An Item–Item Collaborative Filtering Recommender System Using Trust and Genre to Address the Cold-Start Problem

Total Page:16

File Type:pdf, Size:1020Kb

An Item–Item Collaborative Filtering Recommender System Using Trust and Genre to Address the Cold-Start Problem big data and cognitive computing Article An Item–Item Collaborative Filtering Recommender System Using Trust and Genre to Address the Cold-Start Problem Mahamudul Hasan 1,*,† and Falguni Roy 2,† 1 Department of Computer Science and Engineering, East West University, Dhaka 1212, Bangladesh 2 Institute of Information Technology, Noakhali Science and Technology University, Sonapur 3814, Noakhali, Bangladesh * Correspondence: [email protected]; Tel.: +88-0173-432-5208 † These authors contributed equally to this work. Received: 10 June 2019; Accepted: 2 July 2019; Published: 8 July 2019 Abstract: Item-based collaborative filtering is one of the most popular techniques in the recommender system to retrieve useful items for the users by finding the correlation among the items. Traditional item-based collaborative filtering works well when there exists sufficient rating data but cannot calculate similarity for new items, known as a cold-start problem. Usually, for the lack of rating data, the identification of the similarity among the cold-start items is difficult. As a result, existing techniques fail to predict accurate recommendations for cold-start items which also affects the recommender system’s performance. In this paper, two item-based similarity measures have been designed to overcome this problem by incorporating items’ genre data. An item might be uniform to other items as they might belong to more than one common genre. Thus, one of the similarity measures is defined by determining the degree of direct asymmetric correlation between items by considering their association of common genres. However, the similarity is determined between a couple of items where one of the items could be cold-start and another could be any highly rated item. Thus, the proposed similarity measure is accounted for as asymmetric by taking consideration of the item’s rating data. Another similarity measure is defined as the relative interconnection between items based on transitive inference. In addition, an enhanced prediction algorithm has been proposed so that it can calculate a better prediction for the recommendation. The proposed approach has experimented with two popular datasets that is Movielens and MovieTweets. In addition, it is found that the proposed technique performs better in comparison with the traditional techniques in a collaborative filtering recommender system. The proposed approach improved prediction accuracy for Movielens and MovieTweets approximately in terms of 3.42% & 8.58% mean absolute error, 7.25% & 3.29% precision, 7.20% & 7.55% recall, 8.76% & 5.15% f-measure and 49.3% and 16.49% mean reciprocal rank, respectively. Keywords: item-based collaborative filtering; cold-start problem; genre; asymmetric correlation; transitive inference 1. Introduction For the easy access of the internet through different smart objects, the world wide web (WWW) has become a vast information pool. Nowadays, achieving required information from this information pool is an onerous job because of the complexity of searching required information is also high. To resolve this problem, the recommender system (RS) has been introduced in the World Wide Web and ease internet users by suggesting them with their required information, items or services [1]. The recommender system (RS) is broadly used in e-commerce and amusement based websites. Amazon, Big Data Cogn. Comput. 2019, 3, 39; doi:10.3390/bdcc3030039 www.mdpi.com/journal/bdcc Big Data Cogn. Comput. 2019, 3, 39 2 of 15 Facebook, Youtube, and IMDB are the real-life applications of recommender systems. Currently, e-learning and e-tourism based websites are also implementing the recommender system to aid users by gaining the required information smoothly from different websites [2,3]. Basically, a recommender system (RS) is a web information personalization system that is used to suggest a set of items or services from the vast items or services on the internet to the users by predicting their preferences [1]. Personal preference prediction is done by generating a rating prediction model on the basis of analyzing the user’s rating pattern of similar items. According to the analysis methodology of the user’s rating pattern, RS is classified as content-based recommending, collaborative filtering and hybrid recommender system [1], but collaborative filtering is more efficient than others and also easy to implement to discover complex patterns [4]. In collaborative filtering (CF), selection and recommendation of the items are done by defining the similarities between items or users’ tastes. Based on the similarity of the subject, CF can be categorized as either user or item-based CF. An item-based CF technique defines the similarity between items and then recommends a new item to the user on the basis of similar items characteristic [5]. User-based CF also does the same thing by defining the similarity of the preferences of users. Traditional item-based CF performs excellently for a dense dataset, but, in the case of the sparse dataset, it performs inversely and data sparsity also leads to a cold-start problem in the RS. Sometimes, in RS, there exists a high amount of new users or items, again, some old users or items that have a low quantity of rating information so that traditional RS cannot make any inferences. In RS, such users and items are depicted as cold-start users and cold-start items and cannot predict preferences accurately [6]. To improve the recommendation accuracy, some of the researchers have proposed some techniques to improve prediction quality of the simple item-based RS by using side data to address the cold-start problem [7–9] and some of the researchers have suggested integrating trust in the existing CF which will be defined by the degree of similarity between subjects named as implicit trust [10,11]. According to the trust theory, four main trust properties are utilized. They are asymmetry, transitivity, dynamicity, and context-dependence [12]. The trust value between two subjects should not be the same in the asymmetry property. If there exists a trust relationship between subject ‘a’ with subject ‘b’ and subject ‘a’ with subject ‘c’ then there could be a relative trust relationship between subject ‘a’ and subject ‘c’ in the transitive property of the trust. The trust relationship between two subjects is not constant and it might be changed over time and objects which are determined in the dynamicity and context-dependence of trust [12]. 1.1. Motivation Usually, the users’ behavior is a complicated process and is not constant to every user so it is too arduous to define uniformity between users by using a single correlation determination method. Some correlation determination method wouldn’t work well in all circumstances. Different methods work well in different scenarios. Moreover, the performance of traditional correlation or similarity methods is not up to the mark for the case of the sparse dataset and cannot predict recommendation for cold-start users or items. As most of the real-life applications deal with the sparse dataset so this problem should be handled efficiently. Thus, here, a new fast and efficient item-based CF method have been proposed with better prediction accuracy to overcome the existing issue of cold-start items. The novelty of the proposed method is, firstly, that the direct asymmetric similarity is calculated between items based on the genre of items on the basis of the asymmetric characteristic of the trust relationship. Secondly, the relative similar relation between items is calculated based on the transitive property of items’ trust values. Again, defining the similarity between items by using the item’s genre is a new approach in this domain, which is not addressed earlier. When a new item enters the system, it might belong to any genre. In addition, an item that is rated hardly must belong to at least one genre. As the information of genre is available previously, the similarity between the items can be defined by taking the help of genre which is the key to alleviating the problem of the cold-start item. However, the genre-based items similarity method may treat a new item as equally similar to the highly-rated Big Data Cogn. Comput. 2019, 3, 39 3 of 15 item of the system for their presence in more common genres. However, as one of the items is new and another one may be highly popular in the system and contains users’ rating information, so the degree of similarity between them should not be uniform. By taking account of the corresponding item’s rating data, the asymmetric similar relationship is incorporated in the genre-based items’ similarity. Furthermore, an enhancement of the prediction method has been proposed to increase the accuracy of the recommender system performances. 1.2. Paper Contribution The key purpose of this paper is to design a new item-based collaborative filtering model by calculating the similarity of items based on items’ genre and also improve the prediction accuracy of recommendation. The contribution of this paper is classified as fourfold and these are: A single asymmetric similarity method has been proposed by taking account of items’ genre with • the reliability between them which defines the direct asymmetric similar relation of items. Another new similarity method has been defined by identifying the correlations of items based • on the transitive relations of reliability between them. A prediction algorithm is proposed to increase the accuracy of recommendation. • A detailed experiment is done to prove our statement that the proposed methodology outperforms • existing methods. The organization of the paper is as follows: Section2 demonstrates an overview of the related works with the explanation of previous works’ issues and also the aim of the paper. Section3 describes the proposed approach to serve the aim of the paper by getting rid of the existing cold start problem. Section4 presents the list of datasets on which the proposed approach will be tested and the methods that are used to validate proposed approach’s performance.
Recommended publications
  • The Use of Time Dimension in Recommender Systems for Learning
    The Use of Time Dimension in Recommender Systems for Learning Eduardo José de Borba1, Isabela Gasparini1 and Daniel Lichtnow2 1Graduate Program in Applied Computing (PPGCA), Department of Computer Science (DCC), Santa Catarina State University (UDESC), Paulo Malschitzki 200, Joinville, Brazil 2Polytechnic School, Federal University of Santa Maria (UFSM), Av. Roraima 1000, Santa Maria, Brazil Keywords: Recommender System, Context-aware, Time, Learning. Abstract: When the amount of learning objects is huge, especially in the e-learning context, users could suffer cognitive overload. That way, users cannot find useful items and might feel lost in the environment. Recommender systems are tools that suggest items to users that best match their interests and needs. However, traditional recommender systems are not enough for learning, because this domain needs more personalization for each user profile and context. For this purpose, this work investigates Time-Aware Recommender Systems (Context-aware Recommender Systems that uses time dimension) for learning. Based on a set of categories (defined in previous works) of how time is used in Recommender Systems regardless of their domain, scenarios were defined that help illustrate and explain how each category could be applied in learning domain. As a result, a Recommender System for learning is proposed. It combines Content-Based and Collaborative Filtering approaches in a Hybrid algorithm that considers time in Pre- Filtering and Post-Filtering phases. 1 INTRODUCTION potential to improve the quality of recommendation (Campos et al., 2014). Nowadays, there are distinct educational approaches, This work aims to identify how Time-aware RS e.g. online learning, blended learning, face-to-face (Context-aware RS that uses time context) can be learning, etc.
    [Show full text]
  • CRUC: Cold-Start Recommendations Using Collaborative Filtering in Internet of Things
    CRUC: Cold-start Recommendations Using Collaborative Filtering in Internet of Things Daqiang Zhanga,*, Qin Zoub, Haoyi Xiongc a School of Computer Science, Nanjing Normal University, Nanjing, Jiangsu Province, 210046,China b School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, Hubei Province, 430072, China c Department of Telecommunication, Institute Telecome – Telecom SudParis, Evry, 91011, France Abstract The Internet of Things (IoT) aims at interconnecting everyday objects (including both things and users) and then using this connection information to provide customized user services. However, IoT does not work in its initial stages without adequate acquisition of user preferences. This is caused by cold-start problem that is a situation where only few users are interconnected. To this end, we propose CRUC scheme --- Cold-start Recommendations Using Collaborative Filtering in IoT, involving formulation, filtering and prediction steps. Extensive experiments over real cases and simulation have been performed to evaluate the performance of CRUC scheme. Experimental results show that CRUC efficiently solves the cold-start problem in IoT. Keywords: Cold-start Problem, Internet of Things, Collaborative Filtering 1. Introduction The Internet of Things (IoT) refers to a self-configuring network in which everyday objects are interconnected to the Internet [1] [2]. IoT deploys sensors in infrastructures (e.g., rooms and buildings) to get a heightened awareness of real-time events. It also employs sensors capturing contextual information about objects (e.g., user preferences) to achieve an enhanced situational awareness [3] [21-26]. Readings from a large number of sensors for various objects are enormous, but only a few of them are useful for a specific user.
    [Show full text]
  • Efficient Pseudo-Relevance Feedback Methods for Collaborative Filtering Recommendation
    Efficient Pseudo-Relevance Feedback Methods for Collaborative Filtering Recommendation Daniel Valcarce, Javier Parapar, and Álvaro Barreiro Information Retrieval Lab Computer Science Department University of A Coruña, Spain {daniel.valcarce,javierparapar,barreiro}@udc.es Abstract. Recently, Relevance-Based Language Models have been dem- onstrated as an effective Collaborative Filtering approach. Nevertheless, this family of Pseudo-Relevance Feedback techniques is computationally expensive for applying them to web-scale data. Also, they require the use of smoothing methods which need to be tuned. These facts lead us to study other similar techniques with better trade-offs between effective- ness and efficiency. Specifically, in this paper, we analyse the applicability to the recommendation task of four well-known query expansion tech- niques with multiple probability estimates. Moreover, we analyse the ef- fect of neighbourhood length and devise a new probability estimate that takes into account this property yielding better recommendation rank- ings. Finally, we find that the proposed algorithms are dramatically faster than those based on Relevance-Based Language Models, they do not have any parameter to tune (apart from the ones of the neighbourhood) and they provide a better trade-off between accuracy and diversity/novelty. Keywords: Recommender Systems, Collaborative Filtering, Query Expansion, Pseudo-Relevance Feedback. 1 Introduction Recommender systems are recognised as a key instrument to deliver relevant information to the users. Although the problem that attracts most attention in the field of Recommender Systems is accuracy, the emphasis on efficiency is increasing. We present new Collaborative Filtering (CF) algorithms. CF methods exploit the past interactions betweens items and users. Common approaches to CF are based on nearest neighbours or matrix factorisation [17].
    [Show full text]
  • Combining User-Based and Item-Based Collaborative Filtering Using Machine Learning
    Combining User-Based and Item-Based Collaborative Filtering Using Machine Learning Priyank Thakkar, Krunal Varma, Vijay Ukani, Sapan Mankad and Sudeep Tanwar Abstract Collaborative filtering (CF) is typically used for recommending those items to a user which other like-minded users preferred in the past. User-based collaborative filtering (UbCF) and item-based collaborative filtering (IbCF) are two types of CF with a common objective of estimating target user’s rating for the target item. This paper explores different ways of combining predictions from UbCF and IbCF with an aim of minimizing overall prediction error. In this paper, we propose an approach for combining predictions from UbCF and IbCF through multiple linear regression (MLR) and support vector regression (SVR). Results of the proposed approach are compared with the results of other fusion approaches. The comparison demonstrates the superiority of the proposed approach. All the tests are performed on a large publically available dataset. Keywords User-based collaborative filtering · Item-based collaborative filtering Machine learning · Multiple linear regression · Support vector regression P. Thakkar (B) · K. Varma · V. Ukani · S. Mankad · S. Tanwar Institute of Technology, Nirma University, Ahmedabad 382481, India e-mail: [email protected] K. Varma e-mail: [email protected] V. Ukani e-mail: [email protected] S. Mankad e-mail: [email protected] S. Tanwar e-mail: [email protected] © Springer Nature Singapore Pte Ltd. 2019 173 S. C. Satapathy and A. Joshi (eds.), Information and Communication Technology for Intelligent Systems, Smart Innovation, Systems and Technologies 107, https://doi.org/10.1007/978-981-13-1747-7_17 174 P.
    [Show full text]
  • A Grouplens Perspective
    From: AAAI Technical Report WS-98-08. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved. RecommenderSystems: A GroupLensPerspective Joseph A. Konstan*t , John Riedl *t, AI Borchers,* and Jonathan L. Herlocker* *GroupLensResearch Project *Net Perceptions,Inc. Dept. of ComputerScience and Engineering 11200 West78th Street University of Minnesota Suite 300 Minneapolis, MN55455 Minneapolis, MN55344 http://www.cs.umn.edu/Research/GroupLens/ http://www.netperceptions.com/ ABSTRACT identifying sets of articles by keyworddoes not scale to a In this paper, wereview the history and research findings of situation in which there are thousands of articles that the GroupLensResearch project I and present the four broad contain any imaginable set of keywords. Taken together, research directions that we feel are most critical for these two weaknesses represented an opportunity for a new recommender systems. type of filtering, that would focus on finding which INTRODUCTION:A History of the GroupLensProject available articles matchhuman notions of quality and taste. The GroupLens Research project began at the Computer Such a system would be able to produce a list of articles Supported Cooperative Work (CSCW)Conference in 1992. that each user wouldlike, independentof their content. Oneof the keynote speakers at the conference lectured on a Wedecided to apply our ideas in the domain of Usenet his vision of an emerging information economy,in which news. Usenet screamsfor better information filtering, with most of the effort in the economywould revolve around hundreds of thousands of articles posted daily. Manyof the production, distribution, and consumptionof information, articles in each Usenet newsgroupare on the sametopic, so rather than physical goods and services.
    [Show full text]
  • Towards an Effective Crowdsourcing Recommendation System a Survey of the State-Of-The-Art
    2015 IEEE Symposium on Service-Oriented System Engineering Towards an Effective Crowdsourcing Recommendation System A Survey of the State-of-the-Art Eman Aldhahri, Vivek Shandilya, Sajjan Shiva Computer Science Department, The University of Memphis Memphis, USA {aldhahri, vmshndly, sshiva}@memphis.edu Abstract—Crowdsourcing is an approach where requesters can behaviors. User behavior can be interpreted as preferable call for workers with different capabilities to process a task for features.. Explicit profiles are based on asking users to complete monetary reward. With the vast amount of tasks posted every a preferable features form. Two techniques common in this area day, satisfying workers, requesters, and service providers--who are: a collaborative filtering approach (with cold start problems, are the stakeholders of any crowdsourcing system--is critical to scarcity and scalability in large datasets [6]), and a content- its success. To achieve this, the system should address three based approach (with problems due to overspecialization, etc.). objectives: (1) match the worker with a suitable task that fits the A hybrid approach that combines the two techniques has also worker’s interests and skills, and raise the worker’s rewards; (2) been used. give requesters more qualified solutions with lower cost and II. MOTIVATION time; and (3) raise the accepted tasks rate which will raise the The main objective in this study is to investigate various online aggregated commissions accordingly. For these objectives, we recommendation systems by analyzing their input parameters, present a critical study of the state-of-the-art in effectiveness, and limitations in order to assess their usage in recommendation systems that are ubiquitous among crowdsourcing systems.
    [Show full text]
  • Evaluation of Recommendation System for Sustainable E-Commerce: Accuracy, Diversity and Customer Satisfaction
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 January 2020 doi:10.20944/preprints202001.0015.v1 Article Evaluation of Recommendation System for Sustainable E-Commerce: Accuracy, Diversity and Customer Satisfaction Qinglong Li 1, Ilyoung Choi 2 and Jaekyeong Kim 3,* 1 Department of Social Network Science, KyungHee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453, Republic of Korea; [email protected] 2 Graduate School of Business Administration, KyungHee University, 26, Kyungheedae-ro, Dongdaemun- gu, Seoul, 02453, Republic of Korea; [email protected] 3 School of Management, KyungHee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453, Republic of Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-961-9355 (F.L.) Abstract: With the development of information technology and the popularization of mobile devices, collecting various types of customer data such as purchase history or behavior patterns became possible. As the customer data being accumulated, there is a growing demand for personalized recommendation services that provide customized services to customers. Currently, global e-commerce companies offer personalized recommendation services to gain a sustainable competitive advantage. However, previous research on recommendation systems has consistently raised the issue that the accuracy of recommendation algorithms does not necessarily lead to the satisfaction of recommended service users. It also claims that customers are highly satisfied when the recommendation system recommends diverse items to them. In this study, we want to identify the factors that determine customer satisfaction when using the recommendation system which provides personalized services. To this end, we developed a recommendation system based on Deep Neural Networks (DNN) and measured the accuracy of recommendation service, the diversity of recommended items and customer satisfaction with the recommendation service.
    [Show full text]
  • Mobile Application Recommender System
    UPTEC IT 10 025 Examensarbete 30 hp December 2010 Mobile Application Recommender System Christoffer Davidsson Abstract Mobile Application Recommender System Christoffer Davidsson Teknisk- naturvetenskaplig fakultet UTH-enheten With the amount of mobile applications available increasing rapidly, users have to put a lot of effort into finding applications of interest. The purpose of this thesis is to Besöksadress: investigate how to aid users in the process of discovering new mobile applications by Ångströmlaboratoriet Lägerhyddsvägen 1 providing them with recommendations. A prototype system is then built as a Hus 4, Plan 0 proof-of-concept. Postadress: The work of the thesis is divided into three phases where the aim of the first phase is Box 536 751 21 Uppsala to study related work and related systems to identify promising concepts and features. During the second phase, a prototype system is designed and implemented. Telefon: The outcome and result of the first two phases is then evaluated and analyzed in the 018 – 471 30 03 third and final phase. Telefax: 018 – 471 30 00 The prototype system integrates and extends an existing recommender engine previously used to recommend media items. As a part of the system, an Android Hemsida: application is developed, which observes user actions and presents recommended http://www.teknat.uu.se/student applications to the user. In parallel to the development, the system was tested by a small group of users recruited among colleagues at Ericsson. The data generated during this test period is analyzed to show the usefulness of observed user actions over explicit ratings and the dependency on context for application usage.
    [Show full text]
  • Wiki-Rec: a Semantic-Based Recommendation System Using Wikipedia As an Ontology
    Wiki-Rec: A Semantic-Based Recommendation System Using Wikipedia as an Ontology Ahmed Elgohary, Hussein Nomir, Ibrahim Sabek, Mohamed Samir, Moustafa Badawy, Noha A. Yousri Computer and Systems Engineering Department Faculty of Engineering, Alexandria University Alexandria, Egypt {algoharyalex, hussein.nomier, ibrahim.sabek, m.samir.galal, moustafa.badawym}@gmail.com, [email protected] Abstract— Nowadays, satisfying user needs has become the Hybrid models try to overcome the limitations of each in main challenge in a variety of web applications. Recommender order to generate better quality recommendations. systems play a major role in that direction. However, as most Since most of the information on the web is present in a of the information is present in a textual form, recommender textual form, recommendation systems have to deal with systems face the challenge of efficiently analyzing huge huge amounts of unstructured text. Efficient text mining amounts of text. The usage of semantic-based analysis has techniques are, therefore, needed to understand documents in gained much interest in recent years. The emergence of order to extract important information. Traditional term- ontologies has yet facilitated semantic interpretation of text. based or lexical-based analysis cannot capture the underlying However, relying on an ontology for performing the semantic semantics when used on their own. That is why semantic- analysis requires too much effort to construct and maintain the based analysis approaches have been introduced [1] [2] to used ontologies. Besides, the currently known ontologies cover a small number of the world's concepts especially when a non- overcome such a limitation. The use of ontologies have also domain-specific concepts are needed.
    [Show full text]
  • User Relevance for Item-Based Collaborative Filtering R
    User Relevance for Item-Based Collaborative Filtering R. Latha, R. Nadarajan To cite this version: R. Latha, R. Nadarajan. User Relevance for Item-Based Collaborative Filtering. 12th International Conference on Information Systems and Industrial Management (CISIM), Sep 2013, Krakow, Poland. pp.337-347, 10.1007/978-3-642-40925-7_31. hal-01496080 HAL Id: hal-01496080 https://hal.inria.fr/hal-01496080 Submitted on 27 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License User Relevance for Item-based Collaborative Filtering R. Latha, R. Nadarajan Department of Applied Mathematics and Computational Sciences, PSG College of Technology, Coimbatore Tamil Nadu, India [email protected], [email protected] Abstract. A Collaborative filtering (CF), one of the successful recommenda- tion approaches, makes use of history of user preferences in order to make pre- dictions. Common drawback found in most of the approaches available in the literature is that all users are treated equally. i.e., all users have same im- portance. But in the real scenario, there are users who rate items, which have similar rating pattern.
    [Show full text]
  • A Systematic Review and Taxonomy of Explanations in Decision Support and Recommender Systems
    Noname manuscript No. (will be inserted by the editor) A Systematic Review and Taxonomy of Explanations in Decision Support and Recommender Systems Ingrid Nunes · Dietmar Jannach Received: date / Accepted: date Abstract With the recent advances in the field of artificial intelligence, an increasing number of decision-making tasks are delegated to software systems. A key requirement for the success and adoption of such systems is that users must trust system choices or even fully automated decisions. To achieve this, explanation facilities have been widely investigated as a means of establishing trust in these systems since the early years of expert systems. With today's increasingly sophisticated machine learning algorithms, new challenges in the context of explanations, accountability, and trust towards such systems con- stantly arise. In this work, we systematically review the literature on expla- nations in advice-giving systems. This is a family of systems that includes recommender systems, which is one of the most successful classes of advice- giving software in practice. We investigate the purposes of explanations as well as how they are generated, presented to users, and evaluated. As a result, we derive a novel comprehensive taxonomy of aspects to be considered when de- signing explanation facilities for current and future decision support systems. The taxonomy includes a variety of different facets, such as explanation objec- tive, responsiveness, content and presentation. Moreover, we identified several challenges that remain unaddressed so far, for example related to fine-grained issues associated with the presentation of explanations and how explanation facilities are evaluated. Keywords Explanation · Decision Support System · Recommender System · Expert System · Knowledge-based System · Systematic Review · Machine Learning · Trust · Artificial Intelligence I.
    [Show full text]
  • Collaborative Filtering: a Machine Learning Perspective by Benjamin Marlin a Thesis Submitted in Conformity with the Requirement
    Collaborative Filtering: A Machine Learning Perspective by Benjamin Marlin A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Computer Science University of Toronto Copyright c 2004 by Benjamin Marlin Abstract Collaborative Filtering: A Machine Learning Perspective Benjamin Marlin Master of Science Graduate Department of Computer Science University of Toronto 2004 Collaborative filtering was initially proposed as a framework for filtering information based on the preferences of users, and has since been refined in many different ways. This thesis is a comprehensive study of rating-based, pure, non-sequential collaborative filtering. We analyze existing methods for the task of rating prediction from a machine learning perspective. We show that many existing methods proposed for this task are simple applications or modifications of one or more standard machine learning methods for classification, regression, clustering, dimensionality reduction, and density estima- tion. We introduce new prediction methods in all of these classes. We introduce a new experimental procedure for testing stronger forms of generalization than has been used previously. We implement a total of nine prediction methods, and conduct large scale prediction accuracy experiments. We show interesting new results on the relative performance of these methods. ii Acknowledgements I would like to begin by thanking my supervisor Richard Zemel for introducing me to the field of collaborative filtering, for numerous helpful discussions about a multitude of models and methods, and for many constructive comments about this thesis itself. I would like to thank my second reader Sam Roweis for his thorough review of this thesis, as well as for many interesting discussions of this and other research.
    [Show full text]