Full Stack Kotlin on Google Cloud Brent Shaffer, Google Cloud DPE Bshaffe R Brent Shaffer No Language Makes You Feel More Like a Cog in a Machine Than Java
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download File
Annex 2: List of tested and analyzed data sharing tools (non-exhaustive) Below are the specifications of the tools surveyed, as to February 2015, with some updates from April 2016. The tools selected in the context of EU BON are available in the main text of the publication and are described in more details. This list is also available on the EU BON Helpdesk website, where it will be regularly updated as needed. Additional lists are available through the GBIF resources page, the DataONE software tools catalogue, the BioVel BiodiversityCatalogue and the BDTracker A.1 GBIF Integrated Publishing Toolkit (IPT) Main usage, purpose, selected examples The Integrated Publishing Toolkit is a free open source software tool written in Java which is used to publish and share biodiversity data sets and metadata through the GBIF network. Designed for interoperability, it enables the publishing of content in databases or text files using open standards, namely, the Darwin Core and the Ecological Metadata Language. It also provides a 'one-click' service to convert data set metadata into a draft data paper manuscript for submission to a peer-reviewed journal. Currently, the IPT supports three core types of data: checklists, occurrence datasets and sample based data (plus datasets at metadata level only). The IPT is a community-driven tool. Core development happens at the GBIF Secretariat but the coding, documentation, and internationalization are a community effort. New versions incorporate the feedback from the people who actually use the IPT. In this way, users can help get the features they want by becoming involved. The user interface of the IPT has so far been translated into six languages: English, French, Spanish, Traditional Chinese, Brazilian Portuguese, Japanese (Robertson et al, 2014). -
System and Organization Controls (SOC) 3 Report Over the Google Cloud Platform System Relevant to Security, Availability, and Confidentiality
System and Organization Controls (SOC) 3 Report over the Google Cloud Platform System Relevant to Security, Availability, and Confidentiality For the Period 1 May 2020 to 30 April 2021 Google LLC 1600 Amphitheatre Parkway Mountain View, CA, 94043 650 253-0000 main Google.com Management’s Report of Its Assertions on the Effectiveness of Its Controls Over the Google Cloud Platform System Based on the Trust Services Criteria for Security, Availability, and Confidentiality We, as management of Google LLC ("Google" or "the Company") are responsible for: • Identifying the Google Cloud Platform System (System) and describing the boundaries of the System, which are presented in Attachment A • Identifying our service commitments and system requirements • Identifying the risks that would threaten the achievement of its service commitments and system requirements that are the objectives of our System, which are presented in Attachment B • Identifying, designing, implementing, operating, and monitoring effective controls over the Google Cloud Platform System (System) to mitigate risks that threaten the achievement of the service commitments and system requirements • Selecting the trust services categories that are the basis of our assertion We assert that the controls over the System were effective throughout the period 1 May 2020 to 30 April 2021, to provide reasonable assurance that the service commitments and system requirements were achieved based on the criteria relevant to security, availability, and confidentiality set forth in the AICPA’s -
F1 Query: Declarative Querying at Scale
F1 Query: Declarative Querying at Scale Bart Samwel John Cieslewicz Ben Handy Jason Govig Petros Venetis Chanjun Yang Keith Peters Jeff Shute Daniel Tenedorio Himani Apte Felix Weigel David Wilhite Jiacheng Yang Jun Xu Jiexing Li Zhan Yuan Craig Chasseur Qiang Zeng Ian Rae Anurag Biyani Andrew Harn Yang Xia Andrey Gubichev Amr El-Helw Orri Erling Zhepeng Yan Mohan Yang Yiqun Wei Thanh Do Colin Zheng Goetz Graefe Somayeh Sardashti Ahmed M. Aly Divy Agrawal Ashish Gupta Shiv Venkataraman Google LLC [email protected] ABSTRACT 1. INTRODUCTION F1 Query is a stand-alone, federated query processing platform The data processing and analysis use cases in large organiza- that executes SQL queries against data stored in different file- tions like Google exhibit diverse requirements in data sizes, la- based formats as well as different storage systems at Google (e.g., tency, data sources and sinks, freshness, and the need for custom Bigtable, Spanner, Google Spreadsheets, etc.). F1 Query elimi- business logic. As a result, many data processing systems focus on nates the need to maintain the traditional distinction between dif- a particular slice of this requirements space, for instance on either ferent types of data processing workloads by simultaneously sup- transactional-style queries, medium-sized OLAP queries, or huge porting: (i) OLTP-style point queries that affect only a few records; Extract-Transform-Load (ETL) pipelines. Some systems are highly (ii) low-latency OLAP querying of large amounts of data; and (iii) extensible, while others are not. Some systems function mostly as a large ETL pipelines. F1 Query has also significantly reduced the closed silo, while others can easily pull in data from other sources. -
Platform As a Service (Paas) Scope
Platform as a Service (PaaS) Scope: 1. Platform as a Service (PaaS) 2. What is Google App Engine. • Overview • Programming languages support • Data storage • App Engine services • Security 3. When to use Google App Engine. 4. How to use Google App Engine. 1. Platform as a Service (PaaS) • Cloud computing service which provides a computing platform and a solution stack as a service. • Consumer creates the software using tools and/or libraries from the provider. • Provider provides the networks, servers, storage, etc. 2. What is Google App Engine. • Overview Google App Engine (GAE) is a Platform as a Service (PaaS) cloud computing platform for developing and hosting web applications in Google-managed data centers. Google App Engine lets you run web applications on Google's infrastructure. Easy to build. Easy to maintain. Easy to scale as the traffic and storage needs grow. Free Yes, free for upto 1 GB of storage and enough CPU and bandwidth to support 5 ??? million page views a month. 10 Applications per Google account. 2. What is Google App Engine. • Programming languages support Java: • App Engine runs JAVA apps on a JAVA 7 virtual machine (currently supports JAVA 6 as well). • Uses JAVA Servlet standard for web applications: •WAR (Web Applications ARchive) directory structure. • Servlet classes • Java Server Pages (JSP) • Static and data files • Deployment descriptor (web.xml) • Other configuration files • Getting started : https://developers.google.com/appengine/docs/java /gettingstarted/ 2. What is Google App Engine. • Programming languages support Python: • Uses WSGI (Web Server Gateway Interface) standard. • Python applications can be written using: • Webapp2 framework • Django framework • Any python code that uses the CGI (Common Gateway Interface) standard. -
Containers at Google
Build What’s Next A Google Cloud Perspective Thomas Lichtenstein Customer Engineer, Google Cloud [email protected] 7 Cloud products with 1 billion users Google Cloud in DACH HAM BER ● New cloud region Germany Google Cloud Offices FRA Google Cloud Region (> 50% latency reduction) 3 Germany with 3 zones ● Commitment to GDPR MUC VIE compliance ZRH ● Partnership with MUC IoT platform connects nearly Manages “We found that Google Ads has the best system for 50 brands 250M+ precisely targeting customer segments in both the B2B with thousands of smart data sets per week and 3.5M and B2C spaces. It used to be hard to gain the right products searches per month via IoT platform insights to accurately measure our marketing spend and impacts. With Google Analytics, we can better connect the omnichannel customer journey.” Conrad is disrupting online retail with new Aleš Drábek, Chief Digital and Disruption Officer, Conrad Electronic services for mobility and IoT-enabled devices. Solution As Conrad transitions from a B2C retailer to an advanced B2B and Supports B2C platform for electronic products, it is using Google solutions to grow its customer base, develop on a reliable cloud infrastructure, Supports and digitize its workplaces and retail stores. Products Used 5x Mobile-First G Suite, Google Ads, Google Analytics, Google Chrome Enterprise, Google Chromebooks, Google Cloud Translation API, Google Cloud the IoT connections vs. strategy Vision API, Google Home, Apigee competitors Industry: Retail; Region: EMEA Number of Automate Everything running -
Accelerating App Delivery
Accelerating App Delivery How aPaaS Enables Fast Delivery & Continuous Innovation Issue 1 2 Welcome 2 Resources 3 From the Gartner Files: Magic Quadrant for Enterprise Application Platform as a Service, Worldwide 32 About Mendix Featuring research from 2 Welcome Innovate or perish. That’s the reality facing every business, regardless of industry. The need to deliver modern, multi-channel applications that engage customers and empower employees has never been more urgent. Yet, fast-growing project backlogs and unhappy business sponsors are clear indications that traditional development approaches aren’t cutting it. Enterprise application Platform-as-a-Service (aPaaS) offers a much-needed way forward, promising to accelerate your application delivery cadence and capacity. But the market is crowded, and not all aPaaS offerings are created equal. In Gartner’s 2015 Magic Quadrant for Enterprise Application Platform as Service (aPaaS), Mendix was positioned as a “Visionary” due to its completeness of vision and ability to execute. Use this complimentary Gartner report to better understand and navigate the aPaaS landscape and ultimately select the platform best suited to your organization’s priorities. Resources In addition to Gartner’s perspective, we have [Video] aPaaS Success Stories included four resources to illustrate how Mendix See how Mendix customers, such as Dun & supports customers through their digital journeys, Bradstreet, LV= Insurance, The Boston Globe empowering them to deliver the right apps with and Kao, are rapidly delivering custom apps that unprecedented speed. differentiate their business. Watch video → Successful App Delivery for the Digital Age Find out how to keep your IT team on track and [Video] The Mendix App Platform Tour quickly deliver the multi-channel, multi-device Take a two-minute tour of the Mendix App apps needed to digitize your business. -
Beginning Java Google App Engine
apress.com Kyle Roche, Jeff Douglas Beginning Java Google App Engine A book on the popular Google App Engine that is focused specifically for the huge number of Java developers who are interested in it Kyle Roche is a practicing developer and user of Java technologies and the Google App Engine for building Java-based Cloud applications or Software as a Service (SaaS) Cloud Computing is a hot technology concept and growing marketplace that drives interest in this title as well Google App Engine is one of the key technologies to emerge in recent years to help you build scalable web applications even if you have limited previous experience. If you are a Java 1st ed., 264 p. programmer, this book offers you a Java approach to beginning Google App Engine. You will explore the runtime environment, front-end technologies like Google Web Toolkit, Adobe Flex, Printed book and the datastore behind App Engine. You'll also explore Java support on App Engine from end Softcover to end. The journey begins with a look at the Google Plugin for Eclipse and finishes with a 38,99 € | £35.49 | $44.99 working web application that uses Google Web Toolkit, Google Accounts, and Bigtable. Along [1]41,72 € (D) | 42,89 € (A) | CHF the way, you'll dig deeply into the services that are available to access the datastore with a 52,05 focus on Java Data Objects (JDO), JDOQL, and other aspects of Bigtable. With this solid foundation in place, you'll then be ready to tackle some of the more advanced topics like eBook integration with other cloud platforms such as Salesforce.com and Google Wave. -
Google Cloud Platform (GCP): Возможности И Преимущества
Google Cloud Platform (GCP): возможности и преимущества Дмитрий Новаковский, Олег Ивонин Январь 2017 Кто мы? Дмитрий Новаковский / [email protected] ● Customer Engineer @ Google Netherlands B.V. ● Поддержка продаж и разработка решений на основе GCE, GKE, GAE ● В прошлом: ○ IaaS/PaaS (OpenStack @ Mirantis) ○ SaaS (ETAdirect @ TOA Technologies/Oracle) Олег Ивонин / [email protected] ● Cloud Web Solutions Engineer @ Google Netherlands B.V. ● Разработка инструментов для анализа стоимости конфигураций и планирования архитектуры облачных решений на основе GCP ○ Google Cloud Platform Pricing Calculator и другие О чем мы расскажем? ● Часть 1: Google Cloud Platform 101 ○ Наборы облачных сервисов и их назначение ○ Преимущества на рынке ● Часть 2: Инфраструктурные сервисы GCP (IaaS/PaaS) ○ GCE - Виртуальные машины ○ GKE - Оркестрация Docker контейнеров ○ GAE - NoOps/PaaS окружения ● Часть 3: Big Data и Machine Learning инструменты GCP ● Часть 4: Примеры, итоги и вопросы/ответы Disclaimer Google Cloud Platform 4 Часть 1: Google Cloud Platform 101 Google Cloud Platform 5 Путь IT-инфраструктуры в “облако” Storage Processing Memory Network Storage Processing Memory Network Physical / Self-Service / Serverless / Colo / VPS Elastic / IaaS NoOps / PaaS Google Cloud Platform 6 Что такое Google Cloud Platform? GCP - это набор коммерческих облачных сервисов, основанных на разработках и опыте Google в для собственных продуктов: ● Google Search ● YouTube ● Google Maps ● и др. Google’s Data Research Flume MapReduce Dremel Millwheel TensorFlow GFS Megastore -
Google Cloud / Google Maps API Custom Software Solutions for Geospatial Information Needs
Google Cloud / Google Maps API Custom Software Solutions for Geospatial Information Needs Sanborn is a Service Partner within the Google Cloud Platform Partner Program. Google Cloud Platform is a set of modular cloud-based services that allow you to create anything from simple websites to complex applications. We have a team of Google Qualified Cloud Platform developers fully certified in five disciplines critical for building effective client solutions. Sanborn can provide Google Cloud services and solutions to help clients build and run geospatial applications to store / access data from the same infrastructure that allows Google to return billions of search results in milliseconds. Building business solutions on Google’s cloud platform allows Sanborn to eliminate concerns about future scalability and lack of infrastructure. As a Google Cloud Platform Channel Partner, Sanborn helps clients design, develop and manage new cloud-based solutions. Customers benefit by engaging with Sanborn as a result of our investment in developing the skills needed to build these powerful new solutions on top of Google’s Cloud Platform. Sanborn Google Certified Developers Can Build Client Google Cloud Platform Products Solutions Leveraging: Enable Sanborn Customers to Implement: Google Cloud Storage Google Big Query Google App Engine Google Compute Engine Cloud Storage Solutions: such as high-end backup Google Cloud SQL and recovery, using Google Cloud Storage with Service Level Agreements that include guaranteed monthly uptime that’s greater than 99%. Sanborn Google Cloud Services Include: Cloud App Solutions: such as web-based analysis, Application Services Platform as a service assessment, and visualization apps and websites, using Google App Engine and Google Cloud SQL. -
Digital Media Asset Management and Sharing
Digital Media Asset Management and Sharing Introduction Digital media is one of the fastest growing areas on the internet. According to a market study by Informa Telecoms & Media conducted in 2012, the global 1. online video market only, will reach $37 billion in 2017¹. Other common media OTT Video Revenue Forecasts, types include images, music, and digital documents. One driving force for this 2011-2017, by Informa Telecoms phenomena growth is the popularity of feature rich mobile devices2, equipped & Media, with higher resolution cameras, bigger screens, and faster data connections. November 2012. This has led to a massive increase in media content production and con- sumption. Another driving force is the trend among many social networks to 2. incorporate media sharing as a core feature in their systems². Meanwhile, Key trends and Takeaways in Digital numerous startup companies are trying to build their own niche areas in Media Market, this market. by Abhay Paliwal, March 2012. This paper will use an example scenario to provide a technical deep-dive on how to use Google Cloud Platform to build a digital media asset management and sharing system. Example Scenario - Photofeed Photofeed, a fictitious start-up company, is interested in building a photo sharing application that allows users to upload and share photos with each other. This application also includes a social aspect and allows people to post comments about photos. Photofeed’s product team believes that in order for them to be competitive in this space, users must be able to upload, view, and edit photos quickly, securely and with great user experiences. -
Economic and Social Impacts of Google Cloud September 2018 Economic and Social Impacts of Google Cloud |
Economic and social impacts of Google Cloud September 2018 Economic and social impacts of Google Cloud | Contents Executive Summary 03 Introduction 10 Productivity impacts 15 Social and other impacts 29 Barriers to Cloud adoption and use 38 Policy actions to support Cloud adoption 42 Appendix 1. Country Sections 48 Appendix 2. Methodology 105 This final report (the “Final Report”) has been prepared by Deloitte Financial Advisory, S.L.U. (“Deloitte”) for Google in accordance with the contract with them dated 23rd February 2018 (“the Contract”) and on the basis of the scope and limitations set out below. The Final Report has been prepared solely for the purposes of assessment of the economic and social impacts of Google Cloud as set out in the Contract. It should not be used for any other purposes or in any other context, and Deloitte accepts no responsibility for its use in either regard. The Final Report is provided exclusively for Google’s use under the terms of the Contract. No party other than Google is entitled to rely on the Final Report for any purpose whatsoever and Deloitte accepts no responsibility or liability or duty of care to any party other than Google in respect of the Final Report and any of its contents. As set out in the Contract, the scope of our work has been limited by the time, information and explanations made available to us. The information contained in the Final Report has been obtained from Google and third party sources that are clearly referenced in the appropriate sections of the Final Report. -
Migrating Your Databases to Managed Services on Google Cloud Table of Contents
White paper June 2021 Migrating your databases to managed services on Google Cloud Table of Contents Introduction 3 Why choose cloud databases 3 The benefits of Google Cloud’s managed database services 5 Maximum compatibility for your workloads 6 For Oracle workloads: Bare Metal Solution for Oracle 8 For SQL Server workloads: Cloud SQL for SQL Server 10 For MySQL workloads: Cloud SQL for MySQL 12 For PostgreSQL workloads: Cloud SQL for PostgreSQL 14 For Redis and Memcached workloads: Memorystore 16 For Redis: Redis Enterprise Cloud 17 For Apache HBase workloads: Cloud Bigtable 19 For MongoDB workloads: MongoDB Atlas 20 For Apache Cassandra workloads: Datastax Astra 22 For Neo4j workloads: Neo4j Aura 23 For InfluxDB workloads: InfluxDB Cloud 25 Migrations that are simple, reliable, and secure 27 Assessing and planning your migration 27 Google Cloud streamlines your migrations 28 Google Cloud services and tools 28 Self-serve migration resources 28 Database migration technology partners 29 Google Professional Services 29 Systems integrators 29 Get started today 29 3 Introduction This paper is for technology decision makers, developers, architects, and DBAs. It focuses on modernizing database deployments with database services on Google Cloud. These services prioritize compatibility and simplicity of management, and include options for Oracle, SQL Server, MySQL, PostgreSQL, Redis, MongoDB, Cassandra, Neo4j, and other popular databases. To transform your business applications, consider Google Cloud native databases. For strategic applications that don’t go down, need on-demand and unlimited scalability, advanced security, and accelerated application development, Google provides the same cloud native database services that power thousands of applications at Google, including services like Google Search, Gmail, and YouTube with billions of users across the globe.