GSD VI and IX Practice Guidelines 2019
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hepatic Glycogen Storage Diseases: Pathogenesis, Clinical Symptoms and Therapeutic Management
State of the art paper Hepatology Hepatic glycogen storage diseases: pathogenesis, clinical symptoms and therapeutic management Edyta Szymańska1, Dominika A. Jóźwiak-Dzięcielewska2, Joanna Gronek2, Marta Niewczas3, Wojciech Czarny4, Dariusz Rokicki1, Piotr Gronek2 1Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, Corresponding author: The Children’s Memorial Health Institute, Warsaw, Poland Edyta Szymańska MD, PhD 2Laboratory of Genetics, Department of Gymnastics and Dance, University School Department of Physical Education, Poznan, Poland of Gastroenterology, 3Department of Sport, Faculty of Physical Education, University of Rzeszow, Rzeszow, Hepatology, Feeding Poland Disorders and 4Department of Human Sciences, Faculty of Physical Education, University of Rzeszow, Pediatrics Rzeszow, Poland The Children’s Memorial Health Institute Submitted: 13 October 2017; Accepted: 8 December 2017; Al. Dzieci Polskich 20 Online publication: 18 February 2019 Warsaw, Poland Phone: +48 22 815 74 94 Arch Med Sci 2021; 17 (2): 304–313 E-mail: edyta.szymanska@ DOI: https://doi.org/10.5114/aoms.2019.83063 ipczd.pl Copyright © 2019 Termedia & Banach Abstract Glycogen storage diseases (GSDs) are genetically determined metabolic diseases that cause disorders of glycogen metabolism in the body. Due to the enzymatic defect at some stage of glycogenolysis/glycogenesis, excess glycogen or its pathologic forms are stored in the body tissues. The first symptoms of the disease usually appear during the first months of life and are thus the domain of pediatricians. Due to the fairly wide access of the authors to unpublished materials and research, as well as direct contact with the GSD patients, the article addresses the problem of actual diag- nostic procedures for patients with the suspected diseases. -
What Is Ketotic Hypoglycemia?
KETOTICHYPOGLYCEMIA.ORGv Ketotic Hypoglycemia International Who we are, what we do and why Ketotic Hypoglycemia INTERNATIONAL What is ketotic hypoglycemia? “Ketotic hypoglycemia may be unexplained, or idiopathic (IKH). This is a challenge and should urge for more research” For the patients In a normal person, fuel for the brain and the general cell metabolism primarily comes from the burning of sugar deposits (glycogen). When the glycogen stores are depleted, the body will switch to burn fat deposits. The fat burn lead to two fuels for the brain, both glucose (sugar) and ketone bodies. However, ketones in the blood will lead to nausea and eventually vomiting. This will lead to a vicious circle, where you cannot eat or drink sugar-rich items, which again leads to further fat burn and production of ketone bodies. In a KH-patient, the glycogen stores are somehow insufficient. This leads to For the doctors decreased fasting tolerance with earlier Ketotic hypoglycemia can be seen in children Emergency treatment constitutes of oral onset of fat burn and hence ketone bodies. In because of growth hormone deficiency, cortisol or i.v. glucose, eventually i.m. glucagon, to most patients, the hypoglycemia is relatively deficiency, metabolic diseases with intact fatty raise the plasma glucose, which will prevent mild, and the ketone bodies helps to provide acid consumption, including glycogen storage further lipolysis. However, the ketones can fuel to the brain, which prevents loss of diseases (glycogenosis; GSD) type 0, III, VI, and take hours to be eliminated. In more severely consciousness and convulsions. However, in IX, or disturbances in transport or metabolism affected patients, the ketone production relatively few patients, the condition is more of ketone bodies. -
Maximizing Diagnostic Value & Efficiency for Abnormal Lfts in The
Maximizing Diagnostic Value & Efficiency for Abnormal LFTs in the Primary Care Setting Michael Kriss, MD Assistant Professor Associate Program Director, Transplant Hepatology Fellowship Division of Gastroenterology & Hepatology Section of Liver Disease & Transplantation University of Colorado School of Medicine Disclosures No conflicts of interest to disclose Learning Objectives At the completion of today’s talk, physicians will: 1. Recognize high value practices in evaluating and referring patients with abnormal liver enzymes 2. Identify essential components of the diagnostic evaluation of abnormal liver enzymes 3. Apply high value principles to complex patients requiring co-management by liver specialists https://www.ncbi.nlm.nih.gov/pubmed/27995906 https://www.ncbi.nlm.nih.gov/pubmed/27995906 Alcoholic liver disease Hepatitis B virus Primary biliary cholangitis NAFLD/NASH Hepatitis C virus Primary sclerosing cholangitis Autoimmune hepatitis Hemochromatosis Wilson’s disease https://www.aasld.org/publications/practice-guidelines What is normal…? ACG 2016 Guidelines “A true healthy normal ALT level in prospectively studied populations without identifiable risk factors for liver disease ranges from 29 to 33 IU/l for males and 19 to 25 IU/l for females, and levels above this should be assessed by physicians” “Clinicians may rely on local lab ULN ranges for alkaline phosphatase and bilirubin” Kwo PY et al. ACG Practice Guideline: Evaluation of Abnormal Liver Chemistries. AJG 2017 Critical to characterize pattern… Abnormal LFT 101 Hepatocellular Mixed Cholestatic AST/ALT Alk Phos Hyperbilirubinemia Bilirubin Kwo PY et al. ACG Practice Guideline: Evaluation of Abnormal Liver Chemistries. AJG 2017 Critical to characterize pattern… Abnormal LFT 101 ALT AP R = ALT ULN / AP ULN Hepatocellular Mixed Cholestatic AST/ALT R=2-5 Alk Phos R>5 R<2 Hyperbilirubinemia Bilirubin Kwo PY et al. -
A New Tool for the Diagnosis of Choledocholithiasis. a Case Control Study
DOI: https://doi.org/10.22516/25007440.446 Original article Elevated transaminases: a new tool for the diagnosis of choledocholithiasis. A case control study James Yurgaky-Sarmiento, MD,1 William Otero-Regino, MD,2* Martín Gómez-Zuleta, MD.3 Abstract OPEN ACCESS Introduction: Choledocolithiasis (CLD) affects 10% of patients with gallstones. Citation: Bile duct obstruction is associated with pancreatitis, cholangitis, and rupture of Yurgaky-Sarmiento J, Otero-Regino W, Gómez-Zuleta M. Elevated transaminases: a new tool the common bile duct. This condition usually presents with increased alkaline for the diagnosis of choledocholithiasis. A case control study. Un estudio de casos y controles. Rev Colomb Gastroenterol. 2020;35(3):319-328. https://doi.org/10.22516/25007440.446 phosphatase, GGTP and bilirubin levels. In the last decade, it has been found that up to 10% of patients with CLD have elevated aminotransferases levels. ............................................................................ In Latin America, this alteration has not been studied. The aim of the present 1 Internist, endocrinologist, gastroenterologist, Universidad Nacional de Colombia; Bogotá, work was to determine the prevalence of transaminase elevation and its evo- Colombia. lution. Methodology: Case-control study. ALT was measured on admission, 2 Professor of Medicine, Gastroenterology Coordinator, Universidad Nacional de Colombia, at 48 h and at 72 h. If ultrasound was normal, MRCP and/or echo-endoscopy Hospital Universitario Nacional de Colombia. Gastroenterologist, Clínica Fundadores; Bogotá, and ERCP were performed, as appropriate. Results: A total of 72 patients with Colombia. 3 Associate Professor of Medicine, Gastroenterology Unit, Universidad Nacional de Colombia, choledocholithiasis (CLD) (cases) and 128 with cholecystitis without choledo- Hospital Universitario Nacional de Colombia. -
Recurrent Severe Hypoglycemia Due to Isolated Growth Hormone
C O R R E S P O N D E N C E Recurrent Severe Hypoglycemia hyperinsulinism, ketotic hypoglycemia and hormonal deficiencies such as cortisol, GH and thyroxine [1]. GH due to Isolated Growth Hormone deficiency may occasionally manifest as recurrent Deficiency hypoglycemia as seen in our patient. The mechanisms of hypoglycemia in GH deficiency are increased insulin sensitivity and hypoglycemia unawareness [2]. Additionally, GH deficiency impairs carbohydrate meta- A 6-year-old boy presented to us with repeated episodes bolism resulting in deceased basal insulin level, impaired of seizures since early infancy. He was born small for insulin secretion and carbohydrate intolerance with gestational age to non-consanguineous parents at term. reactive hypoglycemia [1,2]. Although hypoglycemia is During neonatal period, he suffered multiple episodes of described in GH deficiency, severe symptomatic hypoglycemia requiring intravenous dextrose but no hypoglycemia is extremely rare and usually occurs in etiological investigations were done. Three of the four association with another causative factor such as hypoglycemic events beyond neonatal age were glycogen storage disorder [3,4]. Children with even associated with seizures. There were no precipitating complete GH deficiency do not usually manifest factors for hypoglycemia such as prolonged fasting, an hypoglycemia [5]. Our patient unusually developed intercurrent illness or intake of medications. There was recurrent episodes of severe symptomatic hypoglycemia no family history of similar illness, metabolic disorders or due to an isolated GH deficiency. an unexplained death. DEVI DAYAL AND JAIVINDER Y ADAV* On examination, he was short (106 cm, -2.02 z-score) Department of Pediatrics, and underweight (13.8 kg, -3.15 z-score) and had normal PGIMER, Chandigarh, India. -
Elevated Transaminases During Medical Treatment of Acromegaly: A
European Journal of Endocrinology (2006) 154 213–220 ISSN 0804-4643 CASE REPORT Elevated transaminases during medical treatment of acromegaly: a review of the German pegvisomant surveillance experience and a report of a patient with histologically proven chronic mild active hepatitis H Biering1, B Saller4,*, J Bauditz1, M Pirlich1, B Rudolph2, A Johne3, M Buchfelder5,*, K Mann6,*, M Droste7,*, I Schreiber4, H Lochs1 and C J Strasburger1,* 1Department of Gastroenterology, Hepatology and Endocrinology, 2Institute of Pathology and 3Institute for Clinical Pharmacology, Charite´-Universita¨tsmedizin Berlin, 10117 Berlin, Germany, 4Pfizer Pharma GmbH, Karlsruhe, Germany, 5Department of Neurosurgery, University Hosiptal, Erlangen, Germany, 6Division of Endocrinology, Department of Medicine, University of Duisberg-Essen, Germany and 7Oldenburg, Germany (Correspondence should be addressed to C J Strasburger, Division of Clinical Endocrinology, Department of Medicine, Charite´-Universita¨tsmedizin Berlin, Schumannstr. 20/21, 10117 Berlin, Germany; Email: [email protected]) *On behalf of the German pegvisomant investigators Abstract Objective: The new GH receptor antagonist pegvisomant is the most effective medical therapy to nor- malize IGF-I levels in patients with acromegaly. Based on currently available data pegvisomant is well tolerated; however, treatment-induced elevation of transaminases has been reported and led to the necessity for drug discontinuation in some patients in the pivotal studies. The aim of this study was to evaluate and characterize the prevalence of elevated transaminases and to describe in detail the findings in a single case who required drug discontinuation because of elevation of transaminases which emerged during treatment and who underwent liver biopsy. Design and methods: Retrospective safety analyses were carried out on 142 patients with acromegaly receiving pegvisomant treatment in Germany between March 2003 and the end of 2004. -
(Idiopathic) Ketotic Hypoglycemia in Children
(Idiopathic) Ketotic hypoglycemia in children *Leena Priyambada, **Srinivas Raghavan *E-mail: [email protected] **Department of Pediatrics, Jawaharlal Institute of Medical Education and Research, Puducherry, India Abstract Idiopathic Ketotic Hypoglycemia is the most common non-iatrogenic cause of hypoglycemia in children beyond infancy. It improves with age and is rare after puberty. Early morning hypoglycemia, responding promptly to glucose, is a typical presentation. Etiology of hypoglycemia is unclear; deficiency of gluconeogenic substrate (hypoalaninemia) has been widely proposed. Idiopathic Ketotic Hypoglycemia is a diagnosis of exclusion. Rule out specific etiologies first. Ketonuria precedes hypoglycemia by several hours, testing for ketonuria helps in early detection. For prevention, avoiding fasting states and bedtime snacks are helpful. Keywords: Ketotic hypoglycemia, children, hypoalaninemia Introduction classic presentation is the appearance of ‘G, a 4 yr old developmentally normal girl, recurrent episodes of hypoglycemia and ketosis presented with recurrent seizures (3 episodes) provoked by fasting for 12 to 24 hours. Early for the past three months. The seizures were morning hypoglycemia before breakfast generalised tonic clonic in nature, preceded by especially when associated with strenuous vomiting early in the morning and responding physical activity the previous evening or during immediately to glucose. There was no suggestive intercurrent illnesses is a classic presentation. past, neonatal or family history. Clinical These episodes respond promptly to glucose examination, baseline biochemical, neurological administration and neurological sequelae are investigations in the interictal period when the rare. child was referred to us was normal. Fasting IKH usually presents between 18 months and test resulted in blood sugar of 26 mg/dl with five years of age. -
Effect of Ketone Bodies on Glucose Production and Utilization in the Miniature Pig
Effect of ketone bodies on glucose production and utilization in the miniature pig. M J Müller, … , U Paschen, H J Seitz J Clin Invest. 1984;74(1):249-261. https://doi.org/10.1172/JCI111408. Research Article The effect of ketone bodies on glucose production (Ra) and utilization (Rd) was investigated in the 24-h starved, conscious unrestrained miniature pig. Infusing Na-DL-beta-OH-butyrate (Na-DL-beta-OHB) and thus shifting the blood pH from 7.40 to 7.56 resulted in a decrease of Ra by 52% and of Rd by 45%, as determined by the isotope dilution technique. Simultaneously, the concentrations of arterial insulin and glucagon were slightly enhanced, whereas the plasma levels of glucose, lactate, pyruvate, alanine, alpha-amino-N, and free fatty acids (FFA) were all reduced. Infusion of Na- bicarbonate, which yielded a similar shift in blood pH, did not mimick these effects. Infusion of equimolar amounts of the ketoacid, yielding a blood pH of 7.35, induced similar metabolic alterations with respect to plasma glucose, Ra, Rd, and insulin; however, plasma alanine and alpha-amino-N increased. Infusing different amounts of Na-DL-beta-OHB resulting in plasma steady state levels of ketones from 0.25 to 1.5 mM had similar effects on arterial insulin and glucose kinetics. No dose dependency was observed. Prevention of the Na-DL-beta-OHB-induced hypoalaninemia by simultaneous infusion of alanine (1 mumol/kg X min) did not prevent hypoglycemia. Infusion of Na-DL-beta-OHB plus insulin (0.4 mU/kg X min) showed no additive effect on the inhibition of Ra. -
Elevated Transaminases and Hypoalbuminemia in Covid-19 Are Prognostic Factors for Disease Severity
www.nature.com/scientificreports OPEN Elevated transaminases and hypoalbuminemia in Covid‑19 are prognostic factors for disease severity Jason Wagner1, Victor Garcia‑Rodriguez1, Abraham Yu1, Barbara Dutra1, Scott Larson1, Brooks Cash1, Andrew DuPont1 & Ahmad Farooq2,3* Prognostic markers are needed to understand the disease course and severity in patients with Covid‑ 19. There is evidence that Covid‑19 causes gastrointestinal symptoms and abnormalities in liver enzymes. We aimed to determine if hepatobiliary laboratory data could predict disease severity in patients with Covid‑19. In this retrospective, single institution, cohort study that analyzed patients admitted to a community academic hospital with the diagnosis of Covid‑19, we found that elevations of Aspartate Aminotransferase (AST), Alanine Aminotransferase (ALT) and Alkaline Phosphatase (AP) at any time during hospital admission increased the odds of ICU admission by 5.12 (95% CI: 1.55–16.89; p = 0.007), 4.71 (95% CI: 1.51–14.69; p = 0.01) and 4.12 (95% CI: 1.21–14.06, p = 0.02), respectively. Hypoalbuminemia found at the time of admission to the hospital was associated with increased mortality (p = 0.02), hypotension (p = 0.03), and need for vasopressors (p = 0.02), intubation (p = 0.01) and hemodialysis (p = 0.002). Additionally, there was evidence of liver injury: AST was signifcantly elevated above baseline in patients admitted to the ICU (54.2 ± 15.70 U/L) relative to those who were not (9.2 ± 4.89 U/L; p = 0.01). Taken together, this study found that hypoalbuminemia and abnormalities in hepatobiliary laboratory data may be prognostic factors for disease severity in patients admitted to the hospital with Covid‑19. -
Study of Serum Adenosine Deaminase and Transaminases in Type 2 Diabetes Mellitus
IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-ISSN: 2279-0853, p-ISSN: 2279-0861.Volume 17, Issue 10 Ver. 4 (October. 2018), PP 12-16 www.iosrjournals.org Study of Serum Adenosine Deaminase and Transaminases in type 2 Diabetes Mellitus Sujeeta Oinam1, R.K. Vidyabati Devi2*, Th. Bhimo Singh3, WaikhomGyaneshwar Singh4 1Junior resident, Department of Biochemistry, Jawaharlal Nehru Institute of Medical Sciences, Porompat, Imphal, Manipur, India 2 Associate Professor, Department of Biochemistry, Jawaharlal Nehru Institute of Medical Sciences, Porompat, Imphal, Manipur, India 3Professor, Department of Medicine, Jawaharlal Nehru Institute of Medical Sciences, Porompat, Imphal East, a Manipur, India. 4Professor, Department of Biochemistry, Jawaharlal Nehru Institute of Medical Sciences, Porompat, Imphal East, Manipur, India. Corresponding Author: Sujeeta Oinam Abstract: Adenosine deaminase (ADA) is an enzyme present in most human tissues. It is also known as adenosine aminohydrolase and involved in purine metabolism. It is an important marker of inflammation. Elevation of the main serum transaminases, aspartate transaminase (AST) and alanine transaminase (ALT) levels indicates liver cell injury. Liver is the main organ that regulates carbohydrate metabolism. Diabetes mellitus is associated with increased risk of liver disease. The aims of the study is to measure serum ADA and transaminases levels in type 2 diabetes mellitus (T2DM) subjects and healthy controls. And to find out any correlation between ADA, fasting blood sugar (FBS), Glycated haemoglobin (HbA1c) and transaminases The study was carried out in 60 cases of T2DM and 30 healthy controls. Serum ADA was measured spectrophotometrically based on Guisti and Galanti method. FBS, HbA1c, ALT and AST were measured in all the study subjects. -
The Correlation of Transaminases and Liver Diseases
THE CORRELATION OF TRANSAMINASES AND LIVER DISEASES Bastianus Alfian Juatmadja, I Wayan Putu Sutirta Yasa, DAP Rasmika Dewi, Bagus Komang Satriyasa Department of Clinical Pathology Faculty of Medicine Udayana University / Sanglah Hospital ABSTRACT The symptoms of liver diseases are very diverging, from the mild one till the severe one. Sometimes we may find that severe heart disorders but the symptoms are too less. We need some tools to make a good diagnosis. We can not only use a good anamnesis, but also have to use good physical examination and the other support test. Transaminase also called aminotransferase. This aminotransferase catalyzes the transfer of the amino group (−NH2) of an amino acid to a carbonyl compound. The liver contains specific transaminases for the transfer of an amino group from glutamic acid to α-keto acids that correspond to most of the other amino acids. Other transaminases catalyze reactions in which an amino group is transferred from glutamic acid to other compounds. Transamination is one of the principal mechanisms for the formation of necessary amino acids in the metabolism of proteins. Transaminase as a sign to cell damage may divided into Serum Glutamic Oxalocetic Transaminase (SGOT), Serum Glutamic Pyruvic Transaminase (SGPT), and Lactic Dehydrogenase (LDH). Gamma GT and alkali fosfatase correlate with cholestasis. Cholinestrase correlate with liver synthesis capacity. Keywords: Transaminase, amino group, α-keto acids Introduction Early detection to these liver diseases is absolutely needed to decrease the morbidity and mortality. Early detection means early treatment. A good and precise treatment may decrease the diseases progressivity and may cure the diseases1. -
COVID-19, MERS and SARS with Concomitant Liver Injury—Systematic Review of the Existing Literature
Journal of Clinical Medicine Review COVID-19, MERS and SARS with Concomitant Liver Injury—Systematic Review of the Existing Literature 1,2,3, 4, 5 Michał Kukla y , Karolina Skonieczna-Zydecka˙ y , Katarzyna Kotfis , Dominika Maciejewska 4 , Igor Łoniewski 4, Luis. F. Lara 6, Monika Pazgan-Simon 3,7, Ewa Stachowska 4 , Mariusz Kaczmarczyk 8, Anastasios Koulaouzidis 9 and Wojciech Marlicz 10,* 1 Department of Internal Medicine and Geriatrics, Jagiellonian University Medical College, 2 Jakubowskiego St., 30-688 Cracow, Poland; [email protected] 2 Department of Endoscopy, University Hospital in Cracow, 2 Jakubowskiego St., 30-688 Cracow, Poland 3 1st Infectious Diseases Ward, Gromkowski Regional Specialist Hospital, Wroclaw, 5 Koszarowa St., 50-149 Wroclaw, Poland; [email protected] 4 Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; [email protected] (K.S.-Z.);˙ [email protected] (D.M.); [email protected] (I.Ł.); [email protected] (E.S.) 5 Department of Anaesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; katarzyna.kotfi[email protected] 6 Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; [email protected] 7 Department of Infectious Diseases, Wroclaw Medical University, 5 Koszarowa St., 50-149 Wroclaw, Poland 8 Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; [email protected] 9 Centre for Liver & Digestive Disorders, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK; [email protected] 10 Department of Gastroenterology, Pomeranian Medical University, 71-252 Szczecin, Poland * Correspondence: [email protected]; Tel.: +48-91-425-3231 These authors contributed equally to this work.