in Science Conference are copyrighted and owned by their original authors This is an open-access publication and is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For more information, please see: http://creativecommons.org/licenses/by/3.0/ ISSN:2575-9752 https://doi.org/10.25080/Majora-92bf1922-012 ORGANIZATION Conference Chairs ERIC JONES, Enthought, Inc., USA JARROD MILLMAN, Neuroscience Institute, UC Berkeley, USA Program Chair STEFAN´ VAN DER WALT, Applied Mathematics, Stellenbosch University, South Africa Program Committee CHRISTOPHER BARKER, Oceanographer, NOAA Emergency Response Division, USA C. TITUS BROWN, Computer Science and Biology, Michigan State, USA ROBERT CIMRMAN, Mechanics and New Technologies Research, University of West Bohemia, Plzen,ˇ Czech Republic DAVID COURNAPEAU, School of Informatics, Kyoto University, Japan DARREN DALE, Cornell High Energy Synchrotron Source, Cornell University, USA FERNANDO PEREZ´ , Neuroscience Institute, UC Berkeley, USA PRABHU RAMACHANDRAN, Aerospace Engineering, IIT Bombay, India JAMES TURNER, Gemini Observatory, Chile WARREN WECKESSER, Enthought, Inc., USA Tutorial Chair BRIAN GRANGER, Physics, CalPoly, USA Student Sponsorship Chair TRAVIS OLIPHANT, Enthought, Inc., USA Biomedical/Bioinformatics Track Chair GLEN OTERO, Dell, USA Parallel Processing/Cloud Computing Track Chairs KEN ELKABANY, PiCloud, USA BRIAN GRANGER, Physics, CalPoly, USA Proceedings Reviewers MATTHEW BRETT, Neuroscience Institute, UC Berkeley, USA C. TITUS BROWN, Computer Science and Biology, Michigan State, USA DAMIAN EADS, Computer Science, UC Santa Cruz, USA RALF GOMMERS, Healthcare Department, Philips Research Asia, Shanghai, China EMMANUELLE GOUILLART, CNRS Saint Gobain, France YAROSLAV O. HALCHENKO, PBS Department, Dartmouth College, USA JOSH HEMANN, Marketing Analytics and Business Strategy, Sports Authority, USA NEIL MULLER, Applied Mathematics, University of Stellenbosch, South Africa EMANUELE OLIVETTI, NeuroInformatics Laboratory, Bruno Kessler Foundation and University of Trento, Italy DAG SVERRE SELJEBOTN, Theoretical Astrophysics, University of Oslo, Norway ANDREW STRAW, Molecular Pathology, Austria JAMES TURNER, Data Processing Software Group, Gemini Observatory, Chile Program Staff AMENITY APPLEWHITE, Enthought, Inc., USA JODI HAVRANEK, Enthought, Inc., USA LEAH JONES, Enthought, Inc., USA SCHOLARSHIP RECIPIENTS ELAINE ANGELO, Harvard University JAMES BERGSTRA, University of Montreal KADAMBARI DEVARAJAN, University of Illinois GERARDO GUTIERREZ, Universidad de Antioquia RYAN MAY, University of Oklahoma KRISTOPHER OVERHOLT, University of Texas FABIAN PEDREGOSA, University of Granada NICOLAS PINTO, Massachusetts Institute of Technology SKIPPER SEABOLD, American University KURT SMITH, University of Wisconsin STEFAN´ VAN DER WALT, Stellenbosch University DAVID WARDE FARLEY, University of Toronto OMAR ANDRES ZAPATA MESA, Universidad de Antioquia JUMP TRADING AND NUMFOCUS DIVERSITY SCHOLARSHIP RECIPIENTS , CONTENTS Keeping the Chandra Satellite Cool with Python 1 Tom Aldcroft Astrodata 6 Craig Allen Divisi: Learning from Semantic Networks and Sparse SVD 12 Rob Speer, Kenneth Arnold, Catherine Havasi Theano: A CPU and GPU Math Compiler in Python 18 James Bergstra, Olivier Breuleux, Fred´ eric´ Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, Yoshua Bengio A High Performance Robot Vision Algorithm Implemented in Python 25 Steven C. Colbert, Gregor Franz, Konrad Woellhaf, Redwan Alqasemi, Rajiv Dubey Unusual Relationships: Python and Weaver Birds 31 Kadambari Devarajan, Maria A. Echeverry-Galvis, Rajmonda Sulo, Jennifer K. Peterson Weather Forecast Accuracy Analysis 36 Eric Floehr Rebuilding the Hubble Exposure Time Calculator 40 Perry Greenfield, Ivo Busko, Rosa Diaz, Vicki Laidler, Todd Miller, Mark Sienkiewicz, Megan Sosey Using Python with Smoke and JWST Mirrors 45 Warren J. Hack, Perry Greenfield, Babak Saif, Bente Eegholm Modeling Sudoku Puzzles with Python 49 Sean Davis, Matthew Henderson, Andrew Smith Data Structures for Statistical Computing in Python 56 Wes McKinney Protein Folding with Python on Supercomputers 62 Jan H. Meinke SpacePy - A Python-based Library of Tools for the Space Sciences 67 Steven K. Morley, Daniel T. Welling, Josef Koller, Brian A. Larsen, Michael G. Henderson, Jonathan Niehof Numerical Pyromaniacs: The Use of Python in Fire Research 73 Kristopher Overholt A Programmatic Interface for Particle Plasma Simulation in Python 77 Min Ragan-Kelley, John Verboncoeur PySPH: A Python Framework for Smoothed Particle Hydrodynamics 80 Prabhu Ramachandran, Chandrashekhar Kaushik Audio-Visual Speech Recognition using SciPy 85 Helge Reikeras, Ben Herbst, Johan du Preez, Herman Engelbrecht Statsmodels: Econometric and Statistical Modeling with Python 92 Skipper Seabold, Josef Perktold PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010) 1 Keeping the Chandra Satellite Cool with Python ‡ Tom Aldcroft ∗ ! Abstract—The Chandra X-ray Observatory has been providing groundbreaking astronomical data since its launch by NASA in July of 1999. Now starting the second decade of science the Chandra operations team has been using Python to create predictive thermal models of key spacecraft components. These mod- els are being used in the mission planning and command load review process to ensure that the series of planned observations and attitudes for each week will maintain a safe thermal environment. Speaking from my perspective as a scientist working to create and calibrate the models, I will discuss the process and the key off-the-shelf tools that made it all possible. This includes fitting many-parameter models with the Sherpa package, parallel computation with mpi4py/MPICH2, large table manipulations with pytables/HDF5, and of course fast array math with NumPy. Index Terms—telescope, NASA, MPI, astronomy, control Motivation This paper describes the use of off-the-shelf tools in Python to tackle a relatively challenging engineering problem facing the Chandra X-ray Observatory satellite [CHANDRA]. While Fig. 1: Artist’s rendering of the Chandra X-ray satellite. The silverized presenting no fundamentally new algorithms or packages, the goal teflon which wraps the spacecraft has degraded so it is now far less reflective than shown. here is to take this as a case study for understanding how scientists and engineers can make Python the foundation of their analysis toolkit. planning. Note that Chandra is in a high elliptical orbit, so unlike Hubble no repair is possible. Chandra Different parts of the spacecraft are heated at different pitch angles (the angle that the telescope boresight axis makes to the The Chandra satellite was launched in July of 1999 as one of sun line). This is shown in Figure 2 which presents a side view of NASA’s four "Great Observatories". This satellite can be com- Chandra along with the subsystems that are sensitive over different pared in size and scope to the Hubble Space Telescope except that pitch ranges. Temperatures can be maintained within limits by it views the universe in X-rays instead of optical or UV light. Some ping-ponging to different attitudes, never letting one part get too people will argue that the universe is a much more exciting place hot. Thus in order to plan the weekly observing schedule a few when viewed with X-ray photons, for then the sky comes alive simple models were created to predict temperatures or otherwise with black holes, supernova explosions, massive galaxy clusters, constrain the observing duration at certain attitudes. pulsars, and many other highly energetic phenomena. As the constraints became more significant a need developed Early in the mission it became apparent that temperatures on to improve the models in order to maintain the highest scientific the spacecraft, particularly on the side which normally faces the output without endangering the spacecraft. In response, about Sun, were increasing at a rate well above pre-launch predictions. three years ago the CXC Science Operations Team (SOT, scientists It turned out that the ionizing particle radiation environment was closely involved in satellite operations) and the engineers of the higher than expected and that it was degrading the silverized teflon Flight Operations Team (FOT) formed a joint working group to insulation which wraps much of the spacecraft. Since this time the study thermal issues and to develop higher fidelity thermal models. constraint of keeping spacecraft components within safe operating This paper discusses one facet of the results coming out of the temperatures has been a major driver in operations and schedule thermal modeling working group. Early in the process the author chose Python as the program- * Corresponding author: [email protected] ‡ Smithsonian Astrophysical Observatory ming language for supporting this effort. Around this time NumPy had emerged as a strong (and consolidated) numeric array manip- Copyright © 2010 Tom Aldcroft. This is an open-access article distributed ulation tool for Python. Adding
Recommended publications
  • Sagemath and Sagemathcloud
    Viviane Pons Ma^ıtrede conf´erence,Universit´eParis-Sud Orsay [email protected] { @PyViv SageMath and SageMathCloud Introduction SageMath SageMath is a free open source mathematics software I Created in 2005 by William Stein. I http://www.sagemath.org/ I Mission: Creating a viable free open source alternative to Magma, Maple, Mathematica and Matlab. Viviane Pons (U-PSud) SageMath and SageMathCloud October 19, 2016 2 / 7 SageMath Source and language I the main language of Sage is python (but there are many other source languages: cython, C, C++, fortran) I the source is distributed under the GPL licence. Viviane Pons (U-PSud) SageMath and SageMathCloud October 19, 2016 3 / 7 SageMath Sage and libraries One of the original purpose of Sage was to put together the many existent open source mathematics software programs: Atlas, GAP, GMP, Linbox, Maxima, MPFR, PARI/GP, NetworkX, NTL, Numpy/Scipy, Singular, Symmetrica,... Sage is all-inclusive: it installs all those libraries and gives you a common python-based interface to work on them. On top of it is the python / cython Sage library it-self. Viviane Pons (U-PSud) SageMath and SageMathCloud October 19, 2016 4 / 7 SageMath Sage and libraries I You can use a library explicitly: sage: n = gap(20062006) sage: type(n) <c l a s s 'sage. interfaces .gap.GapElement'> sage: n.Factors() [ 2, 17, 59, 73, 137 ] I But also, many of Sage computation are done through those libraries without necessarily telling you: sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]]) sage : G . g a p () Group( [ (3,4), (1,2,3)(4,5) ] ) Viviane Pons (U-PSud) SageMath and SageMathCloud October 19, 2016 5 / 7 SageMath Development model Development model I Sage is developed by researchers for researchers: the original philosophy is to develop what you need for your research and share it with the community.
    [Show full text]
  • Alternatives to Python: Julia
    Crossing Language Barriers with , SciPy, and thon Steven G. Johnson MIT Applied Mathemacs Where I’m coming from… [ google “Steven Johnson MIT” ] Computaonal soPware you may know… … mainly C/C++ libraries & soPware … Nanophotonics … oPen with Python interfaces … (& Matlab & Scheme & …) jdj.mit.edu/nlopt www.w.org jdj.mit.edu/meep erf(z) (and erfc, erfi, …) in SciPy 0.12+ & other EM simulators… jdj.mit.edu/book Confession: I’ve used Python’s internal C API more than I’ve coded in Python… A new programming language? Viral Shah Jeff Bezanson Alan Edelman julialang.org Stefan Karpinski [begun 2009, “0.1” in 2013, ~20k commits] [ 17+ developers with 100+ commits ] [ usual fate of all First reacBon: You’re doomed. new languages ] … subsequently: … probably doomed … sll might be doomed but, in the meanBme, I’m having fun with it… … and it solves a real problem with technical compuBng in high-level languages. The “Two-Language” Problem Want a high-level language that you can work with interacBvely = easy development, prototyping, exploraon ⇒ dynamically typed language Plenty to choose from: Python, Matlab / Octave, R, Scilab, … (& some of us even like Scheme / Guile) Historically, can’t write performance-criBcal code (“inner loops”) in these languages… have to switch to C/Fortran/… (stac). [ e.g. SciPy git master is ~70% C/C++/Fortran] Workable, but Python → Python+C = a huge jump in complexity. Just vectorize your code? = rely on mature external libraries, operang on large blocks of data, for performance-criBcal code Good advice! But… • Someone has to write those libraries. • Eventually that person may be you.
    [Show full text]
  • Data Visualization in Python
    Data visualization in python Day 2 A variety of packages and philosophies • (today) matplotlib: http://matplotlib.org/ – Gallery: http://matplotlib.org/gallery.html – Frequently used commands: http://matplotlib.org/api/pyplot_summary.html • Seaborn: http://stanford.edu/~mwaskom/software/seaborn/ • ggplot: – R version: http://docs.ggplot2.org/current/ – Python port: http://ggplot.yhathq.com/ • Bokeh (live plots in your browser) – http://bokeh.pydata.org/en/latest/ Biocomputing Bootcamp 2017 Matplotlib • Gallery: http://matplotlib.org/gallery.html • Top commands: http://matplotlib.org/api/pyplot_summary.html • Provides "pylab" API, a mimic of matlab • Many different graph types and options, some obscure Biocomputing Bootcamp 2017 Matplotlib • Resulting plots represented by python objects, from entire figure down to individual points/lines. • Large API allows any aspect to be tweaked • Lengthy coding sometimes required to make a plot "just so" Biocomputing Bootcamp 2017 Seaborn • https://stanford.edu/~mwaskom/software/seaborn/ • Implements more complex plot types – Joint points, clustergrams, fitted linear models • Uses matplotlib "under the hood" Biocomputing Bootcamp 2017 Others • ggplot: – (Original) R version: http://docs.ggplot2.org/current/ – A recent python port: http://ggplot.yhathq.com/ – Elegant syntax for compactly specifying plots – but, they can be hard to tweak – We'll discuss this on the R side tomorrow, both the basics of both work similarly. • Bokeh – Live, clickable plots in your browser! – http://bokeh.pydata.org/en/latest/
    [Show full text]
  • Tuto Documentation Release 0.1.0
    Tuto Documentation Release 0.1.0 DevOps people 2020-05-09 09H16 CONTENTS 1 Documentation news 3 1.1 Documentation news 2020........................................3 1.1.1 New features of sphinx.ext.autodoc (typing) in sphinx 2.4.0 (2020-02-09)..........3 1.1.2 Hypermodern Python Chapter 5: Documentation (2020-01-29) by https://twitter.com/cjolowicz/..................................3 1.2 Documentation news 2018........................................4 1.2.1 Pratical sphinx (2018-05-12, pycon2018)...........................4 1.2.2 Markdown Descriptions on PyPI (2018-03-16)........................4 1.2.3 Bringing interactive examples to MDN.............................5 1.3 Documentation news 2017........................................5 1.3.1 Autodoc-style extraction into Sphinx for your JS project...................5 1.4 Documentation news 2016........................................5 1.4.1 La documentation linux utilise sphinx.............................5 2 Documentation Advices 7 2.1 You are what you document (Monday, May 5, 2014)..........................8 2.2 Rédaction technique...........................................8 2.2.1 Libérez vos informations de leurs silos.............................8 2.2.2 Intégrer la documentation aux processus de développement..................8 2.3 13 Things People Hate about Your Open Source Docs.........................9 2.4 Beautiful docs.............................................. 10 2.5 Designing Great API Docs (11 Jan 2012)................................ 10 2.6 Docness.................................................
    [Show full text]
  • Ipython: a System for Interactive Scientific
    P YTHON: B ATTERIES I NCLUDED IPython: A System for Interactive Scientific Computing Python offers basic facilities for interactive work and a comprehensive library on top of which more sophisticated systems can be built. The IPython project provides an enhanced interactive environment that includes, among other features, support for data visualization and facilities for distributed and parallel computation. he backbone of scientific computing is All these systems offer an interactive command mostly a collection of high-perfor- line in which code can be run immediately, without mance code written in Fortran, C, and having to go through the traditional edit/com- C++ that typically runs in batch mode pile/execute cycle. This flexible style matches well onT large systems, clusters, and supercomputers. the spirit of computing in a scientific context, in However, over the past decade, high-level environ- which determining what computations must be ments that integrate easy-to-use interpreted lan- performed next often requires significant work. An guages, comprehensive numerical libraries, and interactive environment lets scientists look at data, visualization facilities have become extremely popu- test new ideas, combine algorithmic approaches, lar in this field. As hardware becomes faster, the crit- and evaluate their outcome directly. This process ical bottleneck in scientific computing isn’t always the might lead to a final result, or it might clarify how computer’s processing time; the scientist’s time is also they need to build a more static, large-scale pro- a consideration. For this reason, systems that allow duction code. rapid algorithmic exploration, data analysis, and vi- As this article shows, Python (www.python.org) sualization have become a staple of daily scientific is an excellent tool for such a workflow.1 The work.
    [Show full text]
  • Writing Mathematical Expressions with Latex
    APPENDIX A Writing Mathematical Expressions with LaTeX LaTeX is extensively used in Python. In this appendix there are many examples that can be useful to represent LaTeX expressions inside Python implementations. This same information can be found at the link http://matplotlib.org/users/mathtext.html. With matplotlib You can enter the LaTeX expression directly as an argument of various functions that can accept it. For example, the title() function that draws a chart title. import matplotlib.pyplot as plt %matplotlib inline plt.title(r'$\alpha > \beta$') With IPython Notebook in a Markdown Cell You can enter the LaTeX expression between two '$$'. $$c = \sqrt{a^2 + b^2}$$ c= a+22b 537 © Fabio Nelli 2018 F. Nelli, Python Data Analytics, https://doi.org/10.1007/978-1-4842-3913-1 APPENDIX A WRITING MaTHEmaTICaL EXPRESSIONS wITH LaTEX With IPython Notebook in a Python 2 Cell You can enter the LaTeX expression within the Math() function. from IPython.display import display, Math, Latex display(Math(r'F(k) = \int_{-\infty}^{\infty} f(x) e^{2\pi i k} dx')) Subscripts and Superscripts To make subscripts and superscripts, use the ‘_’ and ‘^’ symbols: r'$\alpha_i > \beta_i$' abii> This could be very useful when you have to write summations: r'$\sum_{i=0}^\infty x_i$' ¥ åxi i=0 Fractions, Binomials, and Stacked Numbers Fractions, binomials, and stacked numbers can be created with the \frac{}{}, \binom{}{}, and \stackrel{}{} commands, respectively: r'$\frac{3}{4} \binom{3}{4} \stackrel{3}{4}$' 3 3 æ3 ö4 ç ÷ 4 è 4ø Fractions can be arbitrarily nested: 1 5 - x 4 538 APPENDIX A WRITING MaTHEmaTICaL EXPRESSIONS wITH LaTEX Note that special care needs to be taken to place parentheses and brackets around fractions.
    [Show full text]
  • Running Sagemath (With Or Without Installation)
    Running SageMath (with or without installation) http://www.sagemath.org/ Éric Gourgoulhon Running SageMath 9 Feb. 2017 1 / 5 Various ways to install/access SageMath 7.5.1 Install on your computer: 2 options: install a compiled binary version for Linux, MacOS X or Windows1 from http://www.sagemath.org/download.html compile from source (Linux, MacOS X): check the prerequisites (see here for Ubuntu) and run git clone git://github.com/sagemath/sage.git cd sage MAKE=’make -j8’ make Run on your computer without installation: Sage Debian Live http://sagedebianlive.metelu.net/ Bootable USB flash drive with SageMath (boosted with octave, scilab), Geogebra, LaTeX, gimp, vlc, LibreOffice,... Open a (free) account on SageMathCloud https://cloud.sagemath.com/ Run in SageMathCell Single cell mode: http://sagecell.sagemath.org/ 1requires VirtualBox; alternatively, a full Windows installer is in pre-release stage at https://github.com/embray/sage-windows/releases Éric Gourgoulhon Running SageMath 9 Feb. 2017 2 / 5 Example 1: installing on Ubuntu 16.04 1 Download the archive sage-7.5.1-Ubuntu_16.04-x86_64.tar.bz2 from one the mirrors listed at http://www.sagemath.org/download-linux.html 2 Run the following commands in a terminal: bunzip2 sage-7.5.1-Ubuntu_16.04-x86_64.tar.bz2 tar xvf sage-7.5.1-Ubuntu_16.04-x86_64.tar cd SageMath ./sage -n jupyter A Jupyter home page should then open in your browser. Click on New and select SageMath 7.5.1 to open a Jupyter notebook with a SageMath kernel. Éric Gourgoulhon Running SageMath 9 Feb. 2017 3 / 5 Example 2: using the SageMathCloud 1 Open a free account on https://cloud.sagemath.com/ 2 Create a new project 3 In the second top menu, click on New to create a new file 4 Select Jupyter Notebook for the file type 5 In the Jupyter menu, click on Kernel, then Change kernel and choose SageMath 7.5 Éric Gourgoulhon Running SageMath 9 Feb.
    [Show full text]
  • Ipython Documentation Release 0.10.2
    IPython Documentation Release 0.10.2 The IPython Development Team April 09, 2011 CONTENTS 1 Introduction 1 1.1 Overview............................................1 1.2 Enhanced interactive Python shell...............................1 1.3 Interactive parallel computing.................................3 2 Installation 5 2.1 Overview............................................5 2.2 Quickstart...........................................5 2.3 Installing IPython itself....................................6 2.4 Basic optional dependencies..................................7 2.5 Dependencies for IPython.kernel (parallel computing)....................8 2.6 Dependencies for IPython.frontend (the IPython GUI).................... 10 3 Using IPython for interactive work 11 3.1 Quick IPython tutorial..................................... 11 3.2 IPython reference........................................ 17 3.3 IPython as a system shell.................................... 42 3.4 IPython extension API..................................... 47 4 Using IPython for parallel computing 53 4.1 Overview and getting started.................................. 53 4.2 Starting the IPython controller and engines.......................... 57 4.3 IPython’s multiengine interface................................ 64 4.4 The IPython task interface................................... 78 4.5 Using MPI with IPython.................................... 80 4.6 Security details of IPython................................... 83 4.7 IPython/Vision Beam Pattern Demo.............................
    [Show full text]
  • State of Scipy
    State of SciPy Jarrod Millman Travis N. Vaught August 21, 2008 Overview • Introduction (community statistics) • Past: Where have we been • Present: Where are we • Future: Where are we going? scipy.org Activity • There has been marked growth in the community of users around scientific computing in Python in the past year. Mailing List Activity The SciPy Community is Global scipy.org Usage by Country • Visits to scipy.org since Sept. 2008 Student Sponsorship David Cournapeau Japan Stefan van der Walt South Africa Rahul Garg Alberta Seshadri Tirunillai USC Amir Khosrowshahi Berkeley Dav Clark Berkeley Gabriel Gellner Toronto Min Ragan-Kelley Berkeley Ryan May OU David Warde-Farley Toronto Many thanks to the sponsoring organizations! Short History • 1994 — Python Matrix object (Jim Fulton) • 1995 — Numeric born (Jim Hugunin, Konrad Hinsen, Paul Dubois, David Ascher, Jim Fulton) • 2000 — Numeric moves to sourceforge (Project registered as numpy) • 2001 — SciPy born (Pearu Peterson, Travis Oliphant, Eric Jones) • 2001 — IPython born (Fernando Perez) • 2002 — SciPy '02 - Python for Scientific Computing Workshop • 2003 — matplotlib born (John Hunter) • 2003 — Numarray (Perry Greenfield, J. Todd Miller, Rick White, Paul Barrett) • 2006 — NumPy 1.0 Released Code Swarm • Now for something completely different NumPy Book Announcement Present: Where we are • NumPy/SciPy packages • Community involvement • Larger ecosystem 2007-2008 NumPy/SciPy Releases • SciPy 0.6.0 (September 2007) • NumPy 1.0.4 (November 2007) • NumPy 1.1.0 (May 2008) • NumPy 1.1.1
    [Show full text]
  • An Introduction to Numpy and Scipy
    An introduction to Numpy and Scipy Table of contents Table of contents ............................................................................................................................ 1 Overview ......................................................................................................................................... 2 Installation ...................................................................................................................................... 2 Other resources .............................................................................................................................. 2 Importing the NumPy module ........................................................................................................ 2 Arrays .............................................................................................................................................. 3 Other ways to create arrays............................................................................................................ 7 Array mathematics .......................................................................................................................... 8 Array iteration ............................................................................................................................... 10 Basic array operations .................................................................................................................. 11 Comparison operators and value testing ....................................................................................
    [Show full text]
  • Regression Models by Gretl and R Statistical Packages for Data Analysis in Marine Geology Polina Lemenkova
    Regression Models by Gretl and R Statistical Packages for Data Analysis in Marine Geology Polina Lemenkova To cite this version: Polina Lemenkova. Regression Models by Gretl and R Statistical Packages for Data Analysis in Marine Geology. International Journal of Environmental Trends (IJENT), 2019, 3 (1), pp.39 - 59. hal-02163671 HAL Id: hal-02163671 https://hal.archives-ouvertes.fr/hal-02163671 Submitted on 3 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License International Journal of Environmental Trends (IJENT) 2019: 3 (1),39-59 ISSN: 2602-4160 Research Article REGRESSION MODELS BY GRETL AND R STATISTICAL PACKAGES FOR DATA ANALYSIS IN MARINE GEOLOGY Polina Lemenkova 1* 1 ORCID ID number: 0000-0002-5759-1089. Ocean University of China, College of Marine Geo-sciences. 238 Songling Rd., 266100, Qingdao, Shandong, P. R. C. Tel.: +86-1768-554-1605. Abstract Received 3 May 2018 Gretl and R statistical libraries enables to perform data analysis using various algorithms, modules and functions. The case study of this research consists in geospatial analysis of Accepted the Mariana Trench, a hadal trench located in the Pacific Ocean.
    [Show full text]
  • Some Effective Methods for Teaching Mathematics Courses in Technological Universities
    International Journal of Education and Information Studies. ISSN 2277-3169 Volume 6, Number 1 (2016), pp. 11-18 © Research India Publications http://www.ripublication.com Some Effective Methods for Teaching Mathematics Courses in Technological Universities Dr. D. S. Sankar Professor, School of Applied Sciences and Mathematics, Universiti Teknologi Brunei, Jalan Tungku Link, BE1410, Brunei Darussalam E-mail: [email protected] Dr. Rama Rao Karri Principal Lecturer, Petroleum and Chemical Engineering Programme Area, Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam E-mail: [email protected] Abstract This article discusses some effective and useful methods for teaching various mathematics topics to the students of undergraduate and post-graduate degree programmes in technological universities. These teaching methods not only equip the students to acquire knowledge and skills for solving real world problems efficiently, but also these methods enhance the teacher’s ability to demonstrate the mathematical concepts effectively along with suitable physical examples. The exposure to mathematical softwares like MATLAB, SCILAB, MATHEMATICA, etc not only increases the students confidential level to solve variety of typical problems which they come across in their respective disciplines of study, but also it enables them to visualize the surfaces of the functions of several variable. Peer learning, seminar based learning and project based learning are other methods of learning environment to the students which makes the students to learn mathematics by themselves. These are higher level learning methods which enhances the students understanding on the mathematical concepts and it enables them to take up research projects. It is noted that the teaching and learning of mathematics with the support of mathematical softwares is believed to be more effective when compared to the effects of other methods of teaching and learning of mathematics.
    [Show full text]