Decoding the Oxyhemoglobin Dissociation Curve Understanding the Curve Helps You Put Pulse Oximetry in Context

Total Page:16

File Type:pdf, Size:1020Kb

Decoding the Oxyhemoglobin Dissociation Curve Understanding the Curve Helps You Put Pulse Oximetry in Context Decoding the oxyhemoglobin dissociation curve Understanding the curve helps you put pulse oximetry in context. By Julia Hooley, MSN, RN a 72-year-old fe - The oxyhemoglobin dissociation ture of the pa - MRS . G LENN , male on a medical-surgical curve (OHDC) indicates the rela - tient’s overall oxy - floor, was hospitalized 3 tionship between the oxygen satu - genation status, you need to assess days ago for pneumonia. ration of hemoglobin (Sa O2) and pulse oximetry values in the con - Since her admission, she the partial pressure of arterial oxy - text of the OHDC. This article de - has been on continuous gen (Pa O2). Neither linear nor static, codes the curve to make it more pulse oximetry and is re - the curve can change or shift de - understandable and discusses the ceiving oxygen (2 L /minute pending on various factors. Yet un - benefits and limitations of pulse by nasal cannula) and an - derstanding the curve and its impli - oximetry. tibiotics. A chest X-ray taken earli - cations for patient care can be er today showed little change in challenging. The curve: Just the basics her pneumonia. She has a history Pulse oximetry has become an No doubt you remember learning of chronic lung disease. essential tool in various settings for about the OHDC as a nursing stu - At the beginning of the shift, the monitoring a patient’s oxygenation dent. It’s discussed in nearly every nurse hears the low alarm of Mrs. status. It indirectly indicates arterial nursing textbook. Nonethe less, it Glenn’s pulse oximeter sound, indi - hemoglobin saturation, measured as can be a somewhat puzzling con - cating a reading of 89% to 90%. oxygen saturation by pulse oxime - cept to grasp and apply in clinical On assessment, the nurse finds the try (Sp O2). How ever, this technique practice. To understand it, think patient alert, oriented, and in no is limited because oximetry meas - about the oxygenation process oc - apparent distress. Mrs. Glenn’s ures just one component of oxy - curring in the body. Staying alive heart rate is 96 beats/minute; respi - genation. For a more accurate pic - hinges on adequate oxygen mov - ratory rate, 24 breaths/minute with ing from the lungs to body tissues diminished breath sounds; blood and cells. For this to occur, the pressure, 124/80 mm Hg; and tem - lungs, blood, and environment perature, 38.1° C (100.6° F). CNE within the body must be function - Because the nurse is unfamiliar 1.42 contact ing properly: hours with Mrs. Glenn, she consults the • The lungs must receive enough respiratory therapist (RT), who’s LEARNING OBJECTIVES oxygen to be perfused and ven - preparing to administer a breath - 1. Recall the physiologic basis for the tilated optimally. ing treatment. The RT assures her oxyhemoglobin dissociation curve • Oxygen must be transported via that Mrs. Glenn’s pulse oximetry (OHDC). the blood to the tissues. values are always low, close to her 2. Describe the shifts that can occur Only 2% to 3% of the oxygen baseline of 92%. in the OHDC. going to the tissues dissolves in The nurse wonders how to inter - 3. Discuss the relationship between plasma; the remainder travels in pret the patient’s pulse oximetry the OHDC and pulse oximetry. the plasma by attaching to hemo - values in this context. She vaguely globin molecules. The most impor - The author and planners of this CNE activity have remembers something about the disclosed no relevant financial relationships with tant factor in the amount of oxygen oxyhemoglobin dissociation curve any commercial companies pertaining to this that binds (attaches) to hemoglobin activity. See the last page of the article to learn and wonders if a better under - how to earn CNE credit. molecules is the partial pressure of standing of the curve would aid arterial oxygen (Pa O ); the higher Expiration: 1/1/18 2 her assessment. the pressure, the more readily oxy - American Nurse Today Volume 10, Number 1 www.AmericanNurseToday.com 18 The curve: Relating Sa O2 to Pa O2 The oxyhemoglobin dissociation curve graphically represents the affinity between oxy - but with little effect on Sa O . gen and hemoglobin—specifically, how the oxygen saturation of hemoglobin (Sa O ) 2 2 Hemo globin can’t be saturated relates to the partial pressure of arterial oxygen (Pa O2). The curve’s position and overall shape (shown in purple below) depend on various factors, including the partial pres - more than 100%, but Pa O2 can rise sure of carbon dioxide (Pa CO 2), body temperature, and blood pH. significantly above 100 mm Hg if the patient receives high oxygen 100 - concentrations (as occurs with a hyperbaric oxygen chamber). 90 - At the steep lower part of the 80 - curve (under the “knee”), where Pa O measures between 40 and 60 70 - 2 mm Hg, oxygen is released from 60 - hemoglobin to the capillaries at the 2 tissue level due to increased oxy - O 50 - a S gen demand. At this part of the 40 - curve, an increase or decrease in Pa O leads to a large Sa O change. 30 - 2 2 This means giving supplemental 20 - oxygen will significantly increase the patient’s Sa O . 10 - 2 0 |||. || || || ||| || | A shift to the left or right 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 Now comes the more complicated Pa O2 part. The OHDC isn’t static or con - stant, because certain factors can alter hemoglobin’s affinity for oxy - gen combines with hemoglobin in about 97% but may range from gen. Depending on oxygen de - red blood cells. This hemoglobin- 93% to 97%. (See The curve: Relat - mand at the tissue level, oxygen oxygen linkage is called oxyhemo - ing Sa O2 to Pa O2.) will bind to hemoglobin more or globin. The OHDC isn’t a straight line. less readily than normal. Various Hemoglobin is made up of four Instead, it’s S-shaped. The flat up - factors cause the curve to shift to strands of amino acids. If oxygen is per portion where the curve is the left or right of its normal posi - linked fully to all four strands, he - more horizontal depicts oxygen tion. (See Why the curve shifts and moglobin is 100% saturated with loading onto hemoglobin in the How 2,3-DPG affects the curve .) oxygen. Transport of sufficient oxy - lungs. The pressure of oxygen en - gen to the tissues depends on an tering the lungs exceeds the oxy - Connecting the curve with pulse adequate number of hemoglobin gen concentration in blood oximetry readings molecules, as well as sufficient returning to the lungs. Pa O2 and Sa O2 values can blood volume and circulation (car - This enables oxygen be obtained only from diac output and blood pressure). to bind more easily an arterial blood gas Once hemoglobin transports oxy - to hemoglobin. (ABG) sample. But al - gen to the tissues, the body’s envi - A significant though ABG studies ronment determines how much (or Pa O2 change in are the gold standard how little) of the oxygen dissoci - this relatively flat for obtaining Pa O2 ates (unloads) from hemoglobin for part of the curve and Sa O2 values, fre - use. Oxygen dissociation from he - produces only a quent ABG sampling moglobin is determined by tissue small change in Sa O2. isn’t always feasible or demand for oxygen. That’s where Thus, a patient’s oxy - cost effective. For ongoing the OHDC comes in. genation status is better monitoring, pulse oximetry protected at this flat portion. For provides a convenient, continuous, example, if Pa O2 drops from 96 to and noninvasive way to measure Relationship between Pa O2 70 mm Hg, hemoglobin saturation Sa O indirectly and monitor trends and Sa O 2 The OH2DC represents the relation - decreases from 97% to approxi - in the patient’s oxygenation status. ship between Pa O2 and Sa O2. Nor - mately 92%. Clinically, this means Be sure to check for subtle or mal Pa O2 ranges from 80 to 100 that if the patient receives supple - sudden changes in oximetry values. mm Hg. Normal Sa O2 measures mental oxygen, Pa O2 will increase— Changes in oxygenation status can www.AmericanNurseToday.com January 2015 American Nurse Today 19 Why the curve shifts The normal oxyhemoglobin dissociation curve (OHDC), shown here by the solid blue precede clinical signs and symp - line, indicates that when the partial pressure of arterial oxygen (Pa O ) is 40 mm Hg, oxy - toms. By detecting these changes 2 gen saturation of hemoglobin (Sa O2) is 75%. At the tissue or capillary level, a Pa O2 of 40 early, clinicians can make timely mm Hg is normal. At this point, about 25% of the oxygen carried on hemoglobin from modifications to the plan of care. the tissues to the lungs has been unloaded and used at the tissue level. Much of the Generally speaking, a pulse oxygen still remains on the hemoglobin molecule, indicating an oxygen reserve isn’t oximetry value of 95% or higher is normally used at the tissue level. However, this reserve is available when extra oxygen clinically acceptable, whereas a val - is needed, as during strenuous exercise or high metabolic demand. ue of 90% or lower is a red flag. Conditions that alter hemoglobin’s affinity for oxygen can shift the OHDC to the On the OHDC, a Sa O value of right or left. 2 • A shift to the right (dotted purple line) decreases hemoglobin’s affinity for oxygen for 90% correlates to a Pa O level of 60 2 a given Pa O value, and the Sa O value decreases below normal.
Recommended publications
  • Mechanisms of Pulmonary Gas Exchange Abnormalities During Experimental Group B Streptococcal Infusion
    003 I -3998/85/1909-0922$02.00/0 PEDIATRIC RESEARCH Vol. 19, No. 9, I985 Copyright 0 1985 International Pediatric Research Foundation, Inc. Printed in (I.S. A. Mechanisms of Pulmonary Gas Exchange Abnormalities during Experimental Group B Streptococcal Infusion GREGORY K. SORENSEN, GREGORY J. REDDING, AND WILLIAM E. TRUOG ABSTRACT. Group B streptococcal sepsis in newborns obtained from GBS (5, 6). Arterial Poz fell by 9 torr in association produces pulmonary arterial hypertension and hypoxemia. with the increase in pulmonary arterial pressure (4). In contrast, The purpose of this study was to investigate the mecha- the neonatal piglet infused with GBS demonstrated both pul- nisms by which hypoxemia occurs. Ten anesthetized, ven- monary arterial hypertension and profound arterial hypoxemia tilated piglets were infused with 2 x lo9 colony forming (7). These results suggest that the neonatal pulmonary vascula- unitstkg of Group B streptococci over a 30-min period. ture may respond to bacteremia differently from that of adults. Pulmonary arterial pressure rose from 14 ? 2.8 to 38 ? The relationship between Ppa and the matching of alveolar 6.7 torr after 20 min of the bacterial infusion (p< 0.01). ventilation and pulmonary perfusion, a major determinant of During the same period, cardiac output fell from 295 to arterial oxygenation during room air breathing (8), has not been 184 ml/kg/min (p< 0.02). Arterial Po2 declined from 97 studied in newborns. The predictable rise in Ppa with an infusion 2 7 to 56 2 11 torr (p< 0.02) and mixed venous Po2 fell of group B streptococcus offers an opportunity to delineate the from 39.6 2 5 to 28 2 8 torr (p< 0.05).
    [Show full text]
  • Water Quality: a Field-Based Quality Testing Program for Middle Schools and High Schools
    DOCUMENT RESUME ED 433 223 SE 062 606 TITLE Water Quality: A Field-Based Quality Testing Program for Middle Schools and High Schools. INSTITUTION Massachusetts State Water Resources Authority, Boston. PUB DATE 1999-00-00 NOTE 75p. PUB TYPE Guides Classroom - Teacher (052) EDRS PRICE MF01/PC03 Plus Postage. DESCRIPTORS Bacteria; Environmental Education; *Field Studies; High Schools; Middle Schools; Physical Environment; Pollution; *Science Activities; *Science and Society; Science Instruction; Scientific Concepts; Temperature; *Water Pollution; *Water Quality; Water Resources IDENTIFIERS pH ABSTRACT This manual contains background information, lesson ideas, procedures, data collection and reporting forms, suggestions for interpreting results, and extension activities to complement a water quality field testing program. Information on testing water temperature, water pH, dissolved oxygen content, biochemical oxygen demand, nitrates, total dissolved solids and salinity, turbidity, and total coliform bacteria is also included.(WRM) ******************************************************************************** * Reproductions supplied by EDRS are the best that can be made * * from the original document. * ******************************************************************************** SrE N N Water A Field-Based Water Quality Testing Program for Middle Schools and High Schools U.S. DEPARTMENT OF EDUCATION Office of Educational Research and Improvement PERMISSION TO REPRODUCE AND EDUCATIONAL RESOURCES INFORMATION DISSEMINATE THIS MATERIAL
    [Show full text]
  • Oxygen Concentration of Blood: PO
    Oxygen Concentration of Blood: PO2, Co-Oximetry, and More Gary L. Horowitz, MD Beth Israel Deaconess Medical Center Boston, MA Objectives • Define “O2 Content”, listing its 3 major variables • Define the limitations of pulse oximetry • Explain why a normal arterial PO2 at sea level on room air is ~100 mmHg (13.3 kPa) • Describe the major features of methemogobin and carboxyhemglobin O2 Concentration of Blood • not simply PaO2 – Arterial O2 Partial Pressure ~100 mm Hg (~13.3 kPa) • not simply Hct (~40%) – or, more precisely, Hgb (14 g/dL, 140 g/L) • not simply “O2 saturation” – i.e., ~89% O2 Concentration of Blood • rather, a combination of all three parameters • a value labs do not report • a value few medical people even know! O2 Content mm Hg g/dL = 0.003 * PaO2 + 1.4 * [Hgb] * [%O2Sat] = 0.0225 * PaO2 + 1.4 * [Hgb] * [%O2Sat] kPa g/dL • normal value: about 20 mL/dL Why Is the “Normal” PaO2 90-100 mmHg? • PAO2 = (FiO2 x [Patm - PH2O]) - (PaCO2 / R) – PAO2 is alveolar O2 pressure – FiO2 is fraction of inspired oxygen (room air ~0.20) – Patm is atmospheric pressure (~760 mmHg at sea level) o – PH2O is vapor pressure of water (47 mmHg at 37 C) – PaCO2 is partial pressure of CO2 – R is the respiratory quotient (typically ~0.8) – 0.21 x (760-47) - (40/0.8) – ~100 mm Hg • Alveolar–arterial (A-a) O2 gradient is normally ~ 10, so PaO2 (arterial PO2) should be ~90 mmHg NB: To convert mm Hg to kPa, multiply by 0.133 Insights from PAO2 Equation (1) • PaO2 ~ PAO2 = (0.21x[Patm-47]) - (PaCO2 / 0.8) – At lower Patm, the PaO2 will be lower • that’s
    [Show full text]
  • Oxygenation and Oxygen Therapy
    Rules on Oxygen Therapy: Physiology: 1. PO2, SaO2, CaO2 are all related but different. 2. PaO2 is a sensitive and non-specific indicator of the lungs’ ability to exchange gases with the atmosphere. 3. FIO2 is the same at all altitudes 4. Normal PaO2 decreases with age 5. The body does not store oxygen Therapy & Diagnosis: 1. Supplemental O2 is an FIO2 > 21% and is a drug. 2. A reduced PaO2 is a non-specific finding. 3. A normal PaO2 and alveolar-arterial PO2 difference (A-a gradient) do NOT rule out pulmonary embolism. 4. High FIO2 doesn’t affect COPD hypoxic drive 5. A given liter flow rate of nasal O2 does not equal any specific FIO2. 6. Face masks cannot deliver 100% oxygen unless there is a tight seal. 7. No need to humidify if flow of 4 LPM or less Indications for Oxygen Therapy: 1. Hypoxemia 2. Increased work of breathing 3. Increased myocardial work 4. Pulmonary hypertension Delivery Devices: 1. Nasal Cannula a. 1 – 6 LPM b. FIO2 0.24 – 0.44 (approx 4% per liter flow) c. FIO2 decreases as Ve increases 2. Simple Mask a. 5 – 8 LPM b. FIO2 0.35 – 0.55 (approx 4% per liter flow) c. Minimum flow 5 LPM to flush CO2 from mask 3. Venturi Mask a. Variable LPM b. FIO2 0.24 – 0.50 c. Flow and corresponding FIO2 varies by manufacturer 4. Partial Rebreather a. 6 – 10 LPM b. FIO2 0.50 – 0.70 c. Flow must be sufficient to keep reservoir bag from deflating upon inspiration 5.
    [Show full text]
  • Oxygen Saturation in High-Altitude Pulmonary Edema
    Oxygen Saturation In High-Altitude Pulmonary J Am Board Fam Pract: first published as 10.3122/jabfm.5.4.429 on 1 July 1992. Downloaded from Edema James]. Bachman, M.D., Todd Beatty, M.D., and Daniel E. Levene High altitude, defined as elevations greater than Methods or equal to 8000 feet (2438 m) above sea level, is The 126 subjects for this study were all patients responsible for a variety of medical problems both who came to the Summit Medical Center Emer­ chronic and acute. The spectrum of altitude ill­ gency Department or to the Frisco Medical ness ranges from the common, mild symptoms of Center. Both units serve Summit County, Colo­ acute mountain sickness, such as insomnia, head­ rado. The base elevation of Summit County ache, and nausea, to severe and potentially fatal ranges from roughly 9000 to 11,000 feet (2743 to conditions, such as high-altitude pulmonary 3354 m). Between 1 November 1990 and 26Janu­ edema (HAPE) and high-altitude cerebral edema ary 1991, a record was maintained of the age, sex, (RACE).l room air pulse oximeter measure of oxygen satu­ HAPE is a noncardiogenic form of pulmonary ration (Sa 02)' chest radiograph findings, and final edema that predominantly affects young, physi­ diagnoses of all patients who underwent a chest cally active, previously healthy individuals who radiograph examination. arrived at high altitude between 1 and 4 days There were 152 patients who underwent chest before developing symptoms. Symptoms of early, radiography during the study period. Twenty-six milder cases include dry nonproductive cough, patients were excluded from the study: 18 had no decreased exercise tolerance, and dyspnea on ex­ oxygen saturation measurement taken or re­ ertion.
    [Show full text]
  • Respiratory Therapy Pocket Reference
    Pulmonary Physiology Volume Control Pressure Control Pressure Support Respiratory Therapy “AC” Assist Control; AC-VC, ~CMV (controlled mandatory Measure of static lung compliance. If in AC-VC, perform a.k.a. a.k.a. AC-PC; Assist Control Pressure Control; ~CMV-PC a.k.a PS (~BiPAP). Spontaneous: Pressure-present inspiratory pause (when there is no flow, there is no effect ventilation = all modes with RR and fixed Ti) PPlateau of Resistance; Pplat@Palv); or set Pause Time ~0.5s; RR, Pinsp, PEEP, FiO2, Flow Trigger, rise time, I:E (set Pocket Reference RR, Vt, PEEP, FiO2, Flow Trigger, Flow pattern, I:E (either Settings Pinsp, PEEP, FiO2, Flow Trigger, Rise time Target: < 30, Optimal: ~ 25 Settings directly or by inspiratory time Ti) Settings directly or via peak flow, Ti settings) Decreasing Ramp (potentially more physiologic) PIP: Total inspiratory work by vent; Reflects resistance & - Decreasing Ramp (potentially more physiologic) Card design by Respiratory care providers from: Square wave/constant vs Decreasing Ramp (potentially Flow Determined by: 1) PS level, 2) R, Rise Time (­ rise time ® PPeak inspiratory compliance; Normal ~20 cmH20 (@8cc/kg and adult ETT); - Peak Flow determined by 1) Pinsp level, 2) R, 3)Ti (shorter Flow more physiologic) ¯ peak flow and 3.) pt effort Resp failure 30-40 (low VT use); Concern if >40. Flow = more flow), 4) pressure rise time (¯ Rise Time ® ­ Peak v 0.9 Flow), 5) pt effort (­ effort ® ­ peak flow) Pplat-PEEP: tidal stress (lung injury & mortality risk). Target Determined by set RR, Vt, & Flow Pattern (i.e. for any set I:E Determined by patient effort & flow termination (“Esens” – PDriving peak flow, Square (¯ Ti) & Ramp (­ Ti); Normal Ti: 1-1.5s; see below “Breath Termination”) < 15 cmH2O.
    [Show full text]
  • Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Station Operation, Record Computation, and Data Reporting
    Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Station Operation, Record Computation, and Data Reporting Techniques and Methods 1–D3 U.S. Department of the Interior U.S. Geological Survey Front Cover. Upper left—South Fork Peachtree Creek at Johnson Road near Atlanta, Georgia, site 02336240 (photograph by Craig Oberst, USGS) Center—Lake Mead near Sentinel Island, Nevada, site 360314114450500 (photograph by Ryan Rowland, USGS) Lower right—Pungo River at channel light 18, North Carolina, site 0208455560 (photograph by Sean D. Egen, USGS) Back Cover. Lake Mead near Sentinel Island, Nevada, site 360314114450500 (photograph by Ryan Rowland, USGS) Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Station Operation, Record Computation, and Data Reporting By Richard J. Wagner, Robert W. Boulger, Jr., Carolyn J. Oblinger, and Brett A. Smith Techniques and Methods 1–D3 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior P. Lynn Scarlett, Acting Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia: 2006 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.
    [Show full text]
  • Environmental Dissolved Oxygen Values Above 100 Percent Air Saturation
    Technical Note YSI, a Xylem brand • T602-01 Environmental Dissolved Oxygen VALUES GREATER THAN 100% AIR SATURATION Some of YSI’s customers are occasionally concerned about observing “Percent Air Saturation” dissolved oxygen readings in environmental water (lakes, streams, estuaries, etc.) that are above 100%. The issue is usually one of semantics. How can something be more than 100% saturated? To understand the overall concept, it is necessary to consider the sources of dissolved oxygen in environmental water and to appreciate that equilibration between air and water is rarely perfect in environmental situations. Air is certainly one source of dissolved oxygen in environmental water. If air were the only source of oxygen and if environmental water equilibrated with the air above it instantly during temperature changes, then it would indeed be impossible to observe values above 100% air saturation unless the sensor was in error. Neither of these “if statements” is true, however, for most bodies of water. ...it is necessary to consider the sources of dissolved oxygen in Figure 1. Photosynthetically-active species produce pure oxygen environmental water and to (not air) during photosynthesis. appreciate that equilibration between air and water is rarely perfect in environmental situations. Oxygen Sources Photosynthetically-active species (plants, algae, etc.) are common additional sources of dissolved oxygen in the environment and, in many bodies of water, can, in fact, be the dominant factor in determining the dissolved oxygen content. It is important to remember that these organisms produce pure oxygen (not air) during photosynthesis. Air is approximately 21% oxygen and thus it contains about five times less oxygen than the pure gaseous element produced during photosynthesis.
    [Show full text]
  • The Effects of Bronchodilators on Pulmonary Ventilation and Diffusion in Asthma and Emphysema
    Thorax: first published as 10.1136/thx.14.2.146 on 1 June 1959. Downloaded from Thorax (1959), 14, 146. THE EFFECTS OF BRONCHODILATORS ON PULMONARY VENTILATION AND DIFFUSION IN ASTHMA AND EMPHYSEMA BY GERARD LORRIMAN From Brompton Hospital and the Institute of Diseases of the Chest, London (RECEIVED FOR PUBLICATION SEPTEMBER 22, 1958) Impairment of ventilation and of the distribution capacity. The proportionate responsibility of of inspired air in asthma and emphysema has these two factors is, however, unknown. Little has been reported by many authors (Beitzke, 1925; been published on the diffusing capacity in asthma. Kountz and Alexander, 1934; Darling, Cournand, Bates (1952) measured the percentage uptake of and Richards, 1944; Baldwin, Cournand, and carbon monoxide in 13 young asthmatics aged Richards, 1949; Bates and Christie, 1950; Beale, 12-19 years and found an abnormally low figure Fowler, and Comroe, 1952), and is the result in only one. Ogilvie and others (1957) mention mainly, if not entirely, of obstruction of the one asthmatic patient whose diffusing capacity was airway. Antispasmodics can relieve the obstruction normal. in asthma, and have also been recommended in The objects of the present investigation were to emphysema (Baldwin and others, 1949; Christie, examine the effects of two drugs, isoprenalinecopyright. 1952). Corticotrophin and cortisone - like given by inhalation and prednisone orally, on the substances have been used with benefit in acute ventilation and diffusing capacity in patients with and chronic asthma (Bordley, Carey, Harvey, asthma and emphysema, and to attempt to assess Howard, Kattus, Newman, and Winkenwerder, the degree to which airway obstruction can depress 1949; Friedlaender and Friedlaender, 1951; the diffusing capacity in these disorders.
    [Show full text]
  • Development of Ventilatory Response to Transient Hypercapnia and Hypercapnic Hypoxia in Term Infants
    0031-3998/04/5502-0302 PEDIATRIC RESEARCH Vol. 55, No. 2, 2004 Copyright © 2004 International Pediatric Research Foundation, Inc. Printed in U.S.A. Development of Ventilatory Response to Transient Hypercapnia and Hypercapnic Hypoxia in Term Infants SIGNE SØVIK AND KRISTIN LOSSIUS Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, NO-0317 Oslo [S.S.], and Section of Neonatology, Department of Pediatrics, Rikshospitalet, NO–0027 Oslo [K.L.], Norway ABSTRACT Whereas peripheral chemoreceptor oxygen sensitivity in- was unchanged for hypoxia. Response magnitude was unchanged creases markedly after birth, previous studies of ventilatory for hypercapnia, but increased for the two hypoxic stimuli. In responses to CO2 in term infants have shown no postnatal conclusion, an interaction between the effects of hypercapnia and development. However, the hypercapnic challenges applied have hypoxia on ventilatory response rate emerged between postnatal usually been long-term, which meant that the effect of central d 2 and wk 8 in term infants. Concomitantly, stimulus-response chemoreceptors dominated. Oscillatory breathing, apneas, and time to hypercapnic stimuli declined markedly. The development sighs cause transient PCO2 changes, probably primarily stimulat- of a prompt response to transient hypercapnia may be important ing peripheral chemoreceptors. We wanted to assess whether the for infant respiratory stability. (Pediatr Res 55: 302–309, 2004) immediate ventilatory responses to step changes in inspired CO2 and O2 in term infants undergo postnatal developmental changes. Twenty-six healthy term infants were studied during natural Abbreviations sleep 2 d and 8 wk postnatally. Ventilatory responses to a FiCO2, fraction of inspired carbon dioxide randomized sequence of 15 s hypercapnia (3% CO2), hypoxia fR, respiratory rate ϩ (15% O2), and hypercapnic hypoxia (3% CO2 15% O2) were PaCO2, partial pressure of arterial carbon dioxide recorded breath-by-breath using a pneumotachometer.
    [Show full text]
  • Oxygen, Apparent Oxygen Utilization, and Dissolved Oxygen Saturation
    NOAA Atlas NESDIS 83 WORLD OCEAN ATLAS 2018 Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Dissolved Oxygen Saturation Silver Spring, MD July 2019 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Environmental Satellite, Data, and Information Service National Centers for Environmental Information NOAA National Centers for Environmental Information Additional copies of this publication, as well as information about NCEI data holdings and services, are available upon request directly from NCEI. NOAA/NESDIS National Centers for Environmental Information SSMC3, 4th floor 1315 East-West Highway Silver Spring, MD 20910-3282 Telephone: (301) 713-3277 E-mail: [email protected] WEB: http://www.nodc.noaa.gov/ For updates on the data, documentation, and additional information about the WOA18 please refer to: http://www.nodc.noaa.gov/OC5/indprod.html This document should be cited as: Garcia H. E., K.W. Weathers, C.R. Paver, I. Smolyar, T.P. Boyer, R.A. Locarnini, M.M. Zweng, A.V. Mishonov, O.K. Baranova, D. Seidov, and J.R. Reagan (2019). World Ocean Atlas 2018, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Dissolved Oxygen Saturation. A. Mishonov Technical Editor. NOAA Atlas NESDIS 83, 38pp. This document is available on-line at https://www.nodc.noaa.gov/OC5/woa18/pubwoa18.html NOAA Atlas NESDIS 83 WORLD OCEAN ATLAS 2018 Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Dissolved Oxygen Saturation Hernan E. Garcia, Katharine W. Weathers, Chris R. Paver, Igor Smolyar, Timothy P. Boyer, Ricardo A. Locarnini, Melissa M. Zweng, Alexey V. Mishonov, Olga K. Baranova, Dan Seidov, James R.
    [Show full text]
  • Oxygen Delivering Processes in Groundwater and Their Relevance for Iron -Related Well Clogging Processes – a Case Study on the Quaternary Aquifers of Berlin
    OXYGEN DELIVERING PROCESSES IN GROUNDWATER AND THEIR RELEVANCE FOR IRON -RELATED WELL CLOGGING PROCESSES – A CASE STUDY ON THE QUATERNARY AQUIFERS OF BERLIN Dissertation zur Erlangung des akademischen Grades Dr. rer. nat. eingereicht am Fachbereich Geowissenschaften der Freien Universität Berlin vorgelegt von Christian Menz aus Friedberg/Hessen 2016 1. Gutachter: Prof. Dr. Michael Schneider 2. Gutachter: Priv.-Doz. Dr. Christoph Merz Disputation am 06.07.2016 3 Summary Redox condition, in particular the amount of oxygen in groundwater used for drinking water supply, is a key factor for the drinking water quality as well as for the production well’s lifecycle. Thus, a process-based and quantitative understanding about the oxygen fluxes in groundwater systems is fundamental in order to predict e.g. the removal capacity of pollutants or in particular the likelihood of iron-related well clogging. Such well ageing is a major thread for well operators and objective in practice and science. The formation of iron oxides responsible for well clogging is mainly known for wells abstracting groundwater from unconsolidated aquifers with a distinct redox zonation. The accumulation of precipitates is primarily taking place at the slots of the well screens, but also affects aquifers, pumps and collector pipes. Several studies already identified interacting hydro-chemical and microbiological processes as major cause for the development of iron oxides in wells. They develop in the presence of dissolved species of iron and oxygen in the water. The co-occurrence of both, the dissolved iron and oxygen, is the result of a mixing of groundwater with different redox states. The abstraction of groundwater by wells is known to promote such mixing processes.
    [Show full text]