Finding Small Regular Graphs of Girth 6, 8 and 12 As Subgraphs of Cages
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Groups and Generalized Polyg.Ons
数理解析研究所講究録 1063 巻 1998 年 1-6 1 Groups and Generalized Polyg.ons Hendrik Van Maldeghem* 1 Introduction Geometric interpretation is a technique that has proved very useful to study certain groups. Especially well disigned for this are the Tits buildings, which are geometric interpretations of groups of Lie type, Chevalley groups, semi simple algebraic groups, groups with a $\mathrm{B}\mathrm{N}$ -pair, Kac-Moody groups, etc. Conversely, given a certain geometry, for instance a special kind of Tits building, one could raise the question whether there is always a group behind it. This is searching for a geometric characterization of the groups in question. Examples are the spherical Tits buildings of rank $\geq 3$ , the affine Tits buildings of rank $\geq 4$ , and certain twin Tits buildings, giving rise to, respectively, semi simple algebraic groups of relative rank $\geq 3$ and groups of mixed type, semi simple algebraic groups and mixed type groups of relative rank $\geq 3$ with a valuation on the root groups in the sense of BRUHAT &TITS [1972], certain Kac-Moody groups. Moreover, a lot of sporadic finite simple groups have been geometrically characterized by geometries which extend Tits buildings. The building bricks in all these cases are the buildings of rank 2, the so-called generalized polygons. The main examples of these are constructed from the parabolic subgroups of a rank 2 Tits system, or $\mathrm{B}\mathrm{N}$ -pair. For instance, in the finite case, one has so-called classical examples related to the linear groups $\mathrm{P}\mathrm{S}\mathrm{L}(3, -
Graphs with Flexible Labelings
Graphs with Flexible Labelings Georg Grasegger∗ Jan Legersk´yy Josef Schichoy For a flexible labeling of a graph, it is possible to construct infinitely many non-equivalent realizations keeping the distances of connected points con- stant. We give a combinatorial characterization of graphs that have flexible labelings, possibly non-generic. The characterization is based on colorings of the edges with restrictions on the cycles. Furthermore, we give necessary criteria and sufficient ones for the existence of such colorings. 1 Introduction Given a graph together with a labeling of its edges by positive real numbers, we are interested in the set of all functions from the set of vertices to the real plane such that the distance between any two connected vertices is equal to the label of the edge connecting them. Apparently, any such \realization" gives rise to infinitely many equivalent ones, by the action of the group of Euclidean congruence transformations. If the set of equivalence classes is finite and non-empty, then we say that the labeled graph is rigid; if this set is infinite, then we say that the labeling is flexible. The main result in this paper is a combinatorial characterization of graphs that have a flexible labeling. The characterization of graphs such that a generically chosen assign- ment of the vertices to the real plane gives a flexible labeling is classical: by a theorem of Geiringer-Pollaczek [8] which was rediscovered by Laman [6], this is true if the graph contains no Laman subgraph with the same set of vertices. Here, a graph G = (VG;EG) is called a Laman graph if and only if jEGj = 2jVGj − 3 and jEH j ≤ 2jVH j − 3 for any ∗Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences arXiv:1708.05298v2 [math.CO] 19 Nov 2018 yResearch Institute for Symbolic Computation (RISC), Johannes Kepler University Linz This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No 675789. -
Tight Bounds for Online Edge Coloring
Tight Bounds for Online Edge Coloring Ilan Reuven Cohen∗1, Binghui Peng†‡2, and David Wajc§¶k3 1Carnegie Mellon University and University of Pittsburgh 2Tsinghua University 3Carnegie Mellon University Abstract Vizing’s celebrated theorem asserts that any graph of maximum degree ∆ admits an edge coloring using at most ∆ + 1 colors. In contrast, Bar-Noy, Motwani and Naor showed over a quarter century ago that the trivial greedy algorithm, which uses 2∆ 1 colors, is optimal among online algorithms. Their lower bound has a caveat, however: it− only applies to low- degree graphs, with ∆ = O(log n), and they conjectured the existence of online algorithms using ∆(1 + o(1)) colors for ∆= ω(log n). Progress towards resolving this conjecture was only made under stochastic arrivals (Aggarwal et al., FOCS’03 and Bahmani et al., SODA’10). We resolve the above conjecture for adversarial vertex arrivals in bipartite graphs, for which we present a (1+ o(1))∆-edge-coloring algorithm for ∆= ω(log n) known a priori. Surprisingly, if ∆ is not known ahead of time, we show that no e Ω(1) ∆-edge-coloring algorithm exists. e−1 − We then provide an optimal, e + o(1) ∆-edge-coloring algorithm for unknown ∆= ω(log n). e−1 Key to our results, and of possible independent interest, is a novel fractional relaxation for edge coloring, for which we present optimal fractional online algorithms and a near-lossless online rounding scheme, yielding our optimal randomized algorithms. ∗Email address: [email protected]. †Email address: [email protected]. ‡Work done in part while the author was visiting Carnegie Mellon University. -
Hamilton Cycle Heuristics in Hard Graphs (Under the Direction of Pro- Fessor Carla D
ABSTRACT SHIELDS, IAN BEAUMONT Hamilton Cycle Heuristics in Hard Graphs (Under the direction of Pro- fessor Carla D. Savage) In this thesis, we use computer methods to investigate Hamilton cycles and paths in several families of graphs where general results are incomplete, including Kneser graphs, cubic Cayley graphs and the middle two levels graph. We describe a novel heuristic which has proven useful in finding Hamilton cycles in these families and compare its performance to that of other algorithms and heuristics. We describe methods for handling very large graphs on personal computers. We also explore issues in reducing the possible number of generating sets for cubic Cayley graphs generated by three involutions. Hamilton Cycle Heuristics in Hard Graphs by Ian Beaumont Shields A dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Computer Science Raleigh 2004 APPROVED BY: ii Dedication To my wife Pat, and my children, Catherine, Brendan and Michael, for their understanding during these years of study. To the memory of Hanna Neumann who introduced me to combinatorial group theory. iii Biography Ian Shields was born on March 10, 1949 in Melbourne, Australia. He grew up and attended school near the foot of the Dandenong ranges. After a short time in actuarial work he attended the Australian National University in Canberra, where he graduated in 1973 with first class honours in pure mathematics. Ian worked for IBM and other companies in Australia, Canada and the United States, before resuming part-time study for a Masters Degree in Computer Science at North Carolina State University which he received in May 1995. -
Veldkamp Quadrangles and Polar Spaces
VELDKAMP QUADRANGLES AND POLAR SPACES BERNHARD MÜHLHERR AND RICHARD M. WEISS Abstract. Veldkamp polygons are certain graphs Γ = (V,E) such that for each v ∈ V , Γv is endowed with a symmetric anti-reflexive relation ≡v. These relations are all trivial if and only if Γ is a thick generalized polygon. A Veld- kamp polygon is called flat if no two vertices have the same set of vertices that are opposite in a natural sense. We explore the connection between Veldkamp quadrangles and polar spaces. Using this connection, we give the complete classification of flat Veldkamp quadrangles in which some but not all of the relations ≡v are trivial. 1. Introduction In 2.8, we introduce the notion of a Veldkamp polygon. A Veldkamp polygon is a graph Γ = (V, E) such that for each vertex v ∈ V , the set Γv of vertices adjacent to v is endowed with a symmetric, anti-reflexive relation ≡v satisfying several axioms. The relations ≡v are called the local opposition relations of Γ. If (u,v,w) is a path of length 2 and u ≡v w, we say that the path (u,v,w) is straight. An arbitrary path is straight if every subpath of length 2 is straight. Thus every path is straight if and only if the local opposition relations ≡v are all trivial (in the sense that u ≡v w for all distinct u, w ∈ Γv). This is the case if and only if Γ is a thick generalized polygon. The thick generalized polygons that arise in the theory of algebraic groups all satisfy the Moufang condition. -
Are Highly Connected 1-Planar Graphs Hamiltonian? Arxiv:1911.02153V1 [Cs.DM] 6 Nov 2019
Are highly connected 1-planar graphs Hamiltonian? Therese Biedl Abstract It is well-known that every planar 4-connected graph has a Hamiltonian cycle. In this paper, we study the question whether every 1-planar 4-connected graph has a Hamiltonian cycle. We show that this is false in general, even for 5-connected graphs, but true if the graph has a 1-planar drawing where every region is a triangle. 1 Introduction Planar graphs are graphs that can be drawn without crossings. They have been one of the central areas of study in graph theory and graph algorithms, and there are numerous results both for how to solve problems more easily on planar graphs and how to draw planar graphs (see e.g. [1, 9, 10])). We are here interested in a theorem by Tutte [17] that states that every planar 4-connected graph has a Hamiltonian cycle (definitions are in the next section). This was an improvement over an earlier result by Whitney that proved the existence of a Hamiltonian cycle in a 4-connected triangulated planar graph. There have been many generalizations and improvements since; in particular we can additionally fix the endpoints and one edge that the Hamiltonian cycle must use [16, 12]. Also, 4-connected planar graphs remain Hamiltonian even after deleting 2 vertices [14]. Hamiltonian cycles in planar graphs can be computed in linear time; this is quite straightforward if the graph is triangulated [2] and a bit more involved for general 4-connected planar graphs [5]. There are many graphs that are near-planar, i.e., that are \close" to planar graphs. -
Dynamic Cage Survey
Dynamic Cage Survey Geoffrey Exoo Department of Mathematics and Computer Science Indiana State University Terre Haute, IN 47809, U.S.A. [email protected] Robert Jajcay Department of Mathematics and Computer Science Indiana State University Terre Haute, IN 47809, U.S.A. [email protected] Department of Algebra Comenius University Bratislava, Slovakia [email protected] Submitted: May 22, 2008 Accepted: Sep 15, 2008 Version 1 published: Sep 29, 2008 (48 pages) Version 2 published: May 8, 2011 (54 pages) Version 3 published: July 26, 2013 (55 pages) Mathematics Subject Classifications: 05C35, 05C25 Abstract A(k; g)-cage is a k-regular graph of girth g of minimum order. In this survey, we present the results of over 50 years of searches for cages. We present the important theorems, list all the known cages, compile tables of current record holders, and describe in some detail most of the relevant constructions. the electronic journal of combinatorics (2013), #DS16 1 Contents 1 Origins of the Problem 3 2 Known Cages 6 2.1 Small Examples . 6 2.1.1 (3,5)-Cage: Petersen Graph . 7 2.1.2 (3,6)-Cage: Heawood Graph . 7 2.1.3 (3,7)-Cage: McGee Graph . 7 2.1.4 (3,8)-Cage: Tutte-Coxeter Graph . 8 2.1.5 (3,9)-Cages . 8 2.1.6 (3,10)-Cages . 9 2.1.7 (3,11)-Cage: Balaban Graph . 9 2.1.8 (3,12)-Cage: Benson Graph . 9 2.1.9 (4,5)-Cage: Robertson Graph . 9 2.1.10 (5,5)-Cages . -
Generalized Line Graphs: Cartesian Products and Complexity of Recognition ∗
Generalized line graphs: Cartesian products and complexity of recognition ∗ Aparna Lakshmanan S. Csilla Bujt´as Department of Mathematics Department of Computer Science and Technology St. Xavier's College for Women University of Pannonia Aluva, India Veszpr´em,Hungary [email protected] [email protected] Zsolt Tuza Alfr´edR´enyi Institute of Mathematics Hungarian Academy of Sciences Budapest, Hungary [email protected] Submitted: Dec 21, 2014; Accepted: Aug 20, 2015; Published: Sep 11, 2015 Mathematics Subject Classifications: 05C75 (primary), 05C62, 68Q17 Abstract Putting the concept of line graph in a more general setting, for a positive integer k the k-line graph Lk(G) of a graph G has the Kk-subgraphs of G as its vertices, and two vertices of Lk(G) are adjacent if the corresponding copies of Kk in G share k − 1 vertices. Then, 2-line graph is just the line graph in usual sense, whilst 3-line graph is also known as triangle graph. The k-anti-Gallai graph 4k(G) of G is a specified subgraph of Lk(G) in which two vertices are adjacent if the corresponding two Kk-subgraphs are contained in a common Kk+1-subgraph in G. We give a unified characterization for nontrivial connected graphs G and F such that the Cartesian product G F is a k-line graph. In particular for k = 3, this answers the question of Bagga (2004), yielding the necessary and sufficient condition that G is the line graph of a triangle-free graph and F is a complete graph (or vice versa). -
Arxiv:1708.01095V2 [Math.CO] 30 Mar 2018 Rp Hoy Generalized Theory
On regular induced subgraphs of generalized polygons John Bamberg, Anurag Bishnoi, Gordon F. Royle Abstract. The cage problem asks for the smallest number c(k,g) of vertices in a k-regular graph of girth g and graphs meeting this bound are known as cages. While cages are known to exist for all integers k > 2 and g > 3, the exact value of c(k,g) is known only for some small values of k,g and three infinite families where g 6, 8, 12 and k 1 is a prime power. These infinite families come ∈ { } − from the incidence graphs of generalized polygons. Some of the best known upper bounds on c(k,g) for g 6, 8, 12 have been obtained by constructing small regular induced subgraphs of these cages. ∈ { } In this paper, we first use the Expander Mixing Lemma to give a general lower bound on the size of an induced k-regular subgraph of a regular bipartite graph in terms of the second largest eigenvalue of the host graph. We use this bound to show that the known construction of (k, 6)-graphs using Baer subplanes of the Desarguesian projective plane is the best possible. For generalized quadrangles and hexagons, our bounds are new. In particular, we improve the known lower bound on the size of an induced q-regular subgraphs of the classical generalized quadrangle Q(4, q) and show that the known constructions are asymptotically sharp, which answers a question of Metsch [21, Section 6]. For prime powers q, we also improve the known upper bounds on c(q, 8) and c(q, 12) by giving new geometric constructions of q-regular induced subgraphs in the symplectic generalized quadrangle W(3, q) and the split Cayley hexagon H(q), respectively. -
ABSTRACTS Multidesigns of the Λ-Fold Complete Graph Atif Abueida
ABSTRACTS Multidesigns of the λ-fold complete graph Atif Abueida, University of Dayton By a graph-pair of order t, we mean two non-isomorphic graphs G and H on t non-isolated vertices ∼ for which G ∪ H = Kt for some integer t ≥ 4. we consider the existence of multidecompositions of λKm for the graph-pairs of order 4 or 5. For those graph-pairs, we will also look for maximum multipackings and minimum multicoverings of λKm. An Upper Bound of Integrity of n-cage Graph Mustafa Atici, Western Kentucky University Integrity, a measure of network to reliability, is defined as I(G) = minS⊂V {|S| + m(G − S)} , where G is a graph with vertex set V and m(G − S) denotes the order of the largest component of G − S. We prove an upper bound of the following form on the integrity of any r-cage graph with n vertices: n+2 n+2 I(G) ≤ + I(P 3n−2 ), if = 4t 4 4 4 n n 0 I(G) ≤ + I(C 3n )if = 4t 4 4 4 where t and t0 are integers. To prove this upper bound we first solve the following problem: Suppose G is a connected cubic graph with g ≥ 2(d − 3) and d ≥ 5, where d is diameter and g is n girth of the graph G. We can remove d 4 e vertices from G in such a way that the remaining graph 3n 3n is a tree or a G( 4 , 4 ) graph. On Rainbow Arithmetic Progressions Maria Axenovich∗, Iowa State University Dmitri Fon-Der-Flaass Consider natural numbers {1, ··· , n} colored in three colors. -
Drawing Outerplanar Graphs Using Three Edge Lengths
Drawing outerplanar graphs using three edge lengths Noga Alon ∗ Ohad N. Feldheim † August 27, 2013 Abstract It is shown that for any outerplanar graph G there is a one to one mapping of the vertices of G to the plane, so that the number of distinct distances between pairs of connected vertices is at most three. This settles a problem of Carmi, Dujmovi´c, Morin and Wood. The proof combines (elementary) geometric, combinatorial, algebraic and probabilistic arguments. Keywords: Outerplanar graphs, distance number of a graph, degenerate drawing of a graph. 1 Introduction A linear embedding of a graph G is a mapping of the vertices of G to points in the plane. The image of every edge uv of the graph is the open interval between the image of u and the image of v. The length of that interval is called the edge-length of uv in the embedding. A degenerate drawing of a graph G is a linear embedding in which the images of all vertices are distinct. A drawing of G is a degenerate drawing in which the image of every edge is disjoint from the image of every vertex. The distance-number of a graph is the minimum number of distinct edge-lengths in a drawing of G, the degenerate distance-number is its counterpart for degenerate drawings. An outerplanar graph is a graph that can be embedded in the plane without crossings in such a way that all the vertices lie in the boundary of the unbounded face of the embedding. In [1], Carmi, Dujmovi´c, Morin and Wood ask if the degenerate distance-number of outerplanar graphs is uniformly bounded. -
The Graph Isomorphism Problem on Geometric Graphs Ryuhei Uehara
The graph isomorphism problem on geometric graphs Ryuhei Uehara To cite this version: Ryuhei Uehara. The graph isomorphism problem on geometric graphs. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2014, Vol. 16 no. 2 (in progress) (2), pp.87–96. hal- 01185616 HAL Id: hal-01185616 https://hal.inria.fr/hal-01185616 Submitted on 20 Aug 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Discrete Mathematics and Theoretical Computer Science DMTCS vol. 16:2, 2014, 87–96 The graph isomorphism problem on geometric graphs Ryuhei Uehara∗ School of Information Science, Japan Advanced Institute of Science and Technology (JAIST), Ishikawa, Japan. received 29th Nov. 2013, revised 7th July 2014, accepted 8th July 2014. The graph isomorphism (GI) problem asks whether two given graphs are isomorphic or not. The GI problem is quite basic and simple, however, it’s time complexity is a long standing open problem. The GI problem is clearly in NP, no polynomial time algorithm is known, and the GI problem is not NP-complete unless the polynomial hierarchy collapses. In this paper, we survey the computational complexity of the problem on some graph classes that have geometric characterizations.