Beyond Gmezlpezhernndez Syndrome: Recurring Phenotypic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Partial Rhombencephalosynapsis and Chiari II Malformation
CASE REPORT SMY Wan PL Khong Partial rhombencephalosynapsis and P Ip Chiari II malformation GC Ooi !"#$%&'(ff !"#$%&'() ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○ We report a rare case of partial rhombencephalosynapsis coexistent with Chiari II malformation in a 6-year-old girl and discuss the fea- tures of these entities on magnetic resonance imaging. !"#S !"#$%&'()*+,-./0ff !" !"#$%&'()*+,-./01234(5%678 Introduction Rhombencephalosynapsis (RS) is a rare congenital malformation of the posterior cranial fossa characterised by vermal agenesis or hypogenesis and fusion of the cerebellar hemispheres. About 40 cases have been re- ported.1 Partial RS was reported for the first time recently whereby normal development of the anterior vermis and nodulus was noted but part of the posterior vermis was deficient.2 One case of RS associated with Chiari II malformation has also been reported.3 To the best of our knowledge, the coexistence of partial RS and Chiari II malformation and their features on magnetic resonance imaging (MRI) have not been reported. Key words: Case report Arnold-Chiari malformation; Cerebellum; A 6-year-old girl had spina bifida and hydrocephalus at birth. She was the Child; second child of a non-consanguineous southern Chinese couple. Antenatal Magnetic resonance imaging; examination by a private obstetrician including an ultrasound scan at 22 Rhombencephalon weeks’ gestation was reported to be normal. There was no family history of congenital malformations or any other remarkable medical problems. ! Her birth at full term was complicated by her large head and the delivery !"#$%&'() necessitated a Caesarean section. A ruptured myelomeningocele over the lumbosacral region was also noted at birth and there was paucity of lower limb movement. -
Thrombocytopenia-Absent Radius Syndrome
Thrombocytopenia-absent radius syndrome Description Thrombocytopenia-absent radius (TAR) syndrome is characterized by the absence of a bone called the radius in each forearm and a shortage (deficiency) of blood cells involved in clotting (platelets). This platelet deficiency (thrombocytopenia) usually appears during infancy and becomes less severe over time; in some cases the platelet levels become normal. Thrombocytopenia prevents normal blood clotting, resulting in easy bruising and frequent nosebleeds. Potentially life-threatening episodes of severe bleeding ( hemorrhages) may occur in the brain and other organs, especially during the first year of life. Hemorrhages can damage the brain and lead to intellectual disability. Affected children who survive this period and do not have damaging hemorrhages in the brain usually have a normal life expectancy and normal intellectual development. The severity of skeletal problems in TAR syndrome varies among affected individuals. The radius, which is the bone on the thumb side of the forearm, is almost always missing in both arms. The other bone in the forearm, which is called the ulna, is sometimes underdeveloped or absent in one or both arms. TAR syndrome is unusual among similar malformations in that affected individuals have thumbs, while people with other conditions involving an absent radius typically do not. However, there may be other abnormalities of the hands, such as webbed or fused fingers (syndactyly) or curved pinky fingers (fifth finger clinodactyly). Some people with TAR syndrome also have skeletal abnormalities affecting the upper arms, legs, or hip sockets. Other features that can occur in TAR syndrome include malformations of the heart or kidneys. -
Approach to Brain Malformations
Approach to Brain Malformations A General Imaging Approach to Brain CSF spaces. This is the basis for development of the Dandy- Malformations Walker malformation; it requires abnormal development of the cerebellum itself and of the overlying leptomeninges. Whenever an infant or child is referred for imaging because of Looking at the midline image also gives an idea of the relative either seizures or delayed development, the possibility of a head size through assessment of the craniofacial ratio. In the brain malformation should be carefully investigated. If the normal neonate, the ratio of the cranial vault to the face on child appears dysmorphic in any way (low-set ears, abnormal midline images is 5:1 or 6:1. By 2 years, it should be 2.5:1, and facies, hypotelorism), the likelihood of an underlying brain by 10 years, it should be about 1.5:1. malformation is even higher, but a normal appearance is no guarantee of a normal brain. In all such cases, imaging should After looking at the midline, evaluate the brain from outside be geared toward showing a structural abnormality. The to inside. Start with the cerebral cortex. Is the thickness imaging sequences should maximize contrast between gray normal (2-3 mm)? If it is too thick, think of pachygyria or matter and white matter, have high spatial resolution, and be polymicrogyria. Is the cortical white matter junction smooth or acquired as volumetric data whenever possible so that images irregular? If it is irregular, think of polymicrogyria or Brain: Pathology-Based Diagnoses can be reformatted in any plane or as a surface rendering. -
TAR Syndrome, a Rare Case Report with Cleft Lip/Palate a Naseh, a Hafizi, F Malek, H Mozdarani, V Yassaee
The Internet Journal of Pediatrics and Neonatology ISPUB.COM Volume 14 Number 1 TAR Syndrome, a Rare Case Report with Cleft Lip/Palate A Naseh, A Hafizi, F Malek, H Mozdarani, V Yassaee Citation A Naseh, A Hafizi, F Malek, H Mozdarani, V Yassaee. TAR Syndrome, a Rare Case Report with Cleft Lip/Palate. The Internet Journal of Pediatrics and Neonatology. 2012 Volume 14 Number 1. Abstract TAR (Thrombocytopenia-Absent Radius) is a clinically –defined syndrome characterized by hypomegakarocytic thrombocytopenia and bilateral absence of radius in the presence of both thumbs. We describe a female neonate as a rare case of TAR syndrome with orofacial cleft. Bone marrow aspiration of the patient revealed a cellular marrow with marked reduction of megakaryocytes. Our clinical observation is consistent with TAR syndrome. However, other syndromes with cleft lip/palate and radial aplasia like Roberts syndrome (tetraphocomelia), Edwards syndrome and Fanconi and sc phocomelia (which has less degree of limb reduction) should be considered. Our cytogenetic study excludes other overlapping chromosomal syndromes. RBM8A analysis may reveal nucleotide alteration, leading to definite diagnosis. Our objective is adding this cleft lip and cleft palate to the literature regarding TAR syndrome. - Eva Klopocki, Harald Schulz, Gabriele Straub,Judith Hall,Fabienne Trotier, et al(February 2007) ;Complex inheritance pattern Resembeling Autosomal Recessive Inheritance Involving a Microdeletion in Thrombocytopenia-Absent Radius Syndrome.The American Journal of Human Genetics 80:232-240 INTRODUCTION syndrome. The hemorrhage happens during the first 14 TAR is a clinically-defined syndrome characterized by months of life. Hedberg and associates concluded in a study thrombocytopenia and bilateral radial bone aplasia in the that 18 of 20 deaths in 76 patients were due to hemorrhagic forearm with thumbs present. -
(TAR) Syndrome Without Significant Thrombocytopenia
Open Access Case Report DOI: 10.7759/cureus.10557 Thrombocytopenia with Absent Radii (TAR) Syndrome Without Significant Thrombocytopenia Jael Cowan 1 , Taral Parikh 1 , Rajdeepsingh Waghela 1 , Ricardo Mora 2 1. Pediatrics, Woodhull Medical Center, Brooklyn, USA 2. Neonatology, Woodhull Medical Center, Brooklyn, USA Corresponding author: Jael Cowan, [email protected] Abstract Thrombocytopenia with absent radii (TAR) syndrome is a rare genetic syndrome that occurs with a frequency of about 0.42 cases per 100,000 live births. It is characterized by hypo-megakaryocytic thrombocytopenia with bilateral absent radii and the presence of both thumbs. The thrombocytopenia is initially very severe, manifesting in the first few weeks to months of life, but subsequently improves with time to reach near normal values by one to two years of age. We present a case of a newborn with TAR syndrome with an atypical presentation of mild thrombocytopenia in the first week of life, with early normalization of platelet counts in the neonatal period. The patient deviates from the normal pattern in which 95% of patients with TAR syndrome usually develop significant thrombocytopenia (platelet counts of less than 50 x 10 9 platelets/L) within the first four months of life. Additionally, the absence of hypo-megakaryocytes on peripheral smear sets this patient apart from the typical cases of TAR syndrome. TAR syndrome is often associated with significant morbidity and mortality secondary to severe thrombocytopenia, which occurs with the highest frequency in the first 14 months of life. The most common cause of mortality is due to a severe hemorrhagic event occurring in the brain, gastrointestinal tract, and other organs. -
Rhombencephalosynapsis: CT and MRI Findings
Short Reports Rhombencephalosynapsis: CT and MRI findings J. L. F. Mendonça,1,2 M. R. C. Natal,1,2 S. L. Viana,3,4 P. P. A. Coimbra,2,5 M. A. C. B. Viana,2 M. Matsumine 3 1Hospital Santa Lucia; 2Fundaçao Hospitalar do Distrito Federal; 3Clinica Radiologica Vila Rica; 4Unimed Brasilia; 5Hospital Universitario de Brasilia (UnB), Brasilia, DF - Brazil. performed. CT scan, retrospectively analyzed with the benefit of MRI An unusual disorder of cerebellar development, images showed a small fourth ventricle, associated with the absence of rhombencephalosynapsis is a unique entity which presents the septum pellucidum and a small hypodense lesion at the quadrigemi- with cerebellar fusion and absence of cerebellar vermis on nal plate cistern, slightly left to the midline. Fusion of the cerebellar imaging studies, often associated with supratentorial find- lobes was hard to see on CT scan images (Figures 1a and 1b). ings. No specific clinical syndrome has been described in these patients so far, and most cases are found in infancy and childhood. MRI and its multiplanar capabilities and high spatial and contrast resolution increased its recognition. Two cases are reported, with emphasis on imaging findings. Key Words: Rhombencephalosynapsis, Magnetic reso- nance imaging, Computed tomography, Cerebellum, Cer- ebellar malformations. Introduction Rhombencephalosynapsis (RS) is an uncommon malforma- tion of the posterior fossa characterized by hypoplasia or apla- sia of the vermis and fused cerebellar hemispheres; fusion or 1a apposition of the dentate nuclei and cerebellar peduncles are also observed. The clinical course is variable and depends on the severity of the posterior fossa findings and supratento- rial-associated anomalies. -
1Q21.1 Deletion and a Rare Functional Polymorphism in Siblings with Thrombocytopenia-Absent Radius–Like Phenotypes
Downloaded from molecularcasestudies.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press COLD SPRING HARBOR Molecular Case Studies | RESEARCH ARTICLE 1q21.1 deletion and a rare functional polymorphism in siblings with thrombocytopenia-absent radius–like phenotypes Seth A. Brodie,1 Jean Paul Rodriguez-Aulet,2 Neelam Giri,2 Jieqiong Dai,1 Mia Steinberg,1 Joshua J. Waterfall,3 David Roberson,1 Bari J. Ballew,1 Weiyin Zhou,1 Sarah L. Anzick,3 Yuan Jiang,3 Yonghong Wang,3 Yuelin J. Zhu,3 Paul S. Meltzer,3 Joseph Boland,1 Blanche P. Alter,2 and Sharon A. Savage2 1Cancer Genomics Research Laboratory, Leidos Biomedical Research, NCI-Frederick, Rockville, Maryland 20850, USA; 2Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, 3Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20859, USA Abstract Thrombocytopenia-absent radii (TAR) syndrome, characterized by neonatal thrombocytopenia and bilateral radial aplasia with thumbs present, is typically caused by the inheritance of a 1q21.1 deletion and a single-nucelotide polymorphism in RBM8A on the nondeleted allele. We evaluated two siblings with TAR-like dysmorphology but lacking thrombocytopenia in infancy. Family NCI-107 participated in an IRB-approved cohort study and underwent comprehensive clinical and genomic evaluations, including aCGH, whole- exome, whole-genome, and targeted sequencing. Gene expression assays and electromo- bility shift assays (EMSAs) were performed to evaluate the variant of interest. The previously identified TAR-associated 1q21.1 deletion was present in the affected siblings and one healthy parent. Multiple sequencing approaches did not identify previously described TAR-associated SNPs or mutations in relevant genes. -
Soonerstart Automatic Qualifying Syndromes and Conditions
SoonerStart Automatic Qualifying Syndromes and Conditions - Appendix O Abetalipoproteinemia Acanthocytosis (see Abetalipoproteinemia) Accutane, Fetal Effects of (see Fetal Retinoid Syndrome) Acidemia, 2-Oxoglutaric Acidemia, Glutaric I Acidemia, Isovaleric Acidemia, Methylmalonic Acidemia, Propionic Aciduria, 3-Methylglutaconic Type II Aciduria, Argininosuccinic Acoustic-Cervico-Oculo Syndrome (see Cervico-Oculo-Acoustic Syndrome) Acrocephalopolysyndactyly Type II Acrocephalosyndactyly Type I Acrodysostosis Acrofacial Dysostosis, Nager Type Adams-Oliver Syndrome (see Limb and Scalp Defects, Adams-Oliver Type) Adrenoleukodystrophy, Neonatal (see Cerebro-Hepato-Renal Syndrome) Aglossia Congenita (see Hypoglossia-Hypodactylia) Aicardi Syndrome AIDS Infection (see Fetal Acquired Immune Deficiency Syndrome) Alaninuria (see Pyruvate Dehydrogenase Deficiency) Albers-Schonberg Disease (see Osteopetrosis, Malignant Recessive) Albinism, Ocular (includes Autosomal Recessive Type) Albinism, Oculocutaneous, Brown Type (Type IV) Albinism, Oculocutaneous, Tyrosinase Negative (Type IA) Albinism, Oculocutaneous, Tyrosinase Positive (Type II) Albinism, Oculocutaneous, Yellow Mutant (Type IB) Albinism-Black Locks-Deafness Albright Hereditary Osteodystrophy (see Parathyroid Hormone Resistance) Alexander Disease Alopecia - Mental Retardation Alpers Disease Alpha 1,4 - Glucosidase Deficiency (see Glycogenosis, Type IIA) Alpha-L-Fucosidase Deficiency (see Fucosidosis) Alport Syndrome (see Nephritis-Deafness, Hereditary Type) Amaurosis (see Blindness) Amaurosis -
Rhombencephalosynapsis: an Uncommon Cerebellar Malformation
ISSN: 2376-0249 International Journal of Vol 8 • Iss 2 • 1000736 Febuary, 2021 i IS S N: 2 3 76 - 0 24 9 Clinical & Medical Images Clinical-Medical Image Rhombencephalosynapsis: An Uncommon Cerebellar Malformation Hajar Adil *, Omar El-Aoufir, Nazik Allali, Latifa Chat and Siham El- Haddad Department of Radiology, Children Hospital, Ibn Sina University Hospital, Medical University of Rabat, Morocco Figure 1: Cerebral MRI on axial T2 weighted-images showing complete vermian agenesis. Clinical Image We present the case of a 10 months old girl, who presented with a myelomeningocele. Brain MRI was performed along and showed complete vermian agenesis consistent with rhombencephalosynapsis associated with ventriculomegaly and corpus callosum hypoplasia. Rhombencephalosynapsis is a rare congenital malformation of the posterior cranial fossa, characterized by partial or total vermian agenesis, dorsal fusion of the cerebellar hemispheres and dentate nuclei, variably associated with fusion of colliculi and superior cerebellar peduncles [1]. Obersteiner first described this malformation in 1914, based on a postmortem examination of a 28 years old man [2]. The exact cause of this sporadic anomaly is still unknown. Some authors suggest that it results from a failure of vermian differentiation occurring between the 28th and 44th day of gestation [3]. This condition is commonly associated with other midline malformations such as ventriculomegaly, commissural hypoplasia of the commissural system, absence of the olfactory tract agenesis of the posterior lobe of the pituitary and hypoplasia of the anterior visual pathway [4,5]. Association with VACTREL and Gomez-Lopez-Hernandez syndromes has also been reported [6]. Clinical presentation is extremely variable as it depends on the associated supratentorial anomalies [6]. -
Cytogenetics
CYTOGENETICS Techniques Cytogenetic strategy Anna Sowińska-Seidler, Phd CYTOGENETICS • Classical • Molecular - Karyotype analysis - Molecular probes - Banding techniques - FISH, aCGH Elementary fibre Chromatin fibre Laemi loop Chromatid Metaphase chromosome Chromosome structure Chromosome types Chromosome types in human: Metacentric Submetacentric Akrocentric Human chromosome groups A 1-3 big metacentric chromosomes B 4-5 big submetacentric chromosomes C 6-12 and X medium submetacentric chromosomes D 13-15 big acrocentric chromosomes E 16-18 small submetacentric chromosomes F 19-20 small metacentric chromosomes G 21-22 and Y small acrocentric chromosomes A B C D E F G Aberrations autosomes sex chromosomes Aberrations numerical structural Numerical abnormalities of chromosomes Polyploidy Aneuploidy Triploidy Tetraploidy Trisomy Monosomy 3n 4n 2n +1 2n - 1 Numerical chromosomal abnormalities Polyploidy - Triploidy (69,XXX, XXY or XYY) 1-3% of all conceptions; amost never live born; do not survive Aneuploidy (autosomes) - Nullisomy (missing a pair of homologs) Pre-implantation lethal - Monosomy (one chromosome missing) Embryonic lethal - Trisomy (one extra chromosome) Usually lethal at embryonic or fetal stages, but trisomy 13 (Patau syndrome) and trisomy 18 (Edwards syndrome) could be live born and trisomy 21 (Down syndrome) Aneuploidy (sex chromosomes) - Additional sex chromosomes (47, XXX; 47, XXY; 47, XYY) present relatively minor problems, with normal lifespan - Lacking a sex chromosome 45, X = Turner syndrome, About 99% of cases abort -
Thrombocytopenia-Absent Radius (TAR) Syndrome Service At
Thrombocytopenia-Absent Radius Syndrome (TAR) Contact details: Clinical Background and Genetics Bristol Genetics Laboratory Southmead Hospital . Thrombocytopenia-absent radius (TAR) syndrome is characterised by Bristol, BS10 5NB hypomegakaryocytic thrombocytopenia and bilateral radial aplasia in Enquiries: 0117 414 6168 the presence of both thumbs. FAX: 0117 414 6464 . These characteristic patterns differentiate TAR syndrome from other Email: [email protected] conditions with involvement of the radius, namely Holt-Oram Head of department: syndrome, Roberts syndrome and Fanconi Anaemia in which the Eileen Roberts FRCPath thumb is usually absent or severely hypoplastic. Additional skeletal features associated with TAR syndrome include Consultant Lead for shortening and, less commonly, aplasia of the ulna and/or humerus. Molecular Genetics: . The hands may show limited extension of the fingers, radial deviation Maggie Williams FRCPath and hypoplasia of the carpal and phalangeal bones. Service Lead: . The majority of TAR syndrome cases develop when an individual has Laura Yarram-Smith a deletion of the RBM8A gene (chromosome 1q21.1) on one [email protected] chromosome and a RBM8A hypomorphic SNP on the other allele.Two RBM8A hypomorphic SNPs have been identified, that Sample Required: when in trans with an RBM8A deletion account for approximately 96% Adult: 5mls blood in EDTA of TAR syndrome cases (Nat Genet. 2012 Feb 26;44(4):435-9). Paediatric: at least 1ml EDTA . A minority of TAR syndrome cases are explained by a null mutation in (preferably >2ml). Given possible the RBM8A gene in trans with a RBM8A hypomorphic SNP on the difficulties in obtaining blood other allele. In deletion negative cases point mutation analysis of the samples from these patients a entire coding region of RBM8A gene can be completed. -
Megalencephaly and Perisylvian Polymicrogyria with Postaxial Polydactyly and Hydrocephalus (MPPH): Report of a New Case
200 Short Communication Megalencephaly and Perisylvian Polymicrogyria with Postaxial Polydactyly and Hydrocephalus (MPPH): Report of a New Case Author L. Garavelli 1 , E . G u a r e s c h i 1 , S. Errico 1 , A . S i m o n i 2 , P. Bergonzini 2 , M. Zollino 3 , F. Gurrieri3 , G. M. Mancini 4 , R . S c h o t 4 , P. J . V a n D e r S p e k 5 , G. Frigieri 2 , P. Z o n a r i 6 , E. Albertini 1 , E . D e l l a G i u s t i n a 7 , S. Amarri 1 , G Banchini1 , W. B. Dobyns 8 , G . N e r i 3 Affi liation A f fi liation addresses are listed at the end of the article Key words Abstract many overgrowth syndromes. In 2004 Mirzaa ᭹ ᭤ megalencephaly & et al. reported fi ve non-consanguineous patients ᭹᭤ perisylvian polymicrogyria Megalencephaly (MEG), or enlargement of the with a new MCA/ MR syndrome characterized ᭹᭤ postaxial polydactyly brain, can either represent a familial variant with by severe congenital MEG with polymicrogyria ᭹ ᭤ hydrocephalus normal cerebral structure, or a rare brain malfor- (PMG), postaxial polydactyly (POLY) and hydro- ᭹ ᭤ MPPH syndrome mation associated with developmental delay and cephalus (HYD). The authors argued that these neurological problems. MEG has been split into fi ndings identifi ed a new and distinct malfor- two subtypes: anatomical and metabolic. The mation syndrome, which they named MPPH. latter features a build-up inside the cells owing We report on a new case of MPPH, the fi rst to to metabolic causes.