GSD VI and IX Practice Guidelines 2019

Total Page:16

File Type:pdf, Size:1020Kb

GSD VI and IX Practice Guidelines 2019 © American College of Medical Genetics and Genomics ACMG PRACTICE RESOURCE Diagnosis and management of glycogen storage diseases type VI and IX: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG) A full list of authors and affiliations appears at the end of the paper. Disclaimer This practice resource is designed primarily as an educational resource for medical geneticists and other clinicians to help them provide quality medical services. Adherence to this practice resource is completely voluntary and does not necessarily assure a successful medical outcome. This practice resource should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, the clinician should apply his or her own professional judgment to the specific clinical circumstances presented by the individual patient or specimen. Clinicians are encouraged to document the reasons for the use of a particular procedure or test, whether or not it is in conformance with this practice resource. Clinicians also are advised to take notice of the date this practice resource was adopted, and to consider other medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures. Purpose: Glycogen storage disease (GSD) types VI and IX are rare Results: This management guideline specifically addresses evalua- diseases of variable clinical severity affecting primarily the liver. tion and diagnosis across multiple organ systems involved in GSDs GSD VI is caused by deficient activity of hepatic glycogen PYGL VI and IX. Conditions to consider in a differential diagnosis phosphorylase, an enzyme encoded by the gene. GSD IX is stemming from presenting features and diagnostic algorithms are caused by deficient activity of phosphorylase kinase (PhK), the discussed. Aspects of diagnostic evaluation and nutritional and enzyme subunits of which are encoded by various genes: ɑ (PHKA1, PHKA2 β PHKB ɣ PHKG1 PHKG2 δ CALM1 CALM2 medical management, including care coordination, genetic counsel- ), ( ), ( , ), and ( , , ing, and prenatal diagnosis are addressed. CALM3). Glycogen storage disease types VI and IX have a wide spectrum of clinical manifestations and often cannot be distin- Conclusion: A guideline that will facilitate the accurate diagnosis guished from each other, or from other liver GSDs, on clinical and optimal management of patients with GSDs VI and IX was presentation alone. Individuals with GSDs VI and IX can present developed. This guideline will help health-care providers recognize with hepatomegaly with elevated serum transaminases, ketotic patients with GSDs VI and IX, expedite diagnosis, and minimize hypoglycemia, hyperlipidemia, and poor growth. This guideline for adverse sequelae from delayed diagnosis and inappropriate the management of GSDs VI and IX was developed as an management. It will also help identify gaps in scientific knowledge educational resource for health-care providers to facilitate prompt that exist today and suggest future studies. and accurate diagnosis and appropriate management of patients. Genetics in Medicine Methods: A national group of experts in various aspects of GSDs VI (2019) https://doi.org/10.1038/s41436-018-0364-2 and IX met to review the limited evidence base from the scientific literature and provided their expert opinions. Consensus was Keywords: glycogen storage diseases; glycogen storage disease developed in each area of diagnosis, treatment, and management. type VI; glycogen storage disease type IX; diagnostic guidelines; Evidence bases for these rare disorders are largely based on expert management guidelines opinion, particularly when targeted therapeutics that have to clear the US Food and Drug Administration (FDA) remain unavailable. PURPOSE present in other tissues. Glycogen is a polymer made up of This guideline is intended as an educational resource. It highly branched chains of glucose molecules. In the liver, highlights current practices and therapeutic approaches to the glycogen acts as a glucose reserve for maintenance of blood diagnosis and management of the multiple complications of glucose levels, especially in the fasting state. A low blood glycogen storage disease (GSD) types VI and IX. glucose level activates a series of enzymatic reactions that break down liver glycogen into glucose. The regulation of GENERAL BACKGROUND glycogen breakdown involves activation of adenylate cyclase Overview by the hormones glucagon and epinephrine, which increases Glycogen is the main storage form of carbohydrate in the cytosolic level of cAMP. The increased level of cAMP humans. It is most abundant in liver and muscle but is also activates cAMP-dependent protein kinase which, in turn, Correspondence: Michael S. Watson ([email protected]) The Board of Directors of the American College of Medical Genetics and Genomics approved this clinical practice resource on 27 August 2018. Submitted 24 September 2018; accepted: 15 October 2018 GENETICS in MEDICINE | Volume 0 | Number 0 | Month 1 ACMG PRACTICE RESOURCE KISHNANI et al activates phosphorylase kinase (PhK). PhK activates the next different genes: PHKG1 (OMIM *172470) in muscle and enzyme in the cascade, phosphorylase. Phosphorylase cata- PHKG2 (OMIM *172471) in liver. There is only one gene lyzes the sequential cleavage of the terminal units from the encoding the β-subunit, PHKB (OMIM *172490), but it is glycogen chains, liberating glucose-1-phosphate, which is then differentially spliced in different tissues including muscle, converted to glucose-6-phosphate.1 liver, and brain.13,14 The δ-subunit of PhK, calmodulin, is At least three human glycogen phosphorylases exist, each of encoded by three different genes—CALM1 (OMIM *114180), which is preferentially expressed in a different tissue; muscle, CALM2 (OMIM *114182), and CALM3 (OMIM *114183)— liver, and brain isoforms have been identified.1,2 GSD VI which are ubiquitously expressed and involved in other (OMIM 232700) is the result of a deficiency of liver glycogen cellular processes as well. Pathogenic variants in the PHKA2, phosphorylase, which is encoded by the PYGL (OMIM PHKB, and PHKG2 genes have been identified in patients *613741) gene located on chromosome 14q21-q22.3 PYGL is with liver GSD IX. the only gene known to be associated with GSD VI. Deficiency of muscle glycogen phosphorylase causes GSD V History (OMIM 232600),4 also known as McArdle disease, and will Glycogen storage disease type VI (Hers disease) (OMIM not be discussed here. 232700) (GSD VI) was reported by Henry-Gery Hers in Glycogen storage disease type IX, liver form, (OMIM 1959.15 Hers described three patients with hepatomegaly, mild 306000) (GSD IX) is often clinically indistinguishable from hypoglycemia, an increased glycogen content and deficient GSD VI. It results from deficiency of liver phosphorylase activity of glycogen phosphorylase in the liver. kinase (PhK). Isolated muscle PhK deficiency that is caused The first reported patient with liver PhK deficiency was by pathogenic variants in PHKA1 and has also been known as described by Hug et al. in 1966.16 The patient was a female – GSD IXd, has also been described5 11 but will not be discussed and the disorder was believed to be inherited in an autosomal 1234567890():,; in further detail here. PhK is a protein kinase that recessive manner. Later in the 1960s, patients with X-linked phosphorylates the inactive form of glycogen phosphorylase, inheritance of hepatic PhK deficiency were described.17 In phosphorylase b, to produce the active form, phosphorylase a. some early publications, these patients were described as PhK is a heterotetramer composed of four copies each of α, β, having a subtype of GSD VI, because they had low γ, and δ subunits.12 The γ subunit contains the catalytic site. phosphorylase activity in addition to PhK deficiency.18,19 Its activity is regulated by the phosphorylation state of the The term GSD IX, first designated by Hug et al.,20 was regulatory α and β subunits, and by the δ subunit ultimately used to describe patients with primary PhK (calmodulin) via calcium levels.12 PhK has a wide tissue deficiency, regardless of the inheritance pattern. distribution with multiple tissue-specific isoforms generated by the expression and differential splicing of the various PhK Nomenclature subunit genes12 (Tables 1 and 2). The α-subunit is encoded by In older literature, GSD VI has sometimes been referred to as the PHKA1 (OMIM *311870) gene in muscle and by the type VIII and IX, and GSD IX has been called GSD VIa and PHKA2 (OMIM *300798) gene in liver. There are also muscle VIII.21 To standardize the nomenclature in this guideline and liver isoforms of the γ-subunit, each also encoded by paper, GSD VI will be used here to describe liver glycogen phosphorylase deficiency, and GSD IX will refer to PhK Table 1 Phosphorylase kinase (PhK) subunit genes known to deficiency. PhK deficiency can be divided into two main types cause PhK deficiency in which symptoms primarily affect liver or muscle. Liver PhK Gene PhK Location Inheritance Tissue/organ deficiency (liver GSD IX) can be further subclassified subunit primarily affected according to the gene involved. PHKA2-related GSD IX is PHKA2 PHKA1 α Xq13.1 X-linked Muscle caused by changes
Recommended publications
  • Hepatic Glycogen Storage Diseases: Pathogenesis, Clinical Symptoms and Therapeutic Management
    State of the art paper Hepatology Hepatic glycogen storage diseases: pathogenesis, clinical symptoms and therapeutic management Edyta Szymańska1, Dominika A. Jóźwiak-Dzięcielewska2, Joanna Gronek2, Marta Niewczas3, Wojciech Czarny4, Dariusz Rokicki1, Piotr Gronek2 1Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, Corresponding author: The Children’s Memorial Health Institute, Warsaw, Poland Edyta Szymańska MD, PhD 2Laboratory of Genetics, Department of Gymnastics and Dance, University School Department of Physical Education, Poznan, Poland of Gastroenterology, 3Department of Sport, Faculty of Physical Education, University of Rzeszow, Rzeszow, Hepatology, Feeding Poland Disorders and 4Department of Human Sciences, Faculty of Physical Education, University of Rzeszow, Pediatrics Rzeszow, Poland The Children’s Memorial Health Institute Submitted: 13 October 2017; Accepted: 8 December 2017; Al. Dzieci Polskich 20 Online publication: 18 February 2019 Warsaw, Poland Phone: +48 22 815 74 94 Arch Med Sci 2021; 17 (2): 304–313 E-mail: edyta.szymanska@ DOI: https://doi.org/10.5114/aoms.2019.83063 ipczd.pl Copyright © 2019 Termedia & Banach Abstract Glycogen storage diseases (GSDs) are genetically determined metabolic diseases that cause disorders of glycogen metabolism in the body. Due to the enzymatic defect at some stage of glycogenolysis/glycogenesis, excess glycogen or its pathologic forms are stored in the body tissues. The first symptoms of the disease usually appear during the first months of life and are thus the domain of pediatricians. Due to the fairly wide access of the authors to unpublished materials and research, as well as direct contact with the GSD patients, the article addresses the problem of actual diag- nostic procedures for patients with the suspected diseases.
    [Show full text]
  • What Is Ketotic Hypoglycemia?
    KETOTICHYPOGLYCEMIA.ORGv Ketotic Hypoglycemia International Who we are, what we do and why Ketotic Hypoglycemia INTERNATIONAL What is ketotic hypoglycemia? “Ketotic hypoglycemia may be unexplained, or idiopathic (IKH). This is a challenge and should urge for more research” For the patients In a normal person, fuel for the brain and the general cell metabolism primarily comes from the burning of sugar deposits (glycogen). When the glycogen stores are depleted, the body will switch to burn fat deposits. The fat burn lead to two fuels for the brain, both glucose (sugar) and ketone bodies. However, ketones in the blood will lead to nausea and eventually vomiting. This will lead to a vicious circle, where you cannot eat or drink sugar-rich items, which again leads to further fat burn and production of ketone bodies. In a KH-patient, the glycogen stores are somehow insufficient. This leads to For the doctors decreased fasting tolerance with earlier Ketotic hypoglycemia can be seen in children Emergency treatment constitutes of oral onset of fat burn and hence ketone bodies. In because of growth hormone deficiency, cortisol or i.v. glucose, eventually i.m. glucagon, to most patients, the hypoglycemia is relatively deficiency, metabolic diseases with intact fatty raise the plasma glucose, which will prevent mild, and the ketone bodies helps to provide acid consumption, including glycogen storage further lipolysis. However, the ketones can fuel to the brain, which prevents loss of diseases (glycogenosis; GSD) type 0, III, VI, and take hours to be eliminated. In more severely consciousness and convulsions. However, in IX, or disturbances in transport or metabolism affected patients, the ketone production relatively few patients, the condition is more of ketone bodies.
    [Show full text]
  • Maximizing Diagnostic Value & Efficiency for Abnormal Lfts in The
    Maximizing Diagnostic Value & Efficiency for Abnormal LFTs in the Primary Care Setting Michael Kriss, MD Assistant Professor Associate Program Director, Transplant Hepatology Fellowship Division of Gastroenterology & Hepatology Section of Liver Disease & Transplantation University of Colorado School of Medicine Disclosures No conflicts of interest to disclose Learning Objectives At the completion of today’s talk, physicians will: 1. Recognize high value practices in evaluating and referring patients with abnormal liver enzymes 2. Identify essential components of the diagnostic evaluation of abnormal liver enzymes 3. Apply high value principles to complex patients requiring co-management by liver specialists https://www.ncbi.nlm.nih.gov/pubmed/27995906 https://www.ncbi.nlm.nih.gov/pubmed/27995906 Alcoholic liver disease Hepatitis B virus Primary biliary cholangitis NAFLD/NASH Hepatitis C virus Primary sclerosing cholangitis Autoimmune hepatitis Hemochromatosis Wilson’s disease https://www.aasld.org/publications/practice-guidelines What is normal…? ACG 2016 Guidelines “A true healthy normal ALT level in prospectively studied populations without identifiable risk factors for liver disease ranges from 29 to 33 IU/l for males and 19 to 25 IU/l for females, and levels above this should be assessed by physicians” “Clinicians may rely on local lab ULN ranges for alkaline phosphatase and bilirubin” Kwo PY et al. ACG Practice Guideline: Evaluation of Abnormal Liver Chemistries. AJG 2017 Critical to characterize pattern… Abnormal LFT 101 Hepatocellular Mixed Cholestatic AST/ALT Alk Phos Hyperbilirubinemia Bilirubin Kwo PY et al. ACG Practice Guideline: Evaluation of Abnormal Liver Chemistries. AJG 2017 Critical to characterize pattern… Abnormal LFT 101 ALT AP R = ALT ULN / AP ULN Hepatocellular Mixed Cholestatic AST/ALT R=2-5 Alk Phos R>5 R<2 Hyperbilirubinemia Bilirubin Kwo PY et al.
    [Show full text]
  • A New Tool for the Diagnosis of Choledocholithiasis. a Case Control Study
    DOI: https://doi.org/10.22516/25007440.446 Original article Elevated transaminases: a new tool for the diagnosis of choledocholithiasis. A case control study James Yurgaky-Sarmiento, MD,1 William Otero-Regino, MD,2* Martín Gómez-Zuleta, MD.3 Abstract OPEN ACCESS Introduction: Choledocolithiasis (CLD) affects 10% of patients with gallstones. Citation: Bile duct obstruction is associated with pancreatitis, cholangitis, and rupture of Yurgaky-Sarmiento J, Otero-Regino W, Gómez-Zuleta M. Elevated transaminases: a new tool the common bile duct. This condition usually presents with increased alkaline for the diagnosis of choledocholithiasis. A case control study. Un estudio de casos y controles. Rev Colomb Gastroenterol. 2020;35(3):319-328. https://doi.org/10.22516/25007440.446 phosphatase, GGTP and bilirubin levels. In the last decade, it has been found that up to 10% of patients with CLD have elevated aminotransferases levels. ............................................................................ In Latin America, this alteration has not been studied. The aim of the present 1 Internist, endocrinologist, gastroenterologist, Universidad Nacional de Colombia; Bogotá, work was to determine the prevalence of transaminase elevation and its evo- Colombia. lution. Methodology: Case-control study. ALT was measured on admission, 2 Professor of Medicine, Gastroenterology Coordinator, Universidad Nacional de Colombia, at 48 h and at 72 h. If ultrasound was normal, MRCP and/or echo-endoscopy Hospital Universitario Nacional de Colombia. Gastroenterologist, Clínica Fundadores; Bogotá, and ERCP were performed, as appropriate. Results: A total of 72 patients with Colombia. 3 Associate Professor of Medicine, Gastroenterology Unit, Universidad Nacional de Colombia, choledocholithiasis (CLD) (cases) and 128 with cholecystitis without choledo- Hospital Universitario Nacional de Colombia.
    [Show full text]
  • Recurrent Severe Hypoglycemia Due to Isolated Growth Hormone
    C O R R E S P O N D E N C E Recurrent Severe Hypoglycemia hyperinsulinism, ketotic hypoglycemia and hormonal deficiencies such as cortisol, GH and thyroxine [1]. GH due to Isolated Growth Hormone deficiency may occasionally manifest as recurrent Deficiency hypoglycemia as seen in our patient. The mechanisms of hypoglycemia in GH deficiency are increased insulin sensitivity and hypoglycemia unawareness [2]. Additionally, GH deficiency impairs carbohydrate meta- A 6-year-old boy presented to us with repeated episodes bolism resulting in deceased basal insulin level, impaired of seizures since early infancy. He was born small for insulin secretion and carbohydrate intolerance with gestational age to non-consanguineous parents at term. reactive hypoglycemia [1,2]. Although hypoglycemia is During neonatal period, he suffered multiple episodes of described in GH deficiency, severe symptomatic hypoglycemia requiring intravenous dextrose but no hypoglycemia is extremely rare and usually occurs in etiological investigations were done. Three of the four association with another causative factor such as hypoglycemic events beyond neonatal age were glycogen storage disorder [3,4]. Children with even associated with seizures. There were no precipitating complete GH deficiency do not usually manifest factors for hypoglycemia such as prolonged fasting, an hypoglycemia [5]. Our patient unusually developed intercurrent illness or intake of medications. There was recurrent episodes of severe symptomatic hypoglycemia no family history of similar illness, metabolic disorders or due to an isolated GH deficiency. an unexplained death. DEVI DAYAL AND JAIVINDER Y ADAV* On examination, he was short (106 cm, -2.02 z-score) Department of Pediatrics, and underweight (13.8 kg, -3.15 z-score) and had normal PGIMER, Chandigarh, India.
    [Show full text]
  • Elevated Transaminases During Medical Treatment of Acromegaly: A
    European Journal of Endocrinology (2006) 154 213–220 ISSN 0804-4643 CASE REPORT Elevated transaminases during medical treatment of acromegaly: a review of the German pegvisomant surveillance experience and a report of a patient with histologically proven chronic mild active hepatitis H Biering1, B Saller4,*, J Bauditz1, M Pirlich1, B Rudolph2, A Johne3, M Buchfelder5,*, K Mann6,*, M Droste7,*, I Schreiber4, H Lochs1 and C J Strasburger1,* 1Department of Gastroenterology, Hepatology and Endocrinology, 2Institute of Pathology and 3Institute for Clinical Pharmacology, Charite´-Universita¨tsmedizin Berlin, 10117 Berlin, Germany, 4Pfizer Pharma GmbH, Karlsruhe, Germany, 5Department of Neurosurgery, University Hosiptal, Erlangen, Germany, 6Division of Endocrinology, Department of Medicine, University of Duisberg-Essen, Germany and 7Oldenburg, Germany (Correspondence should be addressed to C J Strasburger, Division of Clinical Endocrinology, Department of Medicine, Charite´-Universita¨tsmedizin Berlin, Schumannstr. 20/21, 10117 Berlin, Germany; Email: [email protected]) *On behalf of the German pegvisomant investigators Abstract Objective: The new GH receptor antagonist pegvisomant is the most effective medical therapy to nor- malize IGF-I levels in patients with acromegaly. Based on currently available data pegvisomant is well tolerated; however, treatment-induced elevation of transaminases has been reported and led to the necessity for drug discontinuation in some patients in the pivotal studies. The aim of this study was to evaluate and characterize the prevalence of elevated transaminases and to describe in detail the findings in a single case who required drug discontinuation because of elevation of transaminases which emerged during treatment and who underwent liver biopsy. Design and methods: Retrospective safety analyses were carried out on 142 patients with acromegaly receiving pegvisomant treatment in Germany between March 2003 and the end of 2004.
    [Show full text]
  • (Idiopathic) Ketotic Hypoglycemia in Children
    (Idiopathic) Ketotic hypoglycemia in children *Leena Priyambada, **Srinivas Raghavan *E-mail: [email protected] **Department of Pediatrics, Jawaharlal Institute of Medical Education and Research, Puducherry, India Abstract Idiopathic Ketotic Hypoglycemia is the most common non-iatrogenic cause of hypoglycemia in children beyond infancy. It improves with age and is rare after puberty. Early morning hypoglycemia, responding promptly to glucose, is a typical presentation. Etiology of hypoglycemia is unclear; deficiency of gluconeogenic substrate (hypoalaninemia) has been widely proposed. Idiopathic Ketotic Hypoglycemia is a diagnosis of exclusion. Rule out specific etiologies first. Ketonuria precedes hypoglycemia by several hours, testing for ketonuria helps in early detection. For prevention, avoiding fasting states and bedtime snacks are helpful. Keywords: Ketotic hypoglycemia, children, hypoalaninemia Introduction classic presentation is the appearance of ‘G, a 4 yr old developmentally normal girl, recurrent episodes of hypoglycemia and ketosis presented with recurrent seizures (3 episodes) provoked by fasting for 12 to 24 hours. Early for the past three months. The seizures were morning hypoglycemia before breakfast generalised tonic clonic in nature, preceded by especially when associated with strenuous vomiting early in the morning and responding physical activity the previous evening or during immediately to glucose. There was no suggestive intercurrent illnesses is a classic presentation. past, neonatal or family history. Clinical These episodes respond promptly to glucose examination, baseline biochemical, neurological administration and neurological sequelae are investigations in the interictal period when the rare. child was referred to us was normal. Fasting IKH usually presents between 18 months and test resulted in blood sugar of 26 mg/dl with five years of age.
    [Show full text]
  • Effect of Ketone Bodies on Glucose Production and Utilization in the Miniature Pig
    Effect of ketone bodies on glucose production and utilization in the miniature pig. M J Müller, … , U Paschen, H J Seitz J Clin Invest. 1984;74(1):249-261. https://doi.org/10.1172/JCI111408. Research Article The effect of ketone bodies on glucose production (Ra) and utilization (Rd) was investigated in the 24-h starved, conscious unrestrained miniature pig. Infusing Na-DL-beta-OH-butyrate (Na-DL-beta-OHB) and thus shifting the blood pH from 7.40 to 7.56 resulted in a decrease of Ra by 52% and of Rd by 45%, as determined by the isotope dilution technique. Simultaneously, the concentrations of arterial insulin and glucagon were slightly enhanced, whereas the plasma levels of glucose, lactate, pyruvate, alanine, alpha-amino-N, and free fatty acids (FFA) were all reduced. Infusion of Na- bicarbonate, which yielded a similar shift in blood pH, did not mimick these effects. Infusion of equimolar amounts of the ketoacid, yielding a blood pH of 7.35, induced similar metabolic alterations with respect to plasma glucose, Ra, Rd, and insulin; however, plasma alanine and alpha-amino-N increased. Infusing different amounts of Na-DL-beta-OHB resulting in plasma steady state levels of ketones from 0.25 to 1.5 mM had similar effects on arterial insulin and glucose kinetics. No dose dependency was observed. Prevention of the Na-DL-beta-OHB-induced hypoalaninemia by simultaneous infusion of alanine (1 mumol/kg X min) did not prevent hypoglycemia. Infusion of Na-DL-beta-OHB plus insulin (0.4 mU/kg X min) showed no additive effect on the inhibition of Ra.
    [Show full text]
  • Elevated Transaminases and Hypoalbuminemia in Covid-19 Are Prognostic Factors for Disease Severity
    www.nature.com/scientificreports OPEN Elevated transaminases and hypoalbuminemia in Covid‑19 are prognostic factors for disease severity Jason Wagner1, Victor Garcia‑Rodriguez1, Abraham Yu1, Barbara Dutra1, Scott Larson1, Brooks Cash1, Andrew DuPont1 & Ahmad Farooq2,3* Prognostic markers are needed to understand the disease course and severity in patients with Covid‑ 19. There is evidence that Covid‑19 causes gastrointestinal symptoms and abnormalities in liver enzymes. We aimed to determine if hepatobiliary laboratory data could predict disease severity in patients with Covid‑19. In this retrospective, single institution, cohort study that analyzed patients admitted to a community academic hospital with the diagnosis of Covid‑19, we found that elevations of Aspartate Aminotransferase (AST), Alanine Aminotransferase (ALT) and Alkaline Phosphatase (AP) at any time during hospital admission increased the odds of ICU admission by 5.12 (95% CI: 1.55–16.89; p = 0.007), 4.71 (95% CI: 1.51–14.69; p = 0.01) and 4.12 (95% CI: 1.21–14.06, p = 0.02), respectively. Hypoalbuminemia found at the time of admission to the hospital was associated with increased mortality (p = 0.02), hypotension (p = 0.03), and need for vasopressors (p = 0.02), intubation (p = 0.01) and hemodialysis (p = 0.002). Additionally, there was evidence of liver injury: AST was signifcantly elevated above baseline in patients admitted to the ICU (54.2 ± 15.70 U/L) relative to those who were not (9.2 ± 4.89 U/L; p = 0.01). Taken together, this study found that hypoalbuminemia and abnormalities in hepatobiliary laboratory data may be prognostic factors for disease severity in patients admitted to the hospital with Covid‑19.
    [Show full text]
  • Study of Serum Adenosine Deaminase and Transaminases in Type 2 Diabetes Mellitus
    IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-ISSN: 2279-0853, p-ISSN: 2279-0861.Volume 17, Issue 10 Ver. 4 (October. 2018), PP 12-16 www.iosrjournals.org Study of Serum Adenosine Deaminase and Transaminases in type 2 Diabetes Mellitus Sujeeta Oinam1, R.K. Vidyabati Devi2*, Th. Bhimo Singh3, WaikhomGyaneshwar Singh4 1Junior resident, Department of Biochemistry, Jawaharlal Nehru Institute of Medical Sciences, Porompat, Imphal, Manipur, India 2 Associate Professor, Department of Biochemistry, Jawaharlal Nehru Institute of Medical Sciences, Porompat, Imphal, Manipur, India 3Professor, Department of Medicine, Jawaharlal Nehru Institute of Medical Sciences, Porompat, Imphal East, a Manipur, India. 4Professor, Department of Biochemistry, Jawaharlal Nehru Institute of Medical Sciences, Porompat, Imphal East, Manipur, India. Corresponding Author: Sujeeta Oinam Abstract: Adenosine deaminase (ADA) is an enzyme present in most human tissues. It is also known as adenosine aminohydrolase and involved in purine metabolism. It is an important marker of inflammation. Elevation of the main serum transaminases, aspartate transaminase (AST) and alanine transaminase (ALT) levels indicates liver cell injury. Liver is the main organ that regulates carbohydrate metabolism. Diabetes mellitus is associated with increased risk of liver disease. The aims of the study is to measure serum ADA and transaminases levels in type 2 diabetes mellitus (T2DM) subjects and healthy controls. And to find out any correlation between ADA, fasting blood sugar (FBS), Glycated haemoglobin (HbA1c) and transaminases The study was carried out in 60 cases of T2DM and 30 healthy controls. Serum ADA was measured spectrophotometrically based on Guisti and Galanti method. FBS, HbA1c, ALT and AST were measured in all the study subjects.
    [Show full text]
  • The Correlation of Transaminases and Liver Diseases
    THE CORRELATION OF TRANSAMINASES AND LIVER DISEASES Bastianus Alfian Juatmadja, I Wayan Putu Sutirta Yasa, DAP Rasmika Dewi, Bagus Komang Satriyasa Department of Clinical Pathology Faculty of Medicine Udayana University / Sanglah Hospital ABSTRACT The symptoms of liver diseases are very diverging, from the mild one till the severe one. Sometimes we may find that severe heart disorders but the symptoms are too less. We need some tools to make a good diagnosis. We can not only use a good anamnesis, but also have to use good physical examination and the other support test. Transaminase also called aminotransferase. This aminotransferase catalyzes the transfer of the amino group (−NH2) of an amino acid to a carbonyl compound. The liver contains specific transaminases for the transfer of an amino group from glutamic acid to α-keto acids that correspond to most of the other amino acids. Other transaminases catalyze reactions in which an amino group is transferred from glutamic acid to other compounds. Transamination is one of the principal mechanisms for the formation of necessary amino acids in the metabolism of proteins. Transaminase as a sign to cell damage may divided into Serum Glutamic Oxalocetic Transaminase (SGOT), Serum Glutamic Pyruvic Transaminase (SGPT), and Lactic Dehydrogenase (LDH). Gamma GT and alkali fosfatase correlate with cholestasis. Cholinestrase correlate with liver synthesis capacity. Keywords: Transaminase, amino group, α-keto acids Introduction Early detection to these liver diseases is absolutely needed to decrease the morbidity and mortality. Early detection means early treatment. A good and precise treatment may decrease the diseases progressivity and may cure the diseases1.
    [Show full text]
  • COVID-19, MERS and SARS with Concomitant Liver Injury—Systematic Review of the Existing Literature
    Journal of Clinical Medicine Review COVID-19, MERS and SARS with Concomitant Liver Injury—Systematic Review of the Existing Literature 1,2,3, 4, 5 Michał Kukla y , Karolina Skonieczna-Zydecka˙ y , Katarzyna Kotfis , Dominika Maciejewska 4 , Igor Łoniewski 4, Luis. F. Lara 6, Monika Pazgan-Simon 3,7, Ewa Stachowska 4 , Mariusz Kaczmarczyk 8, Anastasios Koulaouzidis 9 and Wojciech Marlicz 10,* 1 Department of Internal Medicine and Geriatrics, Jagiellonian University Medical College, 2 Jakubowskiego St., 30-688 Cracow, Poland; [email protected] 2 Department of Endoscopy, University Hospital in Cracow, 2 Jakubowskiego St., 30-688 Cracow, Poland 3 1st Infectious Diseases Ward, Gromkowski Regional Specialist Hospital, Wroclaw, 5 Koszarowa St., 50-149 Wroclaw, Poland; [email protected] 4 Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; [email protected] (K.S.-Z.);˙ [email protected] (D.M.); [email protected] (I.Ł.); [email protected] (E.S.) 5 Department of Anaesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; katarzyna.kotfi[email protected] 6 Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; [email protected] 7 Department of Infectious Diseases, Wroclaw Medical University, 5 Koszarowa St., 50-149 Wroclaw, Poland 8 Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; [email protected] 9 Centre for Liver & Digestive Disorders, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK; [email protected] 10 Department of Gastroenterology, Pomeranian Medical University, 71-252 Szczecin, Poland * Correspondence: [email protected]; Tel.: +48-91-425-3231 These authors contributed equally to this work.
    [Show full text]