TLR5: Beyond the Recognition of flagellin

Total Page:16

File Type:pdf, Size:1020Kb

TLR5: Beyond the Recognition of flagellin Cellular and Molecular Immunology (2017) 14, 1017–1019 & 2017 CSI and USTC All rights reserved 2042-0226/17 www.nature.com/cmi LETTER TO THE EDITOR TLR5: beyond the recognition of flagellin Jingyi Yang and Huimin Yan Cellular and Molecular Immunology (2017) 14, 1017–1019; doi:10.1038/cmi.2017.122; published online 20 November 2017 he innate immune system plays an fundamental functions of TLR5 beyond dissemination to extraintestinal organs, Tessential role in the host defense the recognition of flagellin are only the overgrowth of toxigenic members or against infections by initially sensing beginning to be appreciated. Studies on opportunistic pathogenic bacterial inva- and recognizing diverse microbial patho- TLR5 in recent years have revealed sion and infection need to be constantly gens and directing adaptive immune different scenarios after the recognition monitored and prevented. Accordingly, responses to their infections. How does of flagellinbyTLR5intherespiratory TLR5 is used by the mucosal immune the innate immune system sense and tract, gastrointestinal tract, liver or even system of the gut to detect flagellin for recognize pathogens? The identification in the dorsal root ganglion neurons. the surveillance of gastrointestinal micro- of pattern recognition receptors (PRRs) TLR5 is expressed constitutively in biota. Thus, intestinal epithelial cell during the past decades has brought us epithelial cells and immune cells, such TLR5 senses the composition and loca- into a new era to explore this funda- as monocytes and immature DCs. TLR5 lization of the intestinal microbiota to mental question. PRRs are an array of is preferentially expressed on the apical prevent diseases associated with intestinal germline-encoded multifunctional pro- side of respiratory epithelia in both mice inflammation.7 Aberrantly elevated TLR5 teins that do not recognize specific and humans.3,4 Thus, TLR5 can induce activation in response to bacterial flagel- pathogens but rather recognize con- early signaling dedicated to protective lin might result in an impairment of the served molecular patterns associated with innate immune responses against epithelial barrier integrity or the exacer- various classes of pathogens, leading to respiratory infection. For example, air- bation and perpetuation of chronic gut fl 8 fl pathogen-associated molecular patterns way epithelium TLR5 can sense Pseudo- in ammation. Improper bacterial agel- (PAMPs).1 Among the PRRs, there is a monas aeruginosa and initiate an early lin recognition by TLR5 is also linked to fl family of Toll-like receptors (TLRs), host in ammatory reaction to clear the changes in the gut microbiota composi- 5 including TLR5, that recognize a wide invading pathogen. Moreover, the early tion, distorted adipose tissue metabolism fl 9 variety of PAMPs and elicit innate clearance of P. aeruginosa from the air- and in ammation. As an ancient innate fl immune responses. TLR5 is known to ways depends on agellin-TLR5-MyD88- immune receptor, TLR5 is crucial for specifically sense and recognize flagellin, dependent signaling in respiratory both immune homeostasis and protec- 6 the major structural protein of bacterial epithelial cells. tion against bacterial infection in mam- fi flagella.2 It is conceivable that the In contrast with the respiratory tract, mals, birds, amphibians, sh and 10 immune system is equipped with TLR5 TLR5 is expressed mostly on the baso- reptiles. Further investigation of the for the detection of flagellin in different lateralsideofintestinalepithelialcells most primitive function of TLR5 will and recognizes the bacterial locomotion cells, tissues and organs. However, the shed new light on the role of TLR5 in component flagellin for detecting both sustaining gut immune homeostasis Mucosal Immunity Research Group, State Key whether bacteria have crossed the gut and the clearance of intestinal pathogenic Laboratory of Virology, Wuhan Institute of Virol- epithelia1 (Figure 1a). The expression bacteria. ogy, Chinese Academy of Sciences, Wuhan, profile and subcellular distribution fea- The liver is a unique anatomical and Hubei 430071, China Correspondence: Professor Y Han, PhD, Mucosal tures of TLR5 in the gastrointestinal tract immunological site because of its phy- Immunity Research Group, State Key Laboratory are in line with the prominent location siological roles in the metabolism of of Virology, Wuhan Institute of Virology, Chinese of bacteria in the gastrointestinal tract nutrients and the confluence of hepatic Academy of Sciences, Wuhan 430071, China. E-mail: [email protected] and the requirements of the gut immune arterial and venous blood (Figure 1b). Received: 6 August 2017; Accepted: 8 October system to address gastrointestinal micro- The liver is continually exposed to var- 2017 biota, in which commensal ious pathogens with both systemic and Known and unknown function of TLR5 J Yang and H Yan 1018 Figure 1 TLR5 is in the intestine and liver for the recognition of flagellin and beyond. (a) TLR5 is expressed on the basolateral side of intestinal epithelial cells and functions in the normal surveillance of flagellated bacteria. (b) The liver receives the intestinal venous blood circulation and arterial supply and acts as a functional vascular firewall that clears commensals that have penetrated either the intestinal or systemic vascular circuits. (c) TLR5 is expressed at a low level by hepatocytes, which can be activated by flagellin specifically in the liver. TLR5 signaling in the liver modulates local immunity by secreting cytokines and chemo-attracting immunocytes, such as neutrophils, macrophages, NK cells, dendritic cells and T cells. These cells may help to eliminate bacteria directly and regulate specificimmune responses. gut origins. In light of this situation, the expressed on LSECs.12 The role of TLR5 systemically administered flagellin analog liver plays a role in immune surveillance in the liver has been largely neglected generates protective antitumor T-cell for pathogen detection and host because of its low expression in this immunity in the liver through coordina- defense.11 The ability of liver immune organ, but in recent years, increasingly tion with CXCR3-expressing NK cells.15 sentinels to detect pathogens is also important activities of TLR5 in the liver These studies reveal that the effects of dependent on the array of PRRs have been observed (Figure 1c). For flagellin-TLR5 activation in the liver go expressed by liver sinusoidal endothelial example, hepatocyte TLR5 was found to far beyond the recognition of flagellin. In cells (LSECs), hepatocytes, Kupffer cells detect flagellin in the liver, promote light of this, the protective effects and (KCs), DCs and liver-resident lympho- bacterial clearance from the liver and possible side effects of the activation of cytes. The liver expresses a wide array of protect the liver against chronic inflam- the TLR5-signaling pathway in the liver PRRs, including TLRs. Given the anato- matory diseases, although its precise by flagellin should be evaluated more mical location and functional features of mechanism has not yet been defined. carefully, especially in regard to its pro- the liver, the response to a number of In this detection and clearance process, posed systemic use for tumor patients. At TLR ligands in the liver often differs the liver may act as a functional vascular the least, the over-activation of TLR5 from the response observed in other firewall that clears commensals that have signaling in the liver should be avoided tissues. This is represented mostly as penetrated either the intestinal or sys- because liver injury induced by high the immunosuppressive response, which temic vascular circuits.13 Another study doses of flagellin was observed in is speculated to be a mechanism used to showed that the liver is the major organ mice.16 avoid a constant state of liver inflamma- that responds to the TLR5 agonist.14 In addition to the roles played by tion induced by continuous exposure to Moreover, hepatocytes were found to TLR5 in the respiratory tract, gastroin- bacteria-derived molecules, such as LPS, be the key liver cell type that responds testinal tract and liver, a recent study on flagellin and so on. Although TLRs are rapidly and directly to a flagellin analog mechanical allodynia in neuropathic pain expressed by most cells in the liver, but not to LPS, and the activation of liver showed that the effect of TLR5 activation including hepatocytes, LSECs, HSCs, TLR5 has been shown to play a central in neurons even works beyond its recog- KCs and lymphocytes, TLR5 is only role in flagellin’s radioprotective and nition of flagellin.17 This study found expressed at low levels in hepatocytes, anticancer properties.14 The following that TLR5 is expressed by peripheral KCs and hepatic DCs; however, it is not study further demonstrated that the sensory neurons, in which TLR5 Cellular and Molecular Immunology Known and unknown function of TLR5 J Yang and H Yan 1019 mediates touch sensation and permits and the Grants of Deutsche barrier dysfunction in experimental ileitis. fl – the rapid transport of certain small Forschungsgemeinschaft (TRR60 and In amm Bowel Dis 2017; 23: 392 403. 9 Pekkala S, Munukka E, Kong L, Pollanen E, molecules across the neuronal mem- GK1949). Autio R, Roos C et al. Toll-like receptor 5 in brane through an unknown obesity: the role of gut microbiota and mechanism.17 This introduces a promis- adipose tissue inflammation. Obesity 2015; 23:581–590. ing new therapeutic strategy to treat 10 Voogdt CG, Bouwman LI, Kik MJ, Wagenaar JA, 1 Akira S, Uematsu S, Takeuchi O. Pathogen persistent pain by targeting TLR5. On van Putten JP. Reptile Toll-like receptor 5 recognition and innate immunity. Cell 2006; unveils adaptive evolution of bacterial fla- the other hand, it also suggests a more 124:783–801. gellin recognition. Sci Rep 2016; 6: 2 Hayashi F, Smith KD, Ozinsky A, Hawn TR, intriguing role for TLR5 as a gate-keeper 19046. Yi EC, Goodlett DR et al. The innate immune for cellular ion channels or as a regulator 11 Jenne CN, Kubes P. Immune surveillance by response to bacterial flagellin is mediated by the liver.
Recommended publications
  • Construction and Loss of Bacterial Flagellar Filaments
    biomolecules Review Construction and Loss of Bacterial Flagellar Filaments Xiang-Yu Zhuang and Chien-Jung Lo * Department of Physics and Graduate Institute of Biophysics, National Central University, Taoyuan City 32001, Taiwan; [email protected] * Correspondence: [email protected] Received: 31 July 2020; Accepted: 4 November 2020; Published: 9 November 2020 Abstract: The bacterial flagellar filament is an extracellular tubular protein structure that acts as a propeller for bacterial swimming motility. It is connected to the membrane-anchored rotary bacterial flagellar motor through a short hook. The bacterial flagellar filament consists of approximately 20,000 flagellins and can be several micrometers long. In this article, we reviewed the experimental works and models of flagellar filament construction and the recent findings of flagellar filament ejection during the cell cycle. The length-dependent decay of flagellar filament growth data supports the injection-diffusion model. The decay of flagellar growth rate is due to reduced transportation of long-distance diffusion and jamming. However, the filament is not a permeant structure. Several bacterial species actively abandon their flagella under starvation. Flagellum is disassembled when the rod is broken, resulting in an ejection of the filament with a partial rod and hook. The inner membrane component is then diffused on the membrane before further breakdown. These new findings open a new field of bacterial macro-molecule assembly, disassembly, and signal transduction. Keywords: self-assembly; injection-diffusion model; flagellar ejection 1. Introduction Since Antonie van Leeuwenhoek observed animalcules by using his single-lens microscope in the 18th century, we have entered a new era of microbiology.
    [Show full text]
  • RT² Profiler PCR Array (96-Well Format and 384-Well [4 X 96] Format)
    RT² Profiler PCR Array (96-Well Format and 384-Well [4 x 96] Format) Human Toll-Like Receptor Signaling Pathway Cat. no. 330231 PAHS-018ZA For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 5700, 7000, 7300, 7500, Format A 7700, 7900HT, ViiA™ 7 (96-well block); Bio-Rad® models iCycler®, iQ™5, MyiQ™, MyiQ2; Bio-Rad/MJ Research Chromo4™; Eppendorf® Mastercycler® ep realplex models 2, 2s, 4, 4s; Stratagene® models Mx3005P®, Mx3000P®; Takara TP-800 RT² Profiler PCR Array, Applied Biosystems models 7500 (Fast block), 7900HT (Fast Format C block), StepOnePlus™, ViiA 7 (Fast block) RT² Profiler PCR Array, Bio-Rad CFX96™; Bio-Rad/MJ Research models DNA Format D Engine Opticon®, DNA Engine Opticon 2; Stratagene Mx4000® RT² Profiler PCR Array, Applied Biosystems models 7900HT (384-well block), ViiA 7 Format E (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (96-well block) Format F RT² Profiler PCR Array, Roche LightCycler 480 (384-well block) Format G RT² Profiler PCR Array, Fluidigm® BioMark™ Format H Sample & Assay Technologies Description The Human Toll-Like Receptor (TLR) Signaling Pathway RT² Profiler PCR Array profiles the expression of 84 genes central to TLR-mediated signal transduction and innate immunity. The TLR family of pattern recognition receptors (PRRs) detects a wide range of bacteria, viruses, fungi and parasites via pathogen-associated molecular patterns (PAMPs). Each receptor binds to specific ligands, initiates a tailored innate immune response to the specific class of pathogen, and activates the adaptive immune response.
    [Show full text]
  • Human Alkaline Phosphatase Dephosphorylates Microbial Products and Is Elevated in Preterm Neonates with a History of Late-Onset Sepsis
    RESEARCH ARTICLE Human alkaline phosphatase dephosphorylates microbial products and is elevated in preterm neonates with a history of late-onset sepsis Matthew Pettengill1,2, Juan D. Matute2, Megan Tresenriter3, Julie Hibbert4, David Burgner5,6,7, Peter Richmond6, Jose Luis MillaÂn8, Al Ozonoff2, Tobias Strunk4, Andrew Currie4,9, Ofer Levy1,2* a1111111111 a1111111111 1 Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, United States of America, 2 Harvard Medical School, Boston, Massachusetts, United States a1111111111 of America, 3 University of California Davis School of Medicine, Davis, California, United States of America, a1111111111 4 The University of Western Australia, Crawley, Western Australia, Australia, 5 Murdoch Children's a1111111111 Research Institute, Parkville, Victoria, Australia, 6 Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia, 7 Department of Paediatrics, Monash University, Clayton, Victoria, Australia, 8 Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, LaJolla, California, United States of America, 9 School of Veterinary & Life Sciences, Murdoch University, Murdoch, Western Australia, Australia OPEN ACCESS * [email protected] Citation: Pettengill M, Matute JD, Tresenriter M, Hibbert J, Burgner D, Richmond P, et al. (2017) Human alkaline phosphatase dephosphorylates Abstract microbial products and is elevated in preterm neonates with a history of late-onset sepsis. PLoS ONE 12(4): e0175936. https://doi.org/10.1371/ journal.pone.0175936 Background Editor: Olivier Baud, Hopital Robert Debre, FRANCE A host defense function for Alkaline phosphatases (ALPs) is suggested by the contribution of intestinal ALP to detoxifying bacterial lipopolysaccharide (endotoxin) in animal models in Received: July 6, 2016 vivo and the elevation of ALP activity following treatment of human cells with inflammatory Accepted: April 3, 2017 stimuli in vitro.
    [Show full text]
  • A Technology Platform to Test the Efficacy of Purification of Alginate
    Materials 2014, 7, 2087-2103; doi:10.3390/ma7032087 OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Article A Technology Platform to Test the Efficacy of Purification of Alginate Genaro A. Paredes-Juarez *, Bart J. de Haan, Marijke M. Faas and Paul de Vos Department of Pathology and Medical Biology, Section of Immunoendocrinology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, EA11, 9700 RB Groningen, The Netherlands; E-Mails: [email protected] (B.J.H.); [email protected] (M.M.F.); [email protected] (P.V.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +31-50-3615-180; Fax: 31-50-3619-911. Received: 10 January 2014; in revised form: 12 February 2014 / Accepted: 5 March 2014 / Published: 12 March 2014 Abstract: Alginates are widely used in tissue engineering technologies, e.g., in cell encapsulation, in drug delivery and various immobilization procedures. The success rates of these studies are highly variable due to different degrees of tissue response. A cause for this variation in success is, among other factors, its content of inflammatory components. There is an urgent need for a technology to test the inflammatory capacity of alginates. Recently, it has been shown that pathogen-associated molecular patterns (PAMPs) in alginate are potent immunostimulatories. In this article, we present the design and evaluation of a technology platform to assess (i) the immunostimulatory capacity of alginate or its contaminants, (ii) where in the purification process PAMPs are removed, and (iii) which Toll-like receptors (TLRs) and ligands are involved.
    [Show full text]
  • An Immunologist's Perspective on Nutrition, Immunity, and Infectious
    © 2009 Poultry Science Association, Inc. An immunologist’s perspective on nutrition, immunity, and infectious diseases: 1 Introduction and overview M. H. Kogut *2 and K. Klasing † * Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX 77845; and † Department of Avian Sciences, University of California, Davis 95616 Primary Audience: Poultry Nutritionists, Immunologists, Veterinarians, Researchers SUMMARY The immune system is a multifaceted arrangement of membranes (skin, epithelial, and mucus), cells, and molecules whose function is to eradicate invading pathogens or cancer cells from a host. Working together, the various components of the immune system perform a balancing act of being lethal enough to kill pathogens or cancer cells yet specific so as not to cause extensive damage to “self” tissues of the host. A functional immune system is a requirement of a healthy life in modern animal production. Yet infectious diseases still represent a serious drain on the economics (reduced production, cost of therapeutics, and vaccines) and welfare of animal agriculture. The interaction involving nutrition and immunity and how the host deals with infectious agents is a strategic deter- minant in animal health. Almost all nutrients in the diet play a fundamental role in sustaining an op- timal immune response, such that deficient and excessive intakes can have negative consequences on immune status and susceptibility to a variety of pathogens. Dietary components can regulate physiological functions of the body; interacting with the immune response is one of the most im- portant functions of nutrients. The pertinent question to be asked and answered in the current era of poultry production is whether the level of nutrients that maximizes production in commercial diets is sufficient to maintain competence of immune status and disease resistance.
    [Show full text]
  • Crystal Structure of Bacillus Cereus Flagellin and Structure-Guided Fusion-Protein Designs
    www.nature.com/scientificreports OPEN Crystal structure of Bacillus cereus fagellin and structure-guided fusion-protein designs Received: 6 February 2018 Meong Il Kim1, Choongdeok Lee1, Jaewan Park1, Bo-Young Jeon2 & Minsun Hong1 Accepted: 23 March 2018 Flagellin is a major component of the fagellar flament. Flagellin also functions as a specifc ligand Published: xx xx xxxx that stimulates innate immunity through direct interaction with Toll-like receptor 5 (TLR5) in the host. Because fagellin activates the immune response, it has been of interest to develop as a vaccine adjuvant in subunit vaccines or antigen fusion vaccines. Despite the widespread application of fagellin fusion in preventing infectious diseases, fagellin-antigen fusion designs have never been biophysically and structurally characterized. Moreover, fagellin from Salmonella species has been used extensively despite containing hypervariable regions not required for TLR5 that can cause an unexpected immune response. In this study, fagellin from Bacillus cereus (BcFlg) was identifed as the smallest fagellin molecule containing only the conserved TLR5-activating D0 and D1 domains. The crystal structure of BcFlg was determined to provide a scheme for fusion designs. Through homology-based modeling and comparative structural analyses, diverse fusion strategies were proposed. Moreover, cellular and biophysical analysis of an array of fusion constructs indicated that insertion fusion at BcFlg residues 178–180 does not interfere with the protein stability or TLR5-stimulating capacity of fagellin, suggesting its usefulness in the development and optimization of fagellin fusion vaccines. Flagella enable bacterial locomotion toward favorable conditions or away from unfavorable environments. Te bacterial fagellum transverses from the cytoplasm to the outside of the bacterium and comprises more than 30 diferent proteins1,2.
    [Show full text]
  • DNA Vaccine-Encoded Flagellin Can Be Used As an Adjuvant Scaffold to Augment HIV-1 Gp41 Membrane Proximal External Region Immunogenicity
    viruses Article DNA Vaccine-Encoded Flagellin Can Be Used as an Adjuvant Scaffold to Augment HIV-1 gp41 Membrane Proximal External Region Immunogenicity Lara Ajamian 1,2, Luca Melnychuk 1,2, Patrick Jean-Pierre 1 and Gerasimos J. Zaharatos 1,3,* ID 1 Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada; [email protected] (L.A.); [email protected] (L.M.); [email protected] (P.J.-P.) 2 Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada 3 Division of Infectious Disease, Department of Medicine & Division of Medical Microbiology, Department of Clinical Laboratory Medicine, Jewish General Hospital, Montréal, QC H3T 1E2, Canada * Correspondence: [email protected]; Tel.: +1-514-340-8294 Received: 28 January 2018; Accepted: 23 February 2018; Published: 27 February 2018 Abstract: Flagellin’s potential as a vaccine adjuvant has been increasingly explored over the last three decades. Monomeric flagellin proteins are the only known agonists of Toll-like receptor 5 (TLR5). This interaction evokes a pro-inflammatory state that impacts upon both innate and adaptive immunity. While pathogen associated molecular patterns (PAMPs) like flagellin have been used as stand-alone adjuvants that are co-delivered with antigen, some investigators have demonstrated a distinct advantage to incorporating antigen epitopes within the structure of flagellin itself. This approach has been particularly effective in enhancing humoral immune responses. We sought to use flagellin as both scaffold and adjuvant for HIV gp41 with the aim of eliciting antibodies to the membrane proximal external region (MPER).
    [Show full text]
  • Activation of Toll-Like Receptor 5 on Breast Cancer Cells by Flagellin Suppresses Cell Proliferation and Tumor Growth
    Published OnlineFirst March 22, 2011; DOI: 10.1158/0008-5472.CAN-10-1993 Cancer Microenvironment and Immunology Research Activation of Toll-like Receptor 5 on Breast Cancer Cells by Flagellin Suppresses Cell Proliferation and Tumor Growth Zhenyu Cai, Amir Sanchez, Zhongcheng Shi, Tingting Zhang, Mingyao Liu, and Dekai Zhang Abstract Increasing evidence showed that Toll-like receptors (TLR), key receptors in innate immunity, play a role in cancer progression and development but activation of different TLRs might exhibit the exact opposite outcome, antitumor or protumor effects. TLR function has been extensively studied in innate immune cells, so we investigated the role of TLR signaling in breast cancer epithelial cells. We found that TLR5 was highly expressed in breast carcinomas and that TLR5 signaling pathway is overly responsive in breast cancer cells. Interestingly, flagellin/TLR5 signaling in breast cancer cells inhibits cell proliferation and an anchorage-independent growth, a hallmark of tumorigenic transformation. In addition, the secretion of soluble factors induced by flagellin contributed to the growth-inhibitory activity in an autocrine fashion. The inhibitory activity was further confirmed in mouse xenografts of human breast cancer cells. These findings indicate that TLR5 activation by flagellin mediates innate immune response to elicit potent antitumor activity in breast cancer cells themselves, which may serve as a novel therapeutic target for human breast cancer therapy. Cancer Res; 71(7); 1–10. Ó2011 AACR. Introduction (16, 17). Thus, the function and biological importance of TLRs expressed on various tumor cells seem complex. Toll-like receptors (TLR) are membrane-bound receptors Unlike other TLR family members, TLR5 is not expressed on that play key roles in both the innate and adaptive immune mouse macrophages and conventional dendritic cells (DC).
    [Show full text]
  • Bacterial Flagellin—A Potent Immunomodulatory Agent
    OPEN Experimental & Molecular Medicine (2017) 49, e373; doi:10.1038/emm.2017.172 Official journal of the Korean Society for Biochemistry and Molecular Biology www.nature.com/emm REVIEW Bacterial flagellin—a potent immunomodulatory agent Irshad A Hajam1, Pervaiz A Dar2, Imam Shahnawaz2, Juan Carlos Jaume2 and John Hwa Lee1 Flagellin is a subunit protein of the flagellum, a whip-like appendage that enables bacterial motility. Traditionally, flagellin was viewed as a virulence factor that contributes to the adhesion and invasion of host cells, but now it has emerged as a potent immune activator, shaping both the innate and adaptive arms of immunity during microbial infections. In this review, we summarize our understanding of bacterial flagellin and host immune system interactions and the role flagellin as an adjuvant, anti-tumor and radioprotective agent, and we address important areas of future research interests. Experimental & Molecular Medicine (2017) 49, e373; doi:10.1038/emm.2017.172; published online 1 September 2017 INTRODUCTION vaccines. Even though all the adjuvants studied so far have The immune system has evolved to fight off microbial invasion proven to be effective, flagellin, a TLR5 agonist, has been through the coordinated action of the innate and adaptive arms shown more promising results without any major side effects. of the immunity. Innate immune cells respond to a variety of Flagellin is the structural component of the flagellum, a stimuli, including bacterial, viral, parasitic or fungal infections, locomotory organ that is mostly associated with Gram-negative via members of structurally related receptors termed toll-like bacteria. It is characterized by highly conserved N- and receptors (TLRs).
    [Show full text]
  • Immunity Requires T Cells and Activation of Innate Humoral
    Humoral Immune Response to Flagellin Requires T Cells and Activation of Innate Immunity This information is current as Catherine J. Sanders, Yimin Yu, Daniel A. Moore III, Ifor R. of September 26, 2021. Williams and Andrew T. Gewirtz J Immunol 2006; 177:2810-2818; ; doi: 10.4049/jimmunol.177.5.2810 http://www.jimmunol.org/content/177/5/2810 Downloaded from References This article cites 36 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/177/5/2810.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Humoral Immune Response to Flagellin Requires T Cells and Activation of Innate Immunity1 Catherine J. Sanders, Yimin Yu, Daniel A. Moore III, Ifor R. Williams, and Andrew T. Gewirtz2 Bacterial flagellin, the primary structural component of flagella, is a dominant target of humoral immunity upon infection by enteric pathogens and in Crohn’s disease.
    [Show full text]
  • Receptor 5/Toll-Like Receptor 4 Complexes Involves Signaling Via
    Induction of Macrophage Nitric Oxide Production by Gram-Negative Flagellin Involves Signaling Via Heteromeric Toll-Like Receptor 5/Toll-Like Receptor 4 Complexes This information is current as of September 25, 2021. Steven B. Mizel, Anna N. Honko, Marlena A. Moors, Pameeka S. Smith and A. Phillip West J Immunol 2003; 170:6217-6223; ; doi: 10.4049/jimmunol.170.12.6217 http://www.jimmunol.org/content/170/12/6217 Downloaded from References This article cites 50 articles, 26 of which you can access for free at: http://www.jimmunol.org/content/170/12/6217.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2003 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Induction of Macrophage Nitric Oxide Production by Gram-Negative Flagellin Involves Signaling Via Heteromeric Toll-Like Receptor 5/Toll-Like Receptor 4 Complexes1 Steven B.
    [Show full text]
  • Recognition of Lipopolysaccharide Pattern by TLR4 Complexes
    OPEN Experimental & Molecular Medicine (2013) 45, e66; doi:10.1038/emm.2013.97 & 2013 KSBMB. All rights reserved 2092-6413/13 www.nature.com/emm REVIEW Recognition of lipopolysaccharide pattern by TLR4 complexes Beom Seok Park1 and Jie-Oh Lee2 Lipopolysaccharide (LPS) is a major component of the outer membrane of Gram-negative bacteria. Minute amounts of LPS released from infecting pathogens can initiate potent innate immune responses that prime the immune system against further infection. However, when the LPS response is not properly controlled it can lead to fatal septic shock syndrome. The common structural pattern of LPS in diverse bacterial species is recognized by a cascade of LPS receptors and accessory proteins, LPS binding protein (LBP), CD14 and the Toll-like receptor4 (TLR4)–MD-2 complex. The structures of these proteins account for how our immune system differentiates LPS molecules from structurally similar host molecules. They also provide insights useful for discovery of anti-sepsis drugs. In this review, we summarize these structures and describe the structural basis of LPS recognition by LPS receptors and accessory proteins. Experimental & Molecular Medicine (2013) 45, e66; doi:10.1038/emm.2013.97; published online 6 December 2013 Keywords: lipopolysaccharide (LPS); Toll-like receptor 4 (TLR4); MD-2; CD14; LBP INTRODUCTION the cell surface by a glycosylphosphatidylinositol anchor. CD14 In the initial phase of infection, the innate immune system splits LPS aggregates into monomeric molecules and presents generates a rapid inflammatory response that blocks the them to the TLR4–MD-2 complex. Aggregation of the TLR4– growth and dissemination of the infectious agent.
    [Show full text]