A Neglected Area of Pollination Ecology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Overlooked Hybrids of Prunella L. in Croatian Flora
NAT. CROAT. VOL. 18 No 2 287–294 ZAGREB December 31, 2009 original scientific paper / izvorni znanstveni rad OVERLOOKED HYBRIDS OF PRUNELLA L. IN CROATIAN FLORA VEDRAN [EGOTA,ANTUN ALEGRO &VLADIMIR HR[AK Department of Botany, Faculty of Science, University of Zagreb, Maruli}ev trg 20/II, Zagreb, Croatia (e-mail: [email protected], [email protected]) [egota, V., Alegro, A. & Hr{ak, V.: Overlooked hybrids of Prunella L. in Croatian flora. Nat. Croat., Vol. 18, No. 2, 287–294, 2009, Zagreb. Presence of poorly known hybrids Prunella x dissecta and Prunella x intermedia is confirmed for Croatian flora. Distribution data were collected from literature, herbaria revision and field observa- tions. Diagnostic characters of all hybrids and determination key are presented. Key words: Prunella x dissecta, Prunella x intermedia, distribution in Croatia, flora, hybrids [egota, V., Alegro, A. & Hr{ak, V.: Zanemareni hibridi roda Prunella (Lamiaceae) u hrvatskoj flori. Nat. Croat., Vol. 18, No. 2, 287–294, 2009, Zagreb. Prisutnost slabo poznatih hibrida Prunella x dissecta i Prunella x intermedia potvr|ena je za floru Hrvatske. Podaci o rasprostranjenosti sakupljeni su iz literature, revidiranog herbarskog materijala i terenskih opa`anja. Navedena su dijagnosti~ka svojstva svih hibrida kao i determinacijski klju~. Klju~ne rije~i: Prunella x dissecta, Prunella x intermedia, rasprostranjenost u Hrvatskoj, flora, hibridi INTRODUCTION The genus Prunella L. (Lamiaceae) consists of six (HEß et al., 1972) to eight (GREUTER et al., 1986) species, with centre of its distribution in South Europe. In European flora the genus is represented by four (SMITH, 1972), and in Croatian flora by three species (Prunella vulgaris L., P. -
Notes on Epilobium (Onagraceae) from the Western Mediterranean
NOTES ON EPILOBIUM (ONAGRACEAE) FROM THE WESTERN MEDITERRANEAN by GONZALO NETO FELINER* Resumen NIETO FELINER, G. (1996). Notas sobre los Epilobium (Onagraceae) del Mediterráneo occidental. Anales Jard. Bot. Madrid 54: 255-264 (en inglés). Aportaciones taxonómicas sobre el género Epilobium que son consecuencia de la revisión lle- vada a cabo para producir una síntesis genérica destinada a Flora iberica. En particular, se acla- ran nombres tales como E. mutabile Boiss. & Reut., E. carpetanum Willk., E. psilotum Maire & Samuelsson o E. salcedoi Vicioso, así como varios creados por Sennen (E. barcinonense, E. gredillae, E. losae, E. rigatum, E. barnadesianum, E. debile, E. costeanum) y por Merino (£. maciae, E. simulans, E. tudense y E. lucense). Asimismo, se discute en detalle el problema de E. lamyi F.W. Schultz; en especial, se aclara el uso de dicho nombre por parte de botánicos que han trabajado en España y Portugal, y se rechazan las citas peninsulares del mismo. Se explican algunos problemas taxonómicos derivados de la variabilidad morfológica que exhiben E. duriaei, E. montanum, E. lanceolatum, E. collinum, E. tetragonum subsp. tournefortii y E. obscurum. De este último, adicionalmente, se aportan algunos datos de interés corológico. Palabras clave: Spermatophyta, Epilobium, Onagraceae, taxonomía, corología, Mediterráneo occidental. Abstract NIETO FELINER, G. (1996). Notes on Epilobium (Onagraceae) from the western Mediterranean. Anales Jard. Bot. Madrid 54: 255-264. The present taxonomic notes are part of the results of a revisión of Epilobium carried out for the "Flora iberica" project. The identity of diverse ñames is clarified, including E. mutabile Boiss. & Reut., E. carpetanum Willk., E. psilotum Maire & Samuelsson, E. -
Lamium Album L. Common Name: White Deadnettle Assessors: Timm Nawrocki Helen I
ALASKA NON-NATIVE PLANT INVASIVENESS RANKING FORM Botanical name: Lamium album L. Common name: white deadnettle Assessors: Timm Nawrocki Helen I. Klein Research Technician Research Technician Alaska Natural Heritage Program, University of Alaska Alaska Natural Heritage Program, University of Alaska Anchorage, Anchorage, 707 A Street, 707 A Street, Anchorage, Alaska 99501 Anchorage, Alaska 99501 (907) 257-2798 (907) 257-2798 Lindsey A. Flagstad Matthew L. Carlson, Ph.D. Research Technician Associate Professor Alaska Natural Heritage Program, University of Alaska Alaska Natural Heritage Program, University of Alaska Anchorage, Anchorage, 707 A Street, 707 A Street, Anchorage, Alaska 99501 Anchorage, Alaska 99501 (907) 257-2786 (907) 257-2790 Reviewers: Ashley Grant Bonnie M. Million. Invasive Plant Program Instructor Alaska Exotic Plant Management Team Liaison Cooperative Extension Service, University of Alaska Alaska Regional Office, National Park Service, U.S. Fairbanks Department of the Interior 1675 C Street, 240 West 5th Avenue Anchorage, Alaska 99501 Anchorage, Alaska, 99501 (907) 786-6315 (907) 644-3452 Gino Graziano Whitney Rapp Natural Resource Specialist Katmai, Lake Clark, Alagnak, and Aniakchak Planning, Plant Materials Center, Division of Agriculture, Department of Research Permitting, GIS/GPS, and Invasive Species Natural Resources, State of Alaska National Park Service, U.S. Department of the Interior 5310 S. Bodenburg Spur, P.O. Box 7 Palmer, Alaska, 99645 King Salmon, Alaska, 99613 (907) 745-4469 (907) 246-2145 Date: 2/9/2011 -
MEDICINAL HERBS and FLOWERING PLANTS GARDEN in VIGNAN's CAMPUS Objectives: 1. to Grow and Maintain the Flowering and Medicinal
MEDICINAL HERBS AND FLOWERING PLANTS GARDEN IN VIGNAN’S CAMPUS Objectives : 1. To grow and maintain the flowering and medicinal important herbs in the vicinity of Hanuman Statue to bring elegance to the campus. 2. To design compost units and develop organic manure for the cultivation of herbs. 3. To prepare herbal decoction, syrup and infusions using roots, leaves, stem of propagated medicinal herbs both standalone and combinatorial mixtures. 4. To train students in the identification and taxonomy of medicinal herbs and extraction procedure, to screen secondary metabolites. Rationale: As our lifestyle is now getting techno-savvy, we are moving away from nature. However, we cannot escape from nature for we are part of nature. Natural herbal flora withstood the vagaries of climatic changes through the ages of earth. In addition, they are endowed with safe compounds preferably positive health benefits and hence they are comparatively safer and eco- friendly. Traditionally there lots of herbs are in use to relieve humans and livestock from the ailments. Therefore, there is a need to promote them to save human lives. These herbal products are today are the symbol of safety in contrast to the synthetic drugs, that are regarded as unsafe to human beings and environment. Although herbs had been priced for their medicinal, flavoring and aromatic qualities for centuries, the synthetic products of the modern age surpassed their importance, for a while. It is primarily because of the marketing strategies adopted to promote synthetic products. It’s time to promote and propagate the various species of medicinal plants globally particularly among students and woman folk to appraise their value in healthcare. -
ED45E Rare and Scarce Species Hierarchy.Pdf
104 Species 55 Mollusc 8 Mollusc 334 Species 181 Mollusc 28 Mollusc 44 Species 23 Vascular Plant 14 Flowering Plant 45 Species 23 Vascular Plant 14 Flowering Plant 269 Species 149 Vascular Plant 84 Flowering Plant 13 Species 7 Mollusc 1 Mollusc 42 Species 21 Mollusc 2 Mollusc 43 Species 22 Mollusc 3 Mollusc 59 Species 30 Mollusc 4 Mollusc 59 Species 31 Mollusc 5 Mollusc 68 Species 36 Mollusc 6 Mollusc 81 Species 43 Mollusc 7 Mollusc 105 Species 56 Mollusc 9 Mollusc 117 Species 63 Mollusc 10 Mollusc 118 Species 64 Mollusc 11 Mollusc 119 Species 65 Mollusc 12 Mollusc 124 Species 68 Mollusc 13 Mollusc 125 Species 69 Mollusc 14 Mollusc 145 Species 81 Mollusc 15 Mollusc 150 Species 84 Mollusc 16 Mollusc 151 Species 85 Mollusc 17 Mollusc 152 Species 86 Mollusc 18 Mollusc 158 Species 90 Mollusc 19 Mollusc 184 Species 105 Mollusc 20 Mollusc 185 Species 106 Mollusc 21 Mollusc 186 Species 107 Mollusc 22 Mollusc 191 Species 110 Mollusc 23 Mollusc 245 Species 136 Mollusc 24 Mollusc 267 Species 148 Mollusc 25 Mollusc 270 Species 150 Mollusc 26 Mollusc 333 Species 180 Mollusc 27 Mollusc 347 Species 189 Mollusc 29 Mollusc 349 Species 191 Mollusc 30 Mollusc 365 Species 196 Mollusc 31 Mollusc 376 Species 203 Mollusc 32 Mollusc 377 Species 204 Mollusc 33 Mollusc 378 Species 205 Mollusc 34 Mollusc 379 Species 206 Mollusc 35 Mollusc 404 Species 221 Mollusc 36 Mollusc 414 Species 228 Mollusc 37 Mollusc 415 Species 229 Mollusc 38 Mollusc 416 Species 230 Mollusc 39 Mollusc 417 Species 231 Mollusc 40 Mollusc 418 Species 232 Mollusc 41 Mollusc 419 Species 233 -
Download (592Kb)
This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: http://orca.cf.ac.uk/134581/ This is the author’s version of a work that was submitted to / accepted for publication. Citation for final published version: Raye, Lee 2020. The wild plants of Scotia Illustrata (1684). British & Irish Botany 2 (3) , pp. 240- 258. 10.33928/bib.2020.02.240 file Publishers page: http://dx.doi.org/10.33928/bib.2020.02.240 <http://dx.doi.org/10.33928/bib.2020.02.240> Please note: Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper. This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders. British & Irish Botany 2(3): 240-258, 2020 The wild plants of Scotia Illustrata (1684) Lee Raye Cardiff University, Wales, UK Corresponding author: Lee Raye: [email protected] This pdf constitutes the Version of Record published on 31st August 2020 Abstract Scotia Illustrata was published in 1684 and contains a section (II:1) describing 662 ‘naturally occurring plants of Scotland’. This paper sets out to identify and discuss the species in the text. It was possible to identify 652 species from the text and 396 could be securely identified. -
Research Regarding the Melliferous Charactheristics of Labiates from Xerophile Meadows from Danube Valley
Lucr ări ştiin Ńifice Zootehnie şi Biotehnologii , vol. 41(1) (2008 ), Timi şoara RESEARCH REGARDING THE MELLIFEROUS CHARACTHERISTICS OF LABIATES FROM XEROPHILE MEADOWS FROM DANUBE VALLEY CERCET ĂRI ASUPRA VALORII MELIFERE A LAMIACEELOR DIN PAJI ŞTILE XEROFITE DIN LUNCA DUN ĂRII ION NICOLETA Apiculture Research and Development Institute of Bucharest, Romania The xerophile meadows in the Danube Valley are dry meadows, located at a great distance from the Danube and with underground waters at greater depth. Their floral composition is characterized by a small number of species pertaining to both mezoxerophiles and to xerophiles, yet the highest percentage is covered by xerophile species, which are characterized by their small foliage surface, the very narrow and tough limb, and acute porosity etc.In the floral composition of these species, the graminaceae species are best represented, followed by leguminous and lamiaceae, known in beekeeping as good honey plants. Thus, the researches carried out have shown that Lamiaceae species have a good participation, with variation limits raging from 15% to 50-60%. Leguminous species are represented less on xerophile meadows than in hidrophile meadows. Among these we mention: Lotus corniculatus L., Trifolium repens L. şi Medicago lupulina L., all these species being known in beekeeping as good honey plants. Among gramineae species the most representatives are: Lolium perene L. and Poa pratensis L., yet with no melliferous value. Likewise, the group of „various” plants varied a lot as participation in the structure of the vegetal cover of xerophile meadows, depending on the place of research, all these species having no melliferous value. The current paper describes the results o biometric and melliferous researches carried out over the period 2003- 2005 on 5 plant species pertaining to the Lamiaceae family, namely: Salvia nemerosa L. -
Palynological Evolutionary Trends Within the Tribe Mentheae with Special Emphasis on Subtribe Menthinae (Nepetoideae: Lamiaceae)
Plant Syst Evol (2008) 275:93–108 DOI 10.1007/s00606-008-0042-y ORIGINAL ARTICLE Palynological evolutionary trends within the tribe Mentheae with special emphasis on subtribe Menthinae (Nepetoideae: Lamiaceae) Hye-Kyoung Moon Æ Stefan Vinckier Æ Erik Smets Æ Suzy Huysmans Received: 13 December 2007 / Accepted: 28 March 2008 / Published online: 10 September 2008 Ó Springer-Verlag 2008 Abstract The pollen morphology of subtribe Menthinae Keywords Bireticulum Á Mentheae Á Menthinae Á sensu Harley et al. [In: The families and genera of vascular Nepetoideae Á Palynology Á Phylogeny Á plants VII. Flowering plantsÁdicotyledons: Lamiales (except Exine ornamentation Acanthaceae including Avicenniaceae). Springer, Berlin, pp 167–275, 2004] and two genera of uncertain subtribal affinities (Heterolamium and Melissa) are documented in Introduction order to complete our palynological overview of the tribe Mentheae. Menthinae pollen is small to medium in size The pollen morphology of Lamiaceae has proven to be (13–43 lm), oblate to prolate in shape and mostly hexacol- systematically valuable since Erdtman (1945) used the pate (sometimes pentacolpate). Perforate, microreticulate or number of nuclei and the aperture number to divide the bireticulate exine ornamentation types were observed. The family into two subfamilies (i.e. Lamioideae: bi-nucleate exine ornamentation of Menthinae is systematically highly and tricolpate pollen, Nepetoideae: tri-nucleate and hexa- informative particularly at generic level. The exine stratifi- colpate pollen). While the -
Towards Resolving Lamiales Relationships
Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. -
Low-Maintenance Landscape Plants for South Florida1
ENH854 Low-Maintenance Landscape Plants for South Florida1 Jody Haynes, John McLaughlin, Laura Vasquez, Adrian Hunsberger2 Introduction regular watering, pruning, or spraying—to remain healthy and to maintain an acceptable aesthetic This publication was developed in response to quality. A low-maintenance plant has low fertilizer requests from participants in the Florida Yards & requirements and few pest and disease problems. In Neighborhoods (FYN) program in Miami-Dade addition, low-maintenance plants suitable for south County for a list of recommended landscape plants Florida must also be adapted to—or at least suitable for south Florida. The resulting list includes tolerate—our poor, alkaline, sand- or limestone-based over 350 low-maintenance plants. The following soils. information is included for each species: common name, scientific name, maximum size, growth rate An additional criterion for the plants on this list (vines only), light preference, salt tolerance, and was that they are not listed as being invasive by the other useful characteristics. Florida Exotic Pest Plant Council (FLEPPC, 2001), or restricted by any federal, state, or local laws Criteria (Burks, 2000). Miami-Dade County does have restrictions for planting certain species within 500 This section will describe the criteria by which feet of native habitats they are known to invade plants were selected. It is important to note, first, that (Miami-Dade County, 2001); caution statements are even the most drought-tolerant plants require provided for these species. watering during the establishment period. Although this period varies among species and site conditions, Both native and non-native species are included some general rules for container-grown plants have herein, with native plants denoted by †. -
Efficacy of A-Rest™ Or Bonzi™ on Clerodendrum Thomsoniae As a Flowering Potted Plant Jeff S
Special Research Report: #515: Production Technology Efficacy of A-Rest™ or Bonzi™ on Clerodendrum thomsoniae as a Flowering Potted Plant Jeff S. Kuehny and Annina Delaune, Deparment of Horticulture, Louisiana State University AgCenter, Baton Rouge, LA 70803-2120. ___________________________________________________________________________________ pairs were planted in May 2004 (latitude 30.43N) using one per 6-inch container filled with a mixture of Promix. All plants received FUNDING INDUSTRY SOLUTIONS THROUGH RESEARCH & ambient light levels in a EDUCATION greenhouse with temperature Phone: 703-838-5211 set points of 86° F day/73° F E-mail: [email protected] night. Plants were fertilized Website: www.endowment.org at ever irrigation with Figure 1. Effect of control, Peters™ 20-10-20 at the rate A-Rest™ (ancymidol) 0.5 of 200 ppm N. or1.0 mg a.i./pot drench on BACKGROUND C. thomsoniae. An application of A-Rest™ Two weeks after (ancymidol) or Bonzi™ transplanting, central leaders (paclobutrazol) has been were pinched. PGR recommended either as a treatments were applied after spray or a drench to control two weeks of vegetative growth of Clerodendrum growth. Measurements were thomsoniae. recorded 49 d after PGR applications. Recommendations suggest 6 to 50 ppm sprays that will RESULTS reduce plant growth by 40% A-Rest™ and Bonzi™ Figure 2. Effect of control, when compared to controls. reduced internode length of Bonzi™ (paclobutrazol) 0.5 They also increased C. thomsoniae (Table 1) and or 1.0 mg a.i./pot drench on flowering. The objectives of had minimal effect on days to C. thomsoniae. this study were to determine flower, number of laterals the efficacy of: a) A-Rest™ (average 3), or number of (ancymidol) at 100 or 200 leaves (average of 50). -
1Lecture Notes 2017
5/14/17 Week 7; Monday Announcements: Quiz in lab today; Exam in lecture on Friday (review Wed 5:30 pm HCK 320) 3rd and final extra credit exercise. Lecture: Asteridae s.l. Continued Lamiales This group includes members of 2 or more orders in various traditional classifications (e.g., Cronquist - overhead), including the much more narrowly defined Lamiales s.s. and the Scrophulariales. Altogether, there are about 20 family-level clades and ca. 22,000 species. Oleaceae (lab-only family) – Oleaceae has flowers with radial symmetry and is unusual within Lamiales for this fact. However, they diverged within Lamiales very early and help provide evidence that the earliest plants in Lamiales evolution were radially symmetric. Bilateral symmetry, which characterizes most of the Lamiales, is evolutionarily derived within the group. Lamiaceae (Labiatae) - Mint family (258 gen/6970 spp) 1) woody/herbaceous 2) often aromatic – the large subfamily Nepetoideae characterized by aromatic oils instead of iridoids. These include many culinary herbs and ingredients in perfumes, including sage, oregano, marjoram, rosemary, thyme, basil, lavender, etc. 3) stems often square (traditional herbaceous mints) – demo: Lamium album 4) leaves usually opposite and decussate; sometimes whorled; no stipules 5) Flowers - zygomorphic; bilabiate (usually 2 upper lobes/3 lower lobes) - stamens and stigma usually enclosed in upper lip of corolla - stamens 4 (or 2); often didynamous (2 uneven pairs) - gynoecium 2 carpels, each with 2 ovules and a false septum between ovules of each carpel; often with a gynobasic style arising from between 4 mericarps - fruit: schizocarp forming 4 nutlets or a 1-4 seeded drupe Floral formula: X 5, 5, 2 or 4, 2 nutlets or drupe [carpels fused] Until very recently, the Lamiaceae was considered to be an easily defined family (although experts acknowledged some fuzzy distinctions relative to the Verbenaceae), hence the pre-Linnaean name Labiatae.