Lie Symmetry Group Methods for Differential Equations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1-Crystal Symmetry and Classification-1.Pdf
R. I. Badran Solid State Physics Fundamental types of lattices and crystal symmetry Crystal symmetry: What is a symmetry operation? It is a physical operation that changes the positions of the lattice points at exactly the same places after and before the operation. In other words, it is an operation when applied to an object leaves it apparently unchanged. e.g. A translational symmetry is occurred, for example, when the function sin x has a translation through an interval x = 2 leaves it apparently unchanged. Otherwise a non-symmetric operation can be foreseen by the rotation of a rectangle through /2. There are two groups of symmetry operations represented by: a) The point groups. b) The space groups (these are a combination of point groups with translation symmetry elements). There are 230 space groups exhibited by crystals. a) When the symmetry operations in crystal lattice are applied about a lattice point, the point groups must be used. b) When the symmetry operations are performed about a point or a line in addition to symmetry operations performed by translations, these are called space group symmetry operations. Types of symmetry operations: There are five types of symmetry operations and their corresponding elements. 85 R. I. Badran Solid State Physics Note: The operation and its corresponding element are denoted by the same symbol. 1) The identity E: It consists of doing nothing. 2) Rotation Cn: It is the rotation about an axis of symmetry (which is called "element"). If the rotation through 2/n (where n is integer), and the lattice remains unchanged by this rotation, then it has an n-fold axis. -
Molecular Symmetry
Molecular Symmetry Symmetry helps us understand molecular structure, some chemical properties, and characteristics of physical properties (spectroscopy) – used with group theory to predict vibrational spectra for the identification of molecular shape, and as a tool for understanding electronic structure and bonding. Symmetrical : implies the species possesses a number of indistinguishable configurations. 1 Group Theory : mathematical treatment of symmetry. symmetry operation – an operation performed on an object which leaves it in a configuration that is indistinguishable from, and superimposable on, the original configuration. symmetry elements – the points, lines, or planes to which a symmetry operation is carried out. Element Operation Symbol Identity Identity E Symmetry plane Reflection in the plane σ Inversion center Inversion of a point x,y,z to -x,-y,-z i Proper axis Rotation by (360/n)° Cn 1. Rotation by (360/n)° Improper axis S 2. Reflection in plane perpendicular to rotation axis n Proper axes of rotation (C n) Rotation with respect to a line (axis of rotation). •Cn is a rotation of (360/n)°. •C2 = 180° rotation, C 3 = 120° rotation, C 4 = 90° rotation, C 5 = 72° rotation, C 6 = 60° rotation… •Each rotation brings you to an indistinguishable state from the original. However, rotation by 90° about the same axis does not give back the identical molecule. XeF 4 is square planar. Therefore H 2O does NOT possess It has four different C 2 axes. a C 4 symmetry axis. A C 4 axis out of the page is called the principle axis because it has the largest n . By convention, the principle axis is in the z-direction 2 3 Reflection through a planes of symmetry (mirror plane) If reflection of all parts of a molecule through a plane produced an indistinguishable configuration, the symmetry element is called a mirror plane or plane of symmetry . -
Arxiv:1910.10745V1 [Cond-Mat.Str-El] 23 Oct 2019 2.2 Symmetry-Protected Time Crystals
A Brief History of Time Crystals Vedika Khemania,b,∗, Roderich Moessnerc, S. L. Sondhid aDepartment of Physics, Harvard University, Cambridge, Massachusetts 02138, USA bDepartment of Physics, Stanford University, Stanford, California 94305, USA cMax-Planck-Institut f¨urPhysik komplexer Systeme, 01187 Dresden, Germany dDepartment of Physics, Princeton University, Princeton, New Jersey 08544, USA Abstract The idea of breaking time-translation symmetry has fascinated humanity at least since ancient proposals of the per- petuum mobile. Unlike the breaking of other symmetries, such as spatial translation in a crystal or spin rotation in a magnet, time translation symmetry breaking (TTSB) has been tantalisingly elusive. We review this history up to recent developments which have shown that discrete TTSB does takes place in periodically driven (Floquet) systems in the presence of many-body localization (MBL). Such Floquet time-crystals represent a new paradigm in quantum statistical mechanics — that of an intrinsically out-of-equilibrium many-body phase of matter with no equilibrium counterpart. We include a compendium of the necessary background on the statistical mechanics of phase structure in many- body systems, before specializing to a detailed discussion of the nature, and diagnostics, of TTSB. In particular, we provide precise definitions that formalize the notion of a time-crystal as a stable, macroscopic, conservative clock — explaining both the need for a many-body system in the infinite volume limit, and for a lack of net energy absorption or dissipation. Our discussion emphasizes that TTSB in a time-crystal is accompanied by the breaking of a spatial symmetry — so that time-crystals exhibit a novel form of spatiotemporal order. -
Translational Symmetry and Microscopic Constraints on Symmetry-Enriched Topological Phases: a View from the Surface
PHYSICAL REVIEW X 6, 041068 (2016) Translational Symmetry and Microscopic Constraints on Symmetry-Enriched Topological Phases: A View from the Surface Meng Cheng,1 Michael Zaletel,1 Maissam Barkeshli,1 Ashvin Vishwanath,2 and Parsa Bonderson1 1Station Q, Microsoft Research, Santa Barbara, California 93106-6105, USA 2Department of Physics, University of California, Berkeley, California 94720, USA (Received 15 August 2016; revised manuscript received 26 November 2016; published 29 December 2016) The Lieb-Schultz-Mattis theorem and its higher-dimensional generalizations by Oshikawa and Hastings require that translationally invariant 2D spin systems with a half-integer spin per unit cell must either have a continuum of low energy excitations, spontaneously break some symmetries, or exhibit topological order with anyonic excitations. We establish a connection between these constraints and a remarkably similar set of constraints at the surface of a 3D interacting topological insulator. This, combined with recent work on symmetry-enriched topological phases with on-site unitary symmetries, enables us to develop a framework for understanding the structure of symmetry-enriched topological phases with both translational and on-site unitary symmetries, including the effective theory of symmetry defects. This framework places stringent constraints on the possible types of symmetry fractionalization that can occur in 2D systems whose unit cell contains fractional spin, fractional charge, or a projective representation of the symmetry group. As a concrete application, we determine when a topological phase must possess a “spinon” excitation, even in cases when spin rotational invariance is broken down to a discrete subgroup by the crystal structure. We also describe the phenomena of “anyonic spin-orbit coupling,” which may arise from the interplay of translational and on-site symmetries. -
TASI 2008 Lectures: Introduction to Supersymmetry And
TASI 2008 Lectures: Introduction to Supersymmetry and Supersymmetry Breaking Yuri Shirman Department of Physics and Astronomy University of California, Irvine, CA 92697. [email protected] Abstract These lectures, presented at TASI 08 school, provide an introduction to supersymmetry and supersymmetry breaking. We present basic formalism of supersymmetry, super- symmetric non-renormalization theorems, and summarize non-perturbative dynamics of supersymmetric QCD. We then turn to discussion of tree level, non-perturbative, and metastable supersymmetry breaking. We introduce Minimal Supersymmetric Standard Model and discuss soft parameters in the Lagrangian. Finally we discuss several mech- anisms for communicating the supersymmetry breaking between the hidden and visible sectors. arXiv:0907.0039v1 [hep-ph] 1 Jul 2009 Contents 1 Introduction 2 1.1 Motivation..................................... 2 1.2 Weylfermions................................... 4 1.3 Afirstlookatsupersymmetry . .. 5 2 Constructing supersymmetric Lagrangians 6 2.1 Wess-ZuminoModel ............................... 6 2.2 Superfieldformalism .............................. 8 2.3 VectorSuperfield ................................. 12 2.4 Supersymmetric U(1)gaugetheory ....................... 13 2.5 Non-abeliangaugetheory . .. 15 3 Non-renormalization theorems 16 3.1 R-symmetry.................................... 17 3.2 Superpotentialterms . .. .. .. 17 3.3 Gaugecouplingrenormalization . ..... 19 3.4 D-termrenormalization. ... 20 4 Non-perturbative dynamics in SUSY QCD 20 4.1 Affleck-Dine-Seiberg -
Observability and Symmetries of Linear Control Systems
S S symmetry Article Observability and Symmetries of Linear Control Systems Víctor Ayala 1,∗, Heriberto Román-Flores 1, María Torreblanca Todco 2 and Erika Zapana 2 1 Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica 1000000, Chile; [email protected] 2 Departamento Académico de Matemáticas, Universidad, Nacional de San Agustín de Arequipa, Calle Santa Catalina, Nro. 117, Arequipa 04000, Peru; [email protected] (M.T.T.); [email protected] (E.Z.) * Correspondence: [email protected] Received: 7 April 2020; Accepted: 6 May 2020; Published: 4 June 2020 Abstract: The goal of this article is to compare the observability properties of the class of linear control systems in two different manifolds: on the Euclidean space Rn and, in a more general setup, on a connected Lie group G. For that, we establish well-known results. The symmetries involved in this theory allow characterizing the observability property on Euclidean spaces and the local observability property on Lie groups. Keywords: observability; symmetries; Euclidean spaces; Lie groups 1. Introduction For general facts about control theory, we suggest the references, [1–5], and for general mathematical issues, the references [6–8]. In the context of this article, a general control system S can be modeled by the data S = (M, D, h, N). Here, M is the manifold of the space states, D is a family of differential equations on M, or if you wish, a family of vector fields on the manifold, h : M ! N is a differentiable observation map, and N is a manifold that contains all the known information that you can see of the system through h. -
A Hierarchy of Proof Rules for Checking Differential Invariance of Algebraic Sets Khalil Ghorbal∗ Andrew Sogokon∗ Andre´ Platzer∗ November 2014 CMU-CS-14-140
A Hierarchy of Proof Rules for Checking Differential Invariance of Algebraic Sets Khalil Ghorbal∗ Andrew Sogokon∗ Andre´ Platzer∗ November 2014 CMU-CS-14-140 Publisher: School of Computer Science Carnegie Mellon University Pittsburgh, PA, 15213 To appear [14] in the Proceedings of the 16th International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI 2015), 12-14 January 2015, Mumbai, India. This material is based upon work supported by the National Science Foundation (NSF) under NSF CA- REER Award CNS-1054246, NSF EXPEDITION CNS-0926181, NSF CNS-0931985, by DARPA under agreement number FA8750-12-2-029, as well as the Engineering and Physical Sciences Research Council (UK) under grant EP/I010335/1. The views and conclusions contained in this document are those of the authors and should not be inter- preted as representing the official policies, either expressed or implied, of any sponsoring institution or government. Keywords: algebraic invariant, deductive power, hierarchy, proof rules, differential equation, abstraction, continuous dynamics, formal verification, hybrid system Abstract This paper presents a theoretical and experimental comparison of sound proof rules for proving invariance of algebraic sets, that is, sets satisfying polynomial equalities, under the flow of poly- nomial ordinary differential equations. Problems of this nature arise in formal verification of con- tinuous and hybrid dynamical systems, where there is an increasing need for methods to expedite formal proofs. We study the trade-off between proof rule generality and practical performance and evaluate our theoretical observations on a set of heterogeneous benchmarks. The relationship between increased deductive power and running time performance of the proof rules is far from obvious; we discuss and illustrate certain classes of problems where this relationship is interesting. -
About Symmetries in Physics
LYCEN 9754 December 1997 ABOUT SYMMETRIES IN PHYSICS Dedicated to H. Reeh and R. Stora1 Fran¸cois Gieres Institut de Physique Nucl´eaire de Lyon, IN2P3/CNRS, Universit´eClaude Bernard 43, boulevard du 11 novembre 1918, F - 69622 - Villeurbanne CEDEX Abstract. The goal of this introduction to symmetries is to present some general ideas, to outline the fundamental concepts and results of the subject and to situate a bit the following arXiv:hep-th/9712154v1 16 Dec 1997 lectures of this school. [These notes represent the write-up of a lecture presented at the fifth S´eminaire Rhodanien de Physique “Sur les Sym´etries en Physique” held at Dolomieu (France), 17-21 March 1997. Up to the appendix and the graphics, it is to be published in Symmetries in Physics, F. Gieres, M. Kibler, C. Lucchesi and O. Piguet, eds. (Editions Fronti`eres, 1998).] 1I wish to dedicate these notes to my diploma and Ph.D. supervisors H. Reeh and R. Stora who devoted a major part of their scientific work to the understanding, description and explo- ration of symmetries in physics. Contents 1 Introduction ................................................... .......1 2 Symmetries of geometric objects ...................................2 3 Symmetries of the laws of nature ..................................5 1 Geometric (space-time) symmetries .............................6 2 Internal symmetries .............................................10 3 From global to local symmetries ...............................11 4 Combining geometric and internal symmetries ...............14 -
The Symmetry Group of a Finite Frame
Technical Report 3 January 2010 The symmetry group of a finite frame Richard Vale and Shayne Waldron Department of Mathematics, Cornell University, 583 Malott Hall, Ithaca, NY 14853-4201, USA e–mail: [email protected] Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New Zealand e–mail: [email protected] ABSTRACT We define the symmetry group of a finite frame as a group of permutations on its index set. This group is closely related to the symmetry group of [VW05] for tight frames: they are isomorphic when the frame is tight and has distinct vectors. The symmetry group is the same for all similar frames, in particular for a frame, its dual and canonical tight frames. It can easily be calculated from the Gramian matrix of the canonical tight frame. Further, a frame and its complementary frame have the same symmetry group. We exploit this last property to construct and classify some classes of highly symmetric tight frames. Key Words: finite frame, geometrically uniform frame, Gramian matrix, harmonic frame, maximally symmetric frames partition frames, symmetry group, tight frame, AMS (MOS) Subject Classifications: primary 42C15, 58D19, secondary 42C40, 52B15, 0 1. Introduction Over the past decade there has been a rapid development of the theory and application of finite frames to areas as diverse as signal processing, quantum information theory and multivariate orthogonal polynomials, see, e.g., [KC08], [RBSC04] and [W091]. Key to these applications is the construction of frames with desirable properties. These often include being tight, and having a high degree of symmetry. Important examples are the harmonic or geometrically uniform frames, i.e., tight frames which are the orbit of a single vector under an abelian group of unitary transformations (see [BE03] and [HW06]). -
5.2 Symmetries • Symmetries Can Be Used to Classify Electromagnetic Modes and to Make Statements About the System‘S General Behaviour
5.2 Symmetries • Symmetries can be used to classify electromagnetic modes and to make statements about the system‘s general behaviour. • Example: inversion symmetry: Consider a 2D metal cavity that looks like this: J. D. Joannopoulos et al., Photonic Crystals – Molding the flow of light, Princeton University Press (2008). 1 • The shape is somewhat arbitrary, making an analytical solution difficult, but it has inversion symmetry if is a mode with frequency , then must also be a mode with frequency • Unless is a member of a degenerate family of modes, then if has the same frequency, it must be the same mode, i.e. it must be a multiple of : . • If we invert the system twice we obtain or . • A given nondegenerate mode must be of one of the two types, either it is invariant under inversion (even mode) or it becomes its own opposite (odd mode). • Thereby we have classified the modes of the system based on how they respond to one of its symmetry operations. 2 • Let‘s capture this idea in a more abstract language • Suppose is an operator (a 3x3 matrix) that inverts vectors (3x1 matrices), so that • To invert a vector field, we need an operator that inverts both the vector and ist argument : • For an inversion symmetric system it does not matter if we operate with or if we first invert the coordinates, then operate with , and then change them back, i.e.: (73) • This equation can be rearranged: =0 • We can define the commutator (74) which is itself an operator 3 • For our inversion symmetric example system we have ,Θ 0. -
Symmetry Transformation Groups and Differential Invariants — Eivind Schneider
FACULTY OF SCIENCE AND TECHNOLOGY Department of Mathematics and Statistics Symmetry transformation groups and differential invariants — Eivind Schneider MAT-3900 Master’s Thesis in Mathematics November 2014 Abstract There exists a local classification of finite-dimensional Lie algebras of vector fields on C2. We lift the Lie algebras from this classification to the bundle C2 × C and compute differential invariants of these lifts. Acknowledgements I am very grateful to Boris Kruglikov for coming up with an interesting assignment and for guiding me through the work on it. I also extend my sincere gratitude to Valentin Lychagin for his help through many insightful lectures and conversations. A heartfelt thanks to you both, for sharing your knowledge and for the inspiration you give me. I would like to thank Henrik Winther for many helpful discussions. Finally, I thank my family, and especially my wife, Susann, for their support and encouragement. ii Contents 1 Introduction 1 2 Preliminaries 3 2.1 Jet spaces and prolongation of vector fields . 3 2.2 Classification of Lie algebras of vector fields in one and two dimensions . 5 2.3 Lifts . 7 2.3.1 Cohomology . 8 2.3.2 Coordinate change . 9 2.4 Differential invariants . 9 2.4.1 Determining the number of differential invariants of order k ........................... 10 2.4.2 Invariant derivations . 11 2.4.3 Tresse derivatives . 12 2.4.4 The Lie-Tresse theorem . 13 3 Warm-up: Differential invariants of lifts of Lie algebras in D(C) 15 3.1 g1 = h@xi .............................. 15 3.2 g2 = h@x; x@xi .......................... -
The Invariant Variational Bicomplex
Contemporary Mathematics The Invariant Variational Bicomplex Irina A. Kogan and Peter J. Olver Abstract. We establish a group-invariant version of the variational bicom- plex that is based on a general moving frame construction. The main appli- cation is an explicit group-invariant formula for the Euler-Lagrange equations of an invariant variational problem. 1. Introduction. Most modern physical theories begin by postulating a symmetry group and then formulating ¯eld equations based on a group-invariant variational principle. As ¯rst recognized by Sophus Lie, [17], every invariant variational problem can be written in terms of the di®erential invariants of the symmetry group. The associated Euler-Lagrange equations inherit the symmetry group of the variational problem, and so can also be written in terms of the di®erential invariants. Surprisingly, to date no-one has found a general group-invariant formula that enables one to directly construct the Euler-Lagrange equations from the invariant form of the variational problem. Only a few speci¯c examples, including plane curves and space curves and surfaces in Euclidean geometry, are worked out in Gri±ths, [12], and in Anderson's notes, [3], on the variational bicomplex. In this note, we summarize our recent solution to this problem; full details can be found in [16]. Our principal result is that, in all cases, the Euler-Lagrange equations have the invariant form (1) A¤E(L) ¡ B¤H(L) = 0; where E(L) is an invariantized version of the usual Euler-Lagrange expression or e e \Eulerian", while H(L) is an invariantized Hamiltonian, which in the multivariate context is,ein fact, a tensor, [20], and A¤; B¤ certain invariant di®erential operators, which we name the Euleriane and Hamiltonian operators.