Simulation and Visualization of Water Flow
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CMSC427 Computer Graphics
CMSC427 Computer Graphics Matthias Zwicker Fall 2018 Staff Instructor • Matthias Zwicker ([email protected], https://cs.umd.edu/~zwicker) Teaching assistant • Yue Jiang ([email protected]) 2 Today • Course overview • Course organization • Vectors and coordinate systems 3 Computer graphics applications 4 Computer graphics • „Technology to create images using computers“ • This course: underlying algorithms for interactive applications – AR, VR, games, scientific visualization, etc. • Core areas – 3D rendering – Modeling – Animation 5 Rendering • Synthesis of 2D image from 3D scene description http://en.wikipedia.org/wiki/Rendering_(computer_graphics) – Rendering algorithms interpret data structures that represent scenes using geometric primitives, material properties, and lights • Input – Data structures that represent scene (geometry, material properties, lights, virtual camera) • Output – 2D image (array of pixels) – Red, green, blue values for each pixel 6 Photorealistic rendering See also http://en.wikipedia.org/wiki/Rendering_(computer_graphics) 7 Photorealistic rendering • Physically-based simulation of light, materials, and camera – Physical model expressed using the rendering equation, http://en.wikipedia.org/wiki/Rendering_equation – Shadows, realistic illumination, multiple light bounces • Slow, minutes to hours per image • Special effects, movies • Not in this class 8 Interactive rendering 9 Interactive rendering • Focus of this class • Produce images within milliseconds • Interactive applications (games, …) • Using specialized -
Inviwo — a Visualization System with Usage Abstraction Levels
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL X, NO. Y, MAY 2019 1 Inviwo — A Visualization System with Usage Abstraction Levels Daniel Jonsson,¨ Peter Steneteg, Erik Sunden,´ Rickard Englund, Sathish Kottravel, Martin Falk, Member, IEEE, Anders Ynnerman, Ingrid Hotz, and Timo Ropinski Member, IEEE, Abstract—The complexity of today’s visualization applications demands specific visualization systems tailored for the development of these applications. Frequently, such systems utilize levels of abstraction to improve the application development process, for instance by providing a data flow network editor. Unfortunately, these abstractions result in several issues, which need to be circumvented through an abstraction-centered system design. Often, a high level of abstraction hides low level details, which makes it difficult to directly access the underlying computing platform, which would be important to achieve an optimal performance. Therefore, we propose a layer structure developed for modern and sustainable visualization systems allowing developers to interact with all contained abstraction levels. We refer to this interaction capabilities as usage abstraction levels, since we target application developers with various levels of experience. We formulate the requirements for such a system, derive the desired architecture, and present how the concepts have been exemplary realized within the Inviwo visualization system. Furthermore, we address several specific challenges that arise during the realization of such a layered architecture, such as communication between different computing platforms, performance centered encapsulation, as well as layer-independent development by supporting cross layer documentation and debugging capabilities. Index Terms—Visualization systems, data visualization, visual analytics, data analysis, computer graphics, image processing. F 1 INTRODUCTION The field of visualization is maturing, and a shift can be employing different layers of abstraction. -
Easy Facial Rigging and Animation Approaches
Pedro Tavares Barata Bastos EASY FACIAL RIGGING AND ANIMATION APPROACHES A dissertation in Computer Graphics and Human-Computer Interaction Presented to the Faculty of Engineering of the University of Porto in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Digital Media Supervisor: Prof. Verónica Costa Orvalho April 2015 ii This work is financially supported by Fundação para a Ciência e a Tecnologia (FCT) via grant SFRH/BD/69878/2010, by Fundo Social Europeu (FSE), by Ministério da Educação e Ciência (MEC), by Programa Operacional Potencial Humano (POPH), by the European Union (EU) and partially by the UT Austin | Portugal program. Abstract Digital artists working in character production pipelines need optimized facial animation solutions to more easily create appealing character facial expressions for off-line and real- time applications (e.g. films and videogames). But the complexity of facial animation has grown exponentially since it first emerged during the production of Toy Story (Pixar, 1995), due to the increasing demand of audiences for better quality character facial animation. Over the last 15 to 20 years, companies and artists developed various character facial animation techniques in terms of deformation and control, which represent a fragmented state of the art in character facial rigging. Facial rigging is the act of planning and building the mechanical and control structures to animate a character's face. These structures are the articulations built by riggers and used by animators to bring life to a character. Due to the increasing demand of audiences for better quality facial animation in films and videogames, rigging faces became a complex field of expertise within character production pipelines. -
Stevens Dot Patterns for 2D Flow Visualization
Stevens Dot Patterns for 2D Flow Visualization Laura G. Tateosian Brent M. Dennis Christopher G. Healey∗ Computer Science Department, North Carolina State University Figure 1: A Stevens-based dot pattern visualizing flow orientations in a 2D slice through a simulated supernova collapse Abstract comes from perceptual experiments designed to study how the hu- man visual system “sees” local orientation in a sparse collection of This paper describes a new technique to visualize 2D flow fields dots. Initial work by Glass suggested that a global autocorrelation with a sparse collection of dots. A cognitive model proposed by is used to identify orientation [Glass 1969; Glass and Perez 1973]. Kent Stevens describes how spatially local configurations of dots Later work by Stevens hypothesized that the orientation of virtual are processed in parallel by the low-level visual system to perceive lines between pairs of dots around a target position defines the lo- orientations throughout the image. We integrate this model into a cal orientation we perceive at that position [Stevens 1978]. This visualization algorithm that converts a sparse grid of dots into pat- distinction is important, because it implies that different types of terns that capture flow orientations in an underlying flow field. We flow patterns can be rapidly perceived in different parts of a single describe how our algorithm supports large flow fields that exceed image (Fig. 1). Stevens presented both experimental results and a the capabilities of a display device, and demonstrate how to include software system to support his vision model. properties like direction and velocity in our visualizations. -
Lightwave Software
Lightwave software click here to download LightWave fits seamlessly into large multi-software pipelines - with its powerful interchange tools including FBX, ZBrush GoZ, Collada, Unity Game Engine. Create that next killer plugin, or augment your own workflows with the LightWave SDK and scripting resources. The LightWave 3D Software Development Kit. ChronoSculpt Trial. Time-Based Cache Sculpting for All 3D Software Pipelines. Want to try before you buy? Download the full version of ChronoSculpt and use it. LightWave 3D is a 3D computer graphics software developed by NewTek. It has been used in film, television, motion graphics, digital matte painting, visual Overview · History · Movies that LightWave · TV Series and miniseries. This is NewTek LightWave. Modeling, animation and rendering tools that bring out the artist in you—not the technician. The LightWave interface is intuitive, with. CGI & VFX Software Showreels HD: "LightWave 3D " - Duration: The CGBros 37, views · 3. Newtek Lightwave ShowReel. Computer graphics software. on Film/Game/Animation Studios, CG. Check out the latest showreel from the LightWave 3D Group, which consists of some of the best LightWave. MARKET: Lightwave is a popular and easy to use choice that is widely used for video and television production around the world. KEY FEATURES: Lightwave. Some things are unique, others are shared among all software packages. Evaluate before you buy. If you are working on big teams for big movies, Lightwave. LightWave is a software application dedicated to creative design that offers great possibilities to improve this kind of work. Its great speed and flexibility when. If You Want To Master The High End Features Of Lightwave , Such As Rigging, Fluids, Collisions, Fur, Flocking, Dynamic Hair And Clothing, Then The. -
Lighting a 3D Model
International Journal For Technological Research In Engineering Volume 8, Issue 5, January-2021 ISSN (Online): 2347 - 4718 LIGHTING A 3D MODEL 1Jatin Bal, 2Prof. Indu Khatri 1Student, 2Assistant Professor Department of Computer Science Bhagwan Mahaveer College of Engineering and Management, Sonipat, Harayana Abstract: This paper describes detailed lighting procedure 1. Lights of 3D scene using blender software package. The aim is to define and describe all procedure, step by step, that provide Light or visible light is an electromagnetic radiation. When the final result. Two different scenes have been lit in this light falls on an object that object reflects the light and when paper: one with proper instructions and other for showing that light enters our eye, we “humans” are able to see that the extent of technique. Since it is possible to make a objects. The more object reflects the light the more clearly, theoretically unlimited number of light sources in virtual we are able to see the object. That’s why we are able to see 3D studio, the theoretical part of the paper outlines the our hands and we can see through glass as hands reflects basic guidelines for understanding the nature of the light in more amount of light than glass (glass refracts the light). computer-generated environment and for its more quality Computer graphics cannot faithfully simulate the complex and more realistic implementation. nature of light, we are forced to use various additional lights to enrich computer graphics and skillfully, artistically Key words: blender, lights, 3-point lighting, eevee render simulate real-world phenomena. -
Flow Visualization of the Airwake Around a Model of a DD-963 Class Destroyer in a Simulated Atmospheric Boundary Layer
Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1988 Flow visualization of the airwake around a model of a DD-963 class destroyer in a simulated atmospheric boundary layer. Johns, Michael K. http://hdl.handle.net/10945/23240 \f\$ NAVAL POSTGRADUATE SCHOOL Monterey, California j5*/% Flow Visualization of the Airwake Around a Model of a DD-963 Class Destroyer in a Simulated Atmospheric Boundary Layer by Michael K. Johns September 1988 Thesis Advisor: J. Val Healey Approved for public release; distribution is unlimited. T241983 Unclassified Security Classification of this page REPORT DOCUMENTATION PAGE la Report Security Classification Unclassified lb Restrictive Markings 2a Security Classification Authority 3 Distribution Availability of Report 2 b Declassification/Downgrading Schedule Approved for public release; distribution is unlimited. 4 Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s) 6 a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization Naval Postgraduate School (If Applicable) 67 Naval Postgraduate School 6c Address (city, state, and ZIP code) 7b Address (city, state, and ZIP code) Monterey, CA 93943-5000 Monterey, CA 93943-5000 8a Name of Funding/Sponsoring Organization 8b Office Symbol 9 Procurement Instrument Identification Number (If Applicable) 8c Address (city, state, and ZIP code) 1 Source of Funding Numbers Program Element Number Project No | Task No I Work Unit Accession No 1 1 Title (Include Security Classification) FLOW VISUALIZATION OF THE AIRWAKE AROUND A MODEL OF A DD-963 CLASS DESTROYER IN A SIMULATED ATMOSPHERIC BOUNDARY LAYER 12 Personal Author(s) Johns, Michael K. 13a Type of Report 13b Time Covered 14 Date of Report (year, monlh.day) 15 Page Count Master's Thesis From To 1988, September 58 16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. -
Visualizing Multivalued Data from 2D Incompressible Flows Using Concepts from Painting
Visualizing Multivalued Data from 2D Incompressible Flows Using Concepts from Painting R.M. Kirby, H. Marmanis D.H. Laidlaw Division of Applied Mathematics Department of Computer Science Brown University Abstract rotational component of the flow. The latter is clearly demonstrated in Figure 1, where the rotational component is not apparent when We present a new visualization method for 2d flows which allows one merely views the velocity. us to combine multiple data values in an image for simultaneous In the same way that vorticity as a derived quantity provides viewing. We utilize concepts from oil painting, art, and design as us with additional information about the flow characteristics, other introduced in [1] to examine problems within fluid mechanics. We derived quantities such as the rate of strain tensor, the turbulent use a combination of discrete and continuous visual elements ar- charge and the turbulent current could be of equal use. Because the ranged in multiple layers to visually represent the data. The repre- examination of the rate of strain tensor, the turbulent charge and sentations are inspired by the brush strokes artists apply in layers to the turbulent current within the fluids community is relatively new, create an oil painting. We display commonly visualized quantities few people have ever seen visualizations of these quantities in well such as velocity and vorticity together with three additional math- known fluid mechanics problems. Simultaneous display of both ematically derived quantities: the rate of strain tensor (defined in the velocity and quantities derived from it is done both to allow the section 4), and the turbulent charge and turbulent current (defined fluids’ researcher to examine these new quantities against the can- in section 5). -
2D Animation Software You’Ll Ever Need
The 5 Types of Animation – A Beginner’s Guide What Is This Guide About? The purpose of this guide is to, well, guide you through the intricacies of becoming an animator. This guide is not about leaning how to animate, but only to breakdown the five different types (or genres) of animation available to you, and what you’ll need to start animating. Best software, best schools, and more. Styles covered: 1. Traditional animation 2. 2D Vector based animation 3. 3D computer animation 4. Motion graphics 5. Stop motion I hope that reading this will push you to take the first step in pursuing your dream of making animation. No more excuses. All you need to know is right here. Traditional Animator (2D, Cel, Hand Drawn) Traditional animation, sometimes referred to as cel animation, is one of the older forms of animation, in it the animator draws every frame to create the animation sequence. Just like they used to do in the old days of Disney. If you’ve ever had one of those flip-books when you were a kid, you’ll know what I mean. Sequential drawings screened quickly one after another create the illusion of movement. “There’s always room out there for the hand-drawn image. I personally like the imperfection of hand drawing as opposed to the slick look of computer animation.”Matt Groening About Traditional Animation In traditional animation, animators will draw images on a transparent piece of paper fitted on a peg using a colored pencil, one frame at the time. Animators will usually do test animations with very rough characters to see how many frames they would need to draw for the action to be properly perceived. -
3D World - the Magazine for 3D Artists
3D World - The Magazine For 3D Artists http://www.3dworldmag.com/page/3dworld?entry=3d_world_115_now_on SEARCH « Autodesk release Softimag... | Weblog | E-on call for showreel su... » CALENDAR « March 2009 » Monday March 02, 2009 Sun Mon Tue W ed Thu Fri Sat 1 2 3 4 5 6 7 - In Category - 3D World 115 now on sale in the UK 8 9 10 11 12 13 14 Search 15 16 17 18 19 20 21 In our latest issue: complete character workshop, pitch your 3D 22 23 24 25 26 27 28 project, comping tips and particle tricks, plus models and assets 29 30 31 CATEGORIES worth $326 on the CD Today LATEST ISSUE Click the thumbnail to order your copy online IN THE MAGAZINE Character workshop Master key sculpting and texturing techniques to recreate our cover star Modelling: follow videos of the full workflow to build every detail of your figure Texturing: apply a blend of painted textures and carefully chosen NEWS FEEDS shaders The perfect composite LINKS Whether you‘re adding digital creatures to footage or just trying to match two images, compositing is a vital part of VFX work. Brush up your skills with 20 expert tips Particle tricks Master dissolve effects in Blender with Andy Goralczyk Signed on the spot! Experts from across the 3D industry reveal the tricks of the trade that can make all the difference when pitching a project to an agency, potential backer, broadcaster or movie studio The making of Coraline For the animated version of Neil Gaiman‘s Gothic novella Coraline, Laika used CG and digital printing to create 15,000 separate face 1 of 3 4/12/2009 12:37 AM 3D -
Softimage|Xsi
Installation Guide For Windows® Systems Copyright and Disclaimer © 2009 Autodesk, Inc. All rights reserved. Except as otherwise permitted by Autodesk, Inc., this publication, or parts thereof, may not be reproduced in any form, by any method, for any purpose. Certain materials included in this publication are reprinted with the permission of the copyright holder. The following are registered trademarks or trademarks of Autodesk, Inc., in the USA and other countries: 3DEC (design/logo), 3December, 3December.com, 3ds Max, ADI, Alias, Alias (swirl design/logo), AliasStudio, Alias|Wavefront (design/logo), ATC, AUGI, AutoCAD, AutoCAD Learning Assistance, AutoCAD LT, AutoCAD Simulator, AutoCAD SQL Extension, AutoCAD SQL Interface, Autodesk, Autodesk Envision, Autodesk Insight, Autodesk Intent, Autodesk Inventor, Autodesk Map, Autodesk MapGuide, Autodesk Streamline, AutoLISP, AutoSnap, AutoSketch, AutoTrack, Backdraft, Built with ObjectARX (logo), Burn, Buzzsaw, CAiCE, Can You Imagine, Character Studio, Cinestream, Civil 3D, Cleaner, Cleaner Central, ClearScale, Colour Warper, Combustion, Communication Specification, Constructware, Content Explorer, Create>what's>Next> (design/logo), Dancing Baby (image), DesignCenter, Design Doctor, Designer's Toolkit, DesignKids, DesignProf, DesignServer, DesignStudio, Design|Studio (design/logo), Design Web Format, Discreet, DWF, DWG, DWG (logo), DWG Extreme, DWG TrueConvert, DWG TrueView, DXF, Ecotect, Exposure, Extending the Design Team, Face Robot, FBX, Filmbox, Fire, Flame, Flint, FMDesktop, Freewheel, -
HP and Autodesk Create Stunning Digital Media and Entertainment with HP Workstations
HP and Autodesk Create stunning digital media and entertainment with HP Workstations. Does your workstation meet your digital Performance: Advanced compute and visualization power help speed your work, beat deadlines, and meet expectations. At the heart of media challenges? HP Z Workstations are the new Intel® processors with advanced processor performance technologies and NVIDIA Quadro professional It’s no secret that the media and entertainment industry is constantly graphics cards with the NVIDIA CUDA parallel processing architecture; evolving, and the push to deliver better content faster is an everyday delivering real-time previewing and editing of native, high-resolution challenge. To meet those demands, technology matters—a lot. You footage, including multiple layers of 4K video. Intel® Turbo Boost1 need innovative, high-performing, reliable hardware and software tools is designed to enhance the base operating frequency of processor tuned to your applications so your team can create captivating content, cores, providing more processing speed for single and multi-threaded meet tight production schedules, and stay on budget. HP offers an applications. The HP Z Workstation cooling design enhances this expansive portfolio of integrated workstation hardware and software performance. solutions designed to maximize the creative capabilities of Autodesk® software. Together, HP and Autodesk help you create stunning digital Reliability: HP product testing includes application performance, media. graphics and comprehensive ISV certification for maximum productivity. All HP Workstations come with a limited 3-year parts, 3-year labor and The HP Difference 3-year onsite service (3/3/3) standard warranty that is extendable up to 5 years.2 You can be confident in your HP and Autodesk solution.