Basicranial Anatomy of the Living Linsangs Prionodon and Poiana

Total Page:16

File Type:pdf, Size:1020Kb

Basicranial Anatomy of the Living Linsangs Prionodon and Poiana University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in the Earth and Atmospheric Sciences Earth and Atmospheric Sciences, Department of 2001 Basicranial Anatomy of the Living Linsangs Prionodon and Poiana (Mammalia, Carnivora, Viverridae), with Comments on the Early Evolution of Aeluroid Carnivorans Robert M. Hunt Jr. University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/geosciencefacpub Part of the Earth Sciences Commons Hunt, Robert M. Jr., "Basicranial Anatomy of the Living Linsangs Prionodon and Poiana (Mammalia, Carnivora, Viverridae), with Comments on the Early Evolution of Aeluroid Carnivorans" (2001). Papers in the Earth and Atmospheric Sciences. 549. https://digitalcommons.unl.edu/geosciencefacpub/549 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. AMERICAN MUSEUM NoVltates PUBLISHED BY THE AMER I C AN M U SEUM OF NAT U RAL H ISTORY CENTRAL PA RK WEST AT 79T H STREET, NEW YORK. NY 10024 Number 3330, 24 pp., 10 figures, 2 tables April 26, 2001 Basicranial Anatomy of the Living Linsangs Prionodon and Poiana (Mammalia, Carnivora, Viverridae), with Comments on the Early Evolution of Aeluroid Carnivorans ROBERT M. HUNT, JR.' CONTENTS Abstract ................ ............................ , .. , .. , .. , ., .. , .. , . ... 2 Introduction ....... • . • . • . • . • . 2 Abbreviatio ns ... 3 Cranial and Dental Compari sons ............. ... ... ... .. .... • .... 3 Basicranial Anato my of Paiaeoprioll odoll . • . • . • . • . 7 Basicranial Anato my of Priollodoll and Poiana ..... • .... • .......•. • . 11 Discussion and Conclusions . ... .......... .... • ....... • . • . • . • . 17 Acknowledg nlents ... ............... ... ... • ....... • ..•.. • ....•...... 23 References ....................• •. .. • . •• _ . _ • • . • • _ ... • .. ....•.....•.... • ...... 23 , Research Associ3u: . Division of Pal eoll!ology. American Museum of N a tur~l His.tory; Professor. Geological Sciences. and Cur~to r. Ven cbr.ue Paleontology. University of Nebraska. Li ncoln. NE 68588-0549. Copyright C Ameri can MUSoC um of Nmur.l l History 2001 ISSN 0003-0082 I Pri ce $3.00 2 AMERICAN MUSEUM NOVITATES NO. 1 ABSTRACT The living Asian linsang, Prionodon pardicolor, shares marked anatomical similarities in basicranium and dentition with the extinct Oligocene aeluroid, Palaeoprionodon lamandini, from the Quercy ®ssures, France. The living African linsang, Poiana richardsoni, is similar yet slightly more derived in basicranial traits relative to Prionodon pardicolor, and also has basicranial and dental features indicating a relationship to the living genets (Genetta). The basicranial and auditory anatomy of a series Palaeoprionodon-Prionodon-Poiana can be in- terpreted as a morphocline showing the progressive alteration of the form of the petrosal and auditory bulla from the plesiomorphic aeluroid state in the Quercy fossils to a derived con- dition typical of the linsangs (Prionodon, Poiana) and living genets (Genetta). The basicranial anatomy of Genetta, including the structure of the petrosal and auditory bulla, is typical of other species of the Viverridae. The other lineages of living viverrids are believed to have undergone a similar transformation in their basicranial anatomical pattern from the plesiom- orphic state present in Oligocene aeluroids, exempli®ed by Palaeoprionodon, to the modern patterns typical of the living subfamilies (including the endemic Malagasy viverrid genera). INTRODUCTION siomorphic basicranial pattern common to these aeluroid genera (Hunt, 1998). As a re- African and Asian linsangs of the family sult, I became interested to learn whether liv- Viverridae are living, nocturnal aeluroid car- ing linsangs have retained throughout the nivorans, occupying forested environs in the mid- and later Cenozoic the archaic basicra- Old World tropics (®g. 1). The African lin- nial pattern of these Quercy aeluroids, and in sang (Poiana Gray, 1864) is represented by particular, whether they retain the pattern one or at most two species in west Africa. found in Palaeoprionodon, which has often Poina richardsoni and P. leightoni are dis- been allied with the Asian linsangs of the tributed from Liberia to northern Zaire, and genus Prionodon (Teilhard de Chardin, 1915, the island of Fernando Po (Bioko), according to Rosevear (1974). They are considered here Gregory and Hellman, 1939). as a single species, P. richardsoni, following The living African and Asian linsangs are Pocock (1908), who recognized leightoni as rare animals: Prionodon pardicolor and P. a subspecies of richardsoni. The Asian lin- linsang are listed as endangered (by the Con- sangs (Prionodon Hors®eld, 1822) are con- vention on International Trade in Endangered sidered to be more diverse: one species (the Species, and by the U.S. Department of the spotted linsang, P. pardicolor) is found from Interior). Although the eastern population of Nepal to Indochina, and a second species Poiana richardsoni is not reported as endan- (the banded linsang, P. linsang) reported gered, the western population is listed by the from Thailand and the Malay Peninsula into IUCN (International Union for Conservation Sumatra, Java, and Borneo (Nowak, 1991). of Nature) as of indeterminate status (No- Linsangs nest above ground and eat insects, wak, 1991); whether these eastern and west- small vertebrates, and some plant material ern groups are in contact through the tropical (Rosevear, 1974). forest belt is uncertainÐRosevear (1974) The Old World linsangs are of particular considered them among the rarest of African interest because of their evident anatomical mammals. Therefore, the opportunity to dis- similarity in cranial and dental features to sect the auditory region and describe the ba- one of the oldest fossil representatives of the sicranial anatomy of both Poiana richard- aeluroid Carnivora, Palaeoprionodon laman- soni and Prionodon pardicolor was fortu- dini, from the Oligocene ®ssure deposits of itous and timely. Are the linsangs ``living Quercy, France (Teilhard de Chardin, 1915; fossils''? This study considers the possibility Gregory and Hellman, 1939). A recent study that linsangs are relicts of the Oligocene ae- of Palaeoprionodon and other closely related luroid fauna, preserving a basicranial mor- primitive aeluroids (Stenoplesictis, Stenoga- phology from a time when the Aeluroidea le, Proailurus) from the Oligocene and early were in an initial phase of their great Eur- Miocene of western Europe identi®ed a ple- asian radiation. 2001 HUNT: AELUROID CARNIVORE EVOLUTION 3 Fig. 1. Geographic distribution of the living Asian linsangs (Prionodon pardicolor, P. linsang) and African linsang (Poiana richardsoni), and the Eurasian localities that have produced fossils of the Oligocene aeluroid Palaeoprionodon. 1, Palaeoprionodon lamandini, Quercy ®ssures, France; 2, Hsanda Gol, Mongolia (?Palaeoprionodon); 3, Poiana richardsoni leightoni (western area), P. r. richardsoni (eastern area); 4, Prionodon pardicolor (northern area), Prionodon linsang (southern area). ABBREVIATIONS h hypoglossal (condyloid) foramen ic internal carotid artery Anatomical L middle lacerate foramen m mastoid A alisphenoid P petrosal a ``apron'' of petrosal plf posterior lacerate foramen ac alisphenoid canal (posterior opening) pp paroccipital process of the exoccipital BO basioccipital R rostral entotympanic BS basisphenoid rp rugose surface of petrosal promonto- c common opening for the hypoglossal and rium for attachment of the caudal en- posterior lacerate foramina in Poiana totympanic in Nandinia d depression in basisphenoid for internal SQ squamosal carotid loop T ectotympanic E caudal entotympanic tf ¯ange of the ventral process thinned by F facet on petrosal promontorium for ec- appression of the caudal entotympanic totympanic tt tensor tympani fossa fo foramen ovale V ventral process of the petrosal promon- gf postglenoid foramen torium 4 AMERICAN MUSEUM NOVITATES NO. 1 x line of caudal entotympanic attachment (formed by the right and left orbitosphe- to ectotympanic noids) is thin and narrow at this locus and Z contact of ectotympanic ¯ange with pe- probably represents the primitive aeluroid trosal promontorium condition for the emergence of cranial nerves V1,V2, and the optic nerve from the brain- Institutional case. The optic foramen lies in close prox- AMNH American Museum of Natural History, imity to the orbital ®ssure in these aeluroids, New York (Department of Mammalo- in contrast to many arctoid carnivorans in gy) which the optic foramen is placed farther for- FMNH Field Museum of Natural History, Chi- ward along the orbital wall. cago (Department of Mammals) An alisphenoid canal is present, its poste- MNHN MuseÂum National d'Histoire Naturelle, rior opening placed a few millimeters ante- Paris rior to the foramen ovale. In Prionodon and Poiana the maxillary branch of the trigemi- CRANIAL AND DENTAL nal nerve (V ) exits the braincase through the COMPARISONS 2 small foramen rotundum in the cranial wall Cranial measurements of Prionodon, and emerges within the alisphenoid canal. Poiana, and two skulls of Quercy Palaeo- Both V2 and the blood vessels traveling in prionodon illustrate their similarity in size the canal exit the skull
Recommended publications
  • First Sighting of the Giant Genet Genetta Victoriae in Rwanda
    First sighting of the Giant Genet Genetta victoriae in Rwanda Vladimir DINETS Abstract A large genet photographed in 2005 in Nyungwe National Park, Rwanda, was identified as a Giant GenetGenetta victoriae, previously known with certainty only from the Democratic Republic of Congo and the adjacent part of Uganda and never before photographed in the wild. Keywords: montane rainforest, Nyungwe National Park, spotlighting, Viverridae Première observation de la Genette Géante Genetta victoriae au Rwanda Résumé Une genette de grande taille photographiée en 2005 dans le Parc National de Nyungwe au Rwanda, est identifiée comme représentant la Genette Géante Genetta victoriae ; cette espèce n’était connue que de la République Démocratique du Congo et de la partie limitrophe de l’Ouganda, et n’avait jamais été photographiée dans la nature. Mots clés: forêt ombrophile de montagne, Parc National de Nyungwe, spotlighting, Viverridae Giant Genet Genetta victoriae Thomas, 1901 is an enigmatic car- nivoran species, currently known with certainty only from northern and eastern parts of the Democratic Republic of Congo (DRC), where it inhabits lowland and montane rainforests up to 2,000 m (Van Rompaey et al. 2008). It has been predicted to occur in Rwan- da and Uganda, but there are no confirmed observations or mu- seum specimens from outside DRC (Gaubert et al. 2006), except in Semiliki Forest in Uganda on the border with DRC (Bere 1962). A captive specimen has been photographed by Rahm (1966), but there are no photos obtained in the wild, and no published infor- mation on wild animals, except for observations by Kingdon (1977) in Uganda, which appear questionable (Schreiber et al.
    [Show full text]
  • Rapid Range Expansion of the Feral Raccoon (Procyon Lotor) in Kanagawa Prefecture, Japan, and Its Impact on Native Organisms
    Rapid range expansion of the feral raccoon (Procyon lotor) in Kanagawa Prefecture, Japan, and its impact on native organisms Hisayo Hayama, Masato Kaneda, and Mayuh Tabata Kanagawa Wildlife Support Network, Raccoon Project. 1-10-11-2 Takamoridai, Isehara 259-1115, Kanagawa, Japan Abstract The distribution of feral raccoons (Procyon lotor) was surveyed in Kanagawa Prefecture, central Japan. Information was collected mainly through use of a questionnaire to municipal offices, environment NGOs, and hunting specialists. The raccoon occupied 26.5% of the area of the prefecture, and its distribution range doubled over three years (2001 to 2003). The most remarkable change was the range expansion of the major population in the south-eastern part of the prefecture, and several small populations that were found throughout the prefecture. Predation by feral raccoons on various native species probably included endangered Tokyo salamanders (Hynobius tokyoensis), a freshwater Asian clam (Corbicula leana), and two large crabs (Helice tridens and Holometopus haematocheir). The impact on native species is likely to be more than negligible. Keywords: Feral raccoon; Procyon lotor; distribution; questionnaire; invasive alien species; native species; Kanagawa Prefecture INTRODUCTION The first record of reproduction of the feral raccoon presence of feral raccoons between 2001 and 2003 in Kanagawa Prefecture was from July 1990, and it and the reliability of the information. One of the was assumed that the raccoon became naturalised in issues relating to reliability is possible confusion with this prefecture around 1988 (Nakamura 1991). the native raccoon dog (Nyctereutes procyonoides; Damage by feral raccoons is increasing and the Canidae), which has a similar facial pattern with a number of raccoons, captured as part of the wildlife black band around the eyes, and a similar body size to pest control programme, is also rapidly increasing.
    [Show full text]
  • Comparative Ecomorphology and Biogeography of Herpestidae and Viverridae (Carnivora) in Africa and Asia
    Comparative Ecomorphology and Biogeography of Herpestidae and Viverridae (Carnivora) in Africa and Asia Gina D. Wesley-Hunt1, Reihaneh Dehghani2,3 and Lars Werdelin3 1Biology Department, Montgomery College, 51 Mannakee St. Rockville, Md. 20850, USA; 2Department of Zoology, Stockholm University, SE-106 91, Stockholm, Sweden; 3Department of Palaeozoology, Swedish Museum of Natural History, Box 50007, SE-104 05, Stockholm, Sweden INTRODUCTION Ecological morphology (ecomorphology) is a powerful tool for exploring diversity, ecology and evolution in concert (Wainwright, 1994, and references therein). Alpha taxonomy and diversity measures based on taxon counting are the most commonly used tools for understanding long-term evolutionary patterns and provide the foundation for all other biological studies above the organismal level. However, this provides insight into only a single dimension of a multidimensional system. As a complement, ecomorphology allows us to describe the diversification and evolution of organisms in terms of their morphology and ecological role. This is accomplished by using quantitative and semi-quantitative characterization of features of organisms that are important, for example, in niche partitioning or resource utilization. In this context, diversity is commonly referred to as disparity (Foote, 1993). The process of speciation, for example, can be better understood and hypotheses more rigorously tested, if it can be quantitatively demonstrated whether a new species looks very similar to the original taxon or whether its morphology has changed in a specific direction. For example, if a new species of herbivore evolves with increased grinding area in the cheek dentition, it can either occupy the same area of morphospace as previously existing species, suggesting increased resource competition, or it can occupy an area of morphospace that had previously been empty, suggesting evolution into a new niche.
    [Show full text]
  • 3.4 ORDER CARNIVORA Bowdich, 1821
    3.4 ORDER CARNIVORA Bowdich, 1821 3.4.1 Family Ursidae Fischer, 1817 There are eight species of bears in the world: - American Black Bear Ursus americanus - Brown Bear Ursus arctos - Polar Bear Ursus maritimus - Sloth Bear Melursus ursinus - Spectacled Bear Tremarctos ornatus - Giant Panda Ailuropoda melanoleuca - Asiatic Black Bear Ursus thibetanus - Malayan Sun Bear Helarctos malayanus The last two species are the only members of the family Ursidae known in Southeast Asia. They differ from each other by their furs and body sizes and both are threatened with extinction (Nowak, 1991; Corbet & Hill 1992). Bears have relatively undeveloped carnassial teeth; narrow premolars, crushing molars with flat crowns and large robust canines. 127 3.4.1.1 Subfamily Ursinae Fischer, 1817, Plate 3(A1 to B3) As mentioned above, two genera and two species represent the subfamily Ursinae in Southeast Asia, namely: - Malayan Sun Bear (Figure 3.8, A), Ursus/Helarctos malayanus (Raffles, 1821) with the scientific name Ursu and synonym Helarctos is distributed in the south west of China, Assam, Myanmar, Vietnam, Peninsular Malaysia, to the islands of Sumatra and Borneo. It is the smallest of all bears found in the tropical rainforests of Southeast Asia. - Asiatic Black Bear (Figure 3.8, B), Ursus thibetanus Cuvier, 1823 is mainly localized in the Himalayas, Afghanistan to southern China, Myanmar, northern Thailand and Indochina. It has several alternative names including Asiatic Black Bear, Himalayan Black Bear, Moon Bear and inhabits mountain forests. Figure 3.8 Malayan Sun Bear (A) and Asiatic Black Bear (B) in Zoo Negara, Malaysia National Zoological Park.
    [Show full text]
  • (Barbourofelinae, Nimravidae, Carnivora), from the Middle Miocene of China Suggests Barbourofelines Are Nimravids, Not Felids
    UCLA UCLA Previously Published Works Title A new genus and species of sabretooth, Oriensmilus liupanensis (Barbourofelinae, Nimravidae, Carnivora), from the middle Miocene of China suggests barbourofelines are nimravids, not felids Permalink https://escholarship.org/uc/item/0g62362j Journal JOURNAL OF SYSTEMATIC PALAEONTOLOGY, 18(9) ISSN 1477-2019 Authors Wang, Xiaoming White, Stuart C Guan, Jian Publication Date 2020-05-02 DOI 10.1080/14772019.2019.1691066 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Journal of Systematic Palaeontology ISSN: 1477-2019 (Print) 1478-0941 (Online) Journal homepage: https://www.tandfonline.com/loi/tjsp20 A new genus and species of sabretooth, Oriensmilus liupanensis (Barbourofelinae, Nimravidae, Carnivora), from the middle Miocene of China suggests barbourofelines are nimravids, not felids Xiaoming Wang, Stuart C. White & Jian Guan To cite this article: Xiaoming Wang, Stuart C. White & Jian Guan (2020): A new genus and species of sabretooth, Oriensmilusliupanensis (Barbourofelinae, Nimravidae, Carnivora), from the middle Miocene of China suggests barbourofelines are nimravids, not felids , Journal of Systematic Palaeontology, DOI: 10.1080/14772019.2019.1691066 To link to this article: https://doi.org/10.1080/14772019.2019.1691066 View supplementary material Published online: 08 Jan 2020. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tjsp20 Journal of Systematic Palaeontology, 2020 Vol. 0, No. 0, 1–21, http://dx.doi.org/10.1080/14772019.2019.1691066 A new genus and species of sabretooth, Oriensmilus liupanensis (Barbourofelinae, Nimravidae, Carnivora), from the middle Miocene of China suggests barbourofelines are nimravids, not felids a,bà c d Xiaoming Wang , Stuart C.
    [Show full text]
  • First Record of Hose's Civet Diplogale Hosei from Indonesia
    First record of Hose’s Civet Diplogale hosei from Indonesia, and records of other carnivores in the Schwaner Mountains, Central Kalimantan, Indonesia Hiromitsu SAMEJIMA1 and Gono SEMIADI2 Abstract One of the least-recorded carnivores in Borneo, Hose’s Civet Diplogale hosei , was filmed twice in a logging concession, the Katingan–Seruyan Block of Sari Bumi Kusuma Corporation, in the Schwaner Mountains, upper Seruyan River catchment, Central Kalimantan. This, the first record of this species in Indonesia, is about 500 km southwest of its previously known distribution (northern Borneo: Sarawak, Sabah and Brunei). Filmed at 325The m a.s.l., IUCN these Red List records of Threatened are below Species the previously known altitudinal range (450–1,800Prionailurus m). This preliminary planiceps survey forPardofelis medium badia and large and Otter mammals, Civet Cynogalerunning 100bennettii camera-traps in 10 plots for one (Bandedyear, identified Civet Hemigalus in this concession derbyanus 17 carnivores, Arctictis including, binturong on Neofelis diardi, three Endangered Pardofe species- lis(Flat-headed marmorata Cat and Sun Bear Helarctos malayanus, Bay Cat . ) and six Vulnerable species , Binturong , Sunda Clouded Leopard , Marbled Cat Keywords Cynogale bennettii, as well, Pardofelis as Hose’s badia Civet), Prionailurus planiceps Catatan: PertamaBorneo, camera-trapping, mengenai Musang Gunung Diplogale hosei di Indonesia, serta, sustainable karnivora forest management lainnya di daerah Pegunungan Schwaner, Kalimantan Tengah Abstrak Diplogale hosei Salah satu jenis karnivora yang jarang dijumpai di Borneo, Musang Gunung, , telah terekam dua kali di daerah- konsesi hutan Blok Katingan–Seruyan- PT. Sari Bumi Kusuma, Pegunungan Schwaner, di sekitar hulu Sungai Seruya, Kalimantan Tengah. Ini merupakan catatan pertama spesies tersebut terdapat di Indonesia, sekitar 500 km dari batas sebaran yang diketa hui saat ini (Sarawak, Sabah, Brunei).
    [Show full text]
  • Guidelines for Wildlife and Traffic in the Carpathians
    Wildlife and Traffic in the Carpathians Guidelines how to minimize the impact of transport infrastructure development on nature in the Carpathian countries Wildlife and Traffic in the Carpathians Guidelines how to minimize the impact of transport infrastructure development on nature in the Carpathian countries Part of Output 3.2 Planning Toolkit TRANSGREEN Project “Integrated Transport and Green Infrastructure Planning in the Danube-Carpathian Region for the Benefit of People and Nature” Danube Transnational Programme, DTP1-187-3.1 April 2019 Project co-funded by the European Regional Development Fund (ERDF) www.interreg-danube.eu/transgreen Authors Václav Hlaváč (Nature Conservation Agency of the Czech Republic, Member of the Carpathian Convention Work- ing Group for Sustainable Transport, co-author of “COST 341 Habitat Fragmentation due to Trans- portation Infrastructure, Wildlife and Traffic, A European Handbook for Identifying Conflicts and Designing Solutions” and “On the permeability of roads for wildlife: a handbook, 2002”) Petr Anděl (Consultant, EVERNIA s.r.o. Liberec, Czech Republic, co-author of “On the permeability of roads for wildlife: a handbook, 2002”) Jitka Matoušová (Nature Conservation Agency of the Czech Republic) Ivo Dostál (Transport Research Centre, Czech Republic) Martin Strnad (Nature Conservation Agency of the Czech Republic, specialist in ecological connectivity) Contributors Andriy-Taras Bashta (Biologist, Institute of Ecology of the Carpathians, National Academy of Science in Ukraine) Katarína Gáliková (National
    [Show full text]
  • The 2008 IUCN Red Listings of the World's Small Carnivores
    The 2008 IUCN red listings of the world’s small carnivores Jan SCHIPPER¹*, Michael HOFFMANN¹, J. W. DUCKWORTH² and James CONROY³ Abstract The global conservation status of all the world’s mammals was assessed for the 2008 IUCN Red List. Of the 165 species of small carni- vores recognised during the process, two are Extinct (EX), one is Critically Endangered (CR), ten are Endangered (EN), 22 Vulnerable (VU), ten Near Threatened (NT), 15 Data Deficient (DD) and 105 Least Concern. Thus, 22% of the species for which a category was assigned other than DD were assessed as threatened (i.e. CR, EN or VU), as against 25% for mammals as a whole. Among otters, seven (58%) of the 12 species for which a category was assigned were identified as threatened. This reflects their attachment to rivers and other waterbodies, and heavy trade-driven hunting. The IUCN Red List species accounts are living documents to be updated annually, and further information to refine listings is welcome. Keywords: conservation status, Critically Endangered, Data Deficient, Endangered, Extinct, global threat listing, Least Concern, Near Threatened, Vulnerable Introduction dae (skunks and stink-badgers; 12), Mustelidae (weasels, martens, otters, badgers and allies; 59), Nandiniidae (African Palm-civet The IUCN Red List of Threatened Species is the most authorita- Nandinia binotata; one), Prionodontidae ([Asian] linsangs; two), tive resource currently available on the conservation status of the Procyonidae (raccoons, coatis and allies; 14), and Viverridae (civ- world’s biodiversity. In recent years, the overall number of spe- ets, including oyans [= ‘African linsangs’]; 33). The data reported cies included on the IUCN Red List has grown rapidly, largely as on herein are freely and publicly available via the 2008 IUCN Red a result of ongoing global assessment initiatives that have helped List website (www.iucnredlist.org/mammals).
    [Show full text]
  • Ancestral Mitogenome Capture of the Southeast Asian Banded Linsang
    Mathematisch-Naturwissenschaftliche Fakultät Johanna L. A. Paijmans | Axel Barlow | Kirstin Henneberger | Jörns Fickel | Michael Hofreiter | Daniel W. G. Foerste Ancestral mitogenome capture of the Southeast Asian banded linsang Suggested citation referring to the original publication: PLoS ONE 15 (2020) 6, Art. e0234385 DOI https://doi.org/10.1371/journal.pone.0234385 ISSN 1932-6203 Postprint archived at the Institutional Repository of the Potsdam University in: Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe 972 ISSN: 1866-8372 https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-474441 DOI: https://doi.org/10.25932/publishup-47444 PLOS ONE RESEARCH ARTICLE Ancestral mitogenome capture of the Southeast Asian banded linsang 1,2¤ 1,3 1 1,2 Johanna L. A. PaijmansID *, Axel Barlow *, Kirstin Henneberger , Joerns Fickel , Michael Hofreiter1, Daniel W. G. Foerster2* 1 Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany, 2 Leibniz Institute for Zoo- and Wildlife Research, Berlin, Germany, 3 School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom ¤ Current address: Department of Genetics & Genome Biology, University of Leicester, Leicester, United a1111111111 Kingdom [email protected] (JLAP); [email protected] (AB); [email protected] (DWGF) a1111111111 * a1111111111 a1111111111 a1111111111 Abstract Utilising a reconstructed ancestral mitochondrial genome of a clade to design hybridisation capture baits can provide the opportunity for recovering mitochondrial sequences from all its descendent and even sister lineages. This approach is useful for taxa with no extant close OPEN ACCESS relatives, as is often the case for rare or extinct species, and is a viable approach for the Citation: Paijmans JLA, Barlow A, Henneberger K, analysis of historical museum specimens.
    [Show full text]
  • SMC 11 Gill 1.Pdf
    SMITHSONIAN MISCELLANEOUS COLLECTIONS. 230 ARRANGEMENT FAMILIES OF MAMMALS. WITH ANALYTICAL TABLES. PREPARED FOR THE SMITHSONIAN INSTITUTION. BY THEODORE GILL, M.D., Ph.D. WASHINGTON: PUBLISHED BY THE SMITHSONIAN INSTITUTION. NOVEMBER, 1872. ADVERTISEMENT. The following list of families of Mammals, with analytical tables, has been prepared by Dr. Theodore Gill, at the request of the Smithsonian Institution, to serve as a basis for the arrangement of the collection of Mammals in the National Museum ; and as frequent applications for such a list have been received by the Institution, it has been thought advisable to publish it for more extended use. In provisionally adopting this system for the purpose mentioned, the Institution, in accordance with its custom, disclaims all responsibility for any of the hypothetical views upon which it may be based. JOSEPH HENRY, Secretary, S. I. Smithsonian Institution, Washington, October, 1872. (iii) CONTENTS. I. List of Families* (including references to synoptical tables) 1-27 Sub-Class (Eutheria) Placentalia s. Monodelpbia (1-121) 1, Super-Order Educabilia (1-73) Order 1. Primates (1-8) Sub-Order Anthropoidea (1-5) " Prosimiae (6-8) Order 2. Ferae (9-27) Sub-Order Fissipedia (9-24) . " Pinnipedia (25-27) Order 3. Ungulata (28-54) Sub-Order Artiodactyli (28-45) " Perissodactyli (46-54) Order 4. Toxodontia (55-56) . Order 5. Hyracoidea (57) Order 6. Proboscidea (58-59) Diverging (Educabilian) series. Order 7. Sirenia' (60-63) Order 8. Cete (64-73) . Sub-Order Zeuglodontia (64-65) " Denticete (66-71) . Mysticete (72-73) . Super-Order Ineducabilia (74-121) Order 9. Chiroptera (74-82) . Sub-Order Aniinalivora (74-81) " Frugivora (82) Order 10.
    [Show full text]
  • Small Carnivores
    SMALL CARNIVORES IN TINJURE-MILKE-JALJALE, EASTERN NEPAL The content of this booklet can be used freely with permission for any conservation and education purpose. However we would be extremely happy to get a hard copy or soft copy of the document you have used it for. For further information: Friends of Nature Kathmandu, Nepal P.O. Box: 23491 Email: [email protected], Website: www.fonnepal.org Facebook: www.facebook.com/fonnepal2005 First Published: April, 2018 Photographs: Friends of Nature (FON), Jeevan Rai, Zaharil Dzulkafly, www.pixabay/ werner22brigitte Design: Roshan Bhandari Financial support: Rufford Small Grants, UK Authors: Jeevan Rai, Kaushal Yadav, Yadav Ghimirey, Som GC, Raju Acharya, Kamal Thapa, Laxman Prasad Poudyal and Nitesh Singh ISBN: 978-9937-0-4059-4 Acknowledgements: We are grateful to Zaharil Dzulkafly for his photographs of Marbled Cat, and Andrew Hamilton and Wildscreen for helping us get them. We are grateful to www.pixabay/werner22brigitte for giving us Binturong’s photograph. We thank Bidhan Adhikary, Thomas Robertson, and Humayra Mahmud for reviewing and providing their valuable suggestions. Preferred Citation: Rai, J., Yadav, K., Ghimirey, Y., GC, S., Acharya, R., Thapa, K., Poudyal, L.P., and Singh, N. 2018. Small Carnivores in Tinjure-Milke -Jaljale, Eastern Nepal. Friends of Nature, Nepal and Rufford Small Grants, UK. Small Carnivores in Tinjure-Milke-Jaljale, Eastern Nepal Why Protect Small Carnivore! Small carnivores are an integral part of our ecosystem. Except for a few charismatic species such as Red Panda, a general lack of research and conservation has created an information gap about them. I am optimistic that this booklet will, in a small way, be the starting journey of filling these gaps in our knowledge bank of small carnivore in Nepal.
    [Show full text]
  • 12 Baryshnikov*
    Gennady Bary s h n i kov Zoological Institute, R A S , S t . Petersburg C h ro n o l ogical and ge og r aphical variability of Crocuta spelaea ( C a r n i vo r a , H yaenidae) fro m the Pleistocene of Russia B a r y s h n i k o v, G., 1999 - Chronological and geographical variability of C rocuta spelaea ( C a r n i v o r a , Hyaenidae) from the Pleistocene of Russia - in: Haynes, G., Klimowicz, J. & Reumer, J.W. F. (eds.) – MA M M O T H S A N D T H E MA M M O T H FA U N A: ST U D I E S O F A N EX T I N C T EC O S Y S T E M – DEINSEA 6: 155-174 [ISSN 0923-9308]. Published 17 May 1999. Geographic variation in C rocuta spelaea dentition, beginning from the Middle Pleistocene, can be seen as specialization in western and eastern Eurasia. The sizes of C. spelaea increase from the south to the northwest and northeast. The hyena of the Primorski Krai had the largest teeth. C h ronologische en geografische variatie in Crocuta spelaea (Carnivora, Hyaenidae) uit het Russische P l e i s t o c e e n – Geografische variatie in het gebit van de grottenhyena, vanaf het Midden Pleistoceen, wordt beschouwd als een specialisatie in westelijk en oostelijk Eurazië. De maten van de grottenhyena nemen toe van het zuiden naar het noordwesten en noordoosten. De hyena van Primorski Krai had de grootste gebitselementen.
    [Show full text]