TOXICOLOGICAL REVIEW of INORGANIC ARSENIC (CAS No

Total Page:16

File Type:pdf, Size:1020Kb

TOXICOLOGICAL REVIEW of INORGANIC ARSENIC (CAS No DRAFT—DO NOT CITE OR QUOTE EPA/635/R-10/001 www.epa.gov/iris TOXICOLOGICAL REVIEW OF INORGANIC ARSENIC (CAS No. 7440-38-2) In Support of Summary Information on the Integrated Risk Information System (IRIS) February 2010 NOTICE This document is a final draft. This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. It is being circulated for review of its technical accuracy and science policy implications. U.S. Environmental Protection Agency Washington, DC DISCLAIMER This document is a final draft for review purposes only. This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. ii DRAFT—DO NOT CITE OR QUOTE TABLE OF CONTENTS—TOXICOLOGICAL REVIEW of INORGANIC ARSENIC (CAS No. 7440-38-2) LIST OF TABLES ......................................................................................................................VI LIST OF FIGURES .................................................................................................................. VII LIST OF ABBREVIATIONS .................................................................................................VIII FOREWORD............................................................................................................................XIII AUTHORS, CONTRIBUTORS, AND REVIEWERS ......................................................... XIV 1. INTRODUCTION..................................................................................................................... 1 2. CHEMICAL AND PHYSICAL INFORMATION RELEVANT TO ASSESSMENTS 3 2.1. PROPERTIES.............................................................................................................. 3 2.2. USES............................................................................................................................ 3 2.3. OCCURRENCE........................................................................................................... 4 2.4. ENVIRONMENTAL FATE........................................................................................ 5 3. TOXICOKINETICS................................................................................................................. 6 3.1. ABSORPTION ............................................................................................................ 7 3.2. DISTRIBUTION.......................................................................................................... 9 3.2.1. Transport in Blood............................................................................................. 9 3.2.2. Tissue Distribution .......................................................................................... 10 3.2.3. Cellular Uptake, Distribution, and Transport.................................................. 14 3.3. METABOLISM ......................................................................................................... 15 3.3.1. Reduction......................................................................................................... 19 3.3.2. Arsenic Methylation........................................................................................ 20 3.3.3. Species Differences in the Methylation of Arsenic......................................... 23 3.3.4. Thioarsenical Metabolites ............................................................................... 24 3.4. ELIMINATION ......................................................................................................... 26 3.5. PHYSIOLOGICALLY BASED TOXICOKINETIC MODELS............................... 27 4. HAZARD IDENTIFICATION .............................................................................................. 31 4.1. STUDIES IN HUMANS............................................................................................ 31 4.1.1. Taiwan ............................................................................................................. 32 4.1.2. Japan................................................................................................................ 46 4.1.3. South America................................................................................................. 47 4.1.4. North America (United States and Mexico).................................................... 52 4.1.5. China................................................................................................................ 58 4.1.6. Finland............................................................................................................. 59 4.1.7. Denmark .......................................................................................................... 61 4.1.8. Australia .......................................................................................................... 61 4.2. PRECHRONIC AND CHRONIC STUDIES AND CANCER BIOASSAYS IN ANIMALS—ORAL.................................................................................................. 62 4.2.1. Prechronic and Chronic Studies ...................................................................... 62 4.2.2. Cancer Bioassays............................................................................................. 62 4.2.2.1. Mice—Transplacental ...................................................................... 62 iii DRAFT—DO NOT CITE OR QUOTE 4.2.2.2. Rat—Oral.......................................................................................... 65 4.2.2.3. Other ................................................................................................. 66 4.3. REPRODUCTIVE/DEVELOPMENTAL STUDIES—ORAL................................. 67 4.4. OTHER STUDIES..................................................................................................... 67 4.4.1. Possible Modes of Action and Key Events of Possible Importance ............... 67 4.4.1.1. In Vivo Human Studies .................................................................... 71 4.4.1.2. In Vivo Experiments Using Laboratory Animals............................. 75 4.4.1.3. In Vitro Experiments ........................................................................ 81 4.5. SYNTHESIS AND EVALUATION OF MAJOR NONCANCER EFFECTS ......... 93 4.6. WEIGHT-OF-EVIDENCE EVALUATION AND CANCER CHARACTERIZATION........................................................................................... 94 4.6.1. Summary of Overall Weight-of-Evidence....................................................... 94 4.6.2. Synthesis of Human, Animal, and Other Supporting Evidence ...................... 94 4.6.2.1. Skin Cancer....................................................................................... 96 4.6.2.2. Lung Cancer...................................................................................... 96 4.6.2.3. Kidney, Bladder, and Liver Cancer .................................................. 97 4.6.2.4. In Utero Exposure............................................................................. 98 4.6.3. Mode of Action Information ........................................................................... 98 4.6.3.1. General Comments on MOAs .......................................................... 98 4.6.3.2. Low-Dose Extrapolation................................................................. 102 4.7. SUSCEPTIBLE POPULATIONS AND LIFE STAGES ........................................ 102 4.7.1. Possible Childhood Susceptibility................................................................. 102 4.7.2. Possible Gender Differences ......................................................................... 105 4.7.3. Other.............................................................................................................. 106 4.7.3.1. Genetic Polymorphism ................................................................... 106 4.7.3.2. Nutritional Status............................................................................ 109 4.7.3.3. Cigarette Smokers........................................................................... 111 5. DOSE-RESPONSE ASSESSMENTS.................................................................................. 112 5.1. ORAL REFERENCE DOSE (RfD)......................................................................... 112 5.2. INHALATION REFERENCE CONCENTRATION (RfC).................................... 112 5.3. CANCER ASSESSMENT (ORAL EXPOSURE)................................................... 112 5.3.1. Background: History of Cancer Risk Assessments for Arsenic.................... 112 5.3.2. Choice of Study/Data, Estimation Approach, and Input Assumptions ......... 119 5.3.3. Dose-Response Model Selection for Cancer Mortality in Taiwan................ 120 5.3.4. Selection of Cancer Endpoints and Estimation of Risks for U.S. Populations ................................................................................................................................. 121 5.3.5. Nonwater Arsenic Intake and Drinking Water Consumption ....................... 123 5.3.6. Dose-Response Data.....................................................................................
Recommended publications
  • Table S4. List of Enzymes Directly Involved in the Anti-Oxidant Defense Response
    Table S4. List of Enzymes directly involved in the anti-oxidant defense response. Gene Name Gene Symbol Classification/Pathway 6-phosphogluconate dehydrogenase 6PGD NADPH regeneration/Pentose Phosphate Glucose-6-phosphate dehydrogenase G6PD NADPH regeneration/Pentose Phosphate Isocitrate Dehydrogenase 1 IDH1 NADPH regeneration/Krebs Isocitrate Dehydrogenase 2 IDH2 NADPH regeneration/Krebs Malic Enzyme 1 ME1 NADPH regeneration/Krebs Methylenetetrahydrofolate dehydrogenase 1 MTHFD1 NADPH regeneration/Folate Methylenetetrahydrofolate dehydrogenase 2 MTHFD2 NADPH regeneration/Folate Nicotinamide Nucleotide Transhydrogenase NNT NADPH regeneration/NAD Catalase CAT Antioxidants/Catalses/free radical detoxification Glutamate-cysteine ligase catalytic subunit GCLC Antioxidants/Glutathione synthesis Glutamate-cysteine ligase modifier subunit GCLM Antioxidants/Glutathione synthesis Glutathione peroxidase1 GPx1 Antioxidants/Glutathione Peroxidases/free radical detoxification Glutathione peroxidase2 GPx2 Antioxidants/Glutathione Peroxidases/free radical detoxification Glutathione peroxidase3 GPx3 Antioxidants/Glutathione Peroxidases/free radical detoxification Glutathione peroxidase4 GPx4 Antioxidants/Glutathione Peroxidases/free radical detoxification Glutathione peroxidase5 GPx5 Antioxidants/Glutathione Peroxidases/free radical detoxification Glutathione peroxidase6 GPx6 Antioxidants/Glutathione Peroxidases/free radical detoxification Glutathione peroxidase7 GPx7 Antioxidants/Glutathione Peroxidases/free radical detoxification Glutathione S-transferase
    [Show full text]
  • Molecular Mechanisms Underlying Noncoding Risk Variations in Psychiatric Genetic Studies
    OPEN Molecular Psychiatry (2017) 22, 497–511 www.nature.com/mp REVIEW Molecular mechanisms underlying noncoding risk variations in psychiatric genetic studies X Xiao1,2, H Chang1,2 and M Li1 Recent large-scale genetic approaches such as genome-wide association studies have allowed the identification of common genetic variations that contribute to risk architectures of psychiatric disorders. However, most of these susceptibility variants are located in noncoding genomic regions that usually span multiple genes. As a result, pinpointing the precise variant(s) and biological mechanisms accounting for the risk remains challenging. By reviewing recent progresses in genetics, functional genomics and neurobiology of psychiatric disorders, as well as gene expression analyses of brain tissues, here we propose a roadmap to characterize the roles of noncoding risk loci in the pathogenesis of psychiatric illnesses (that is, identifying the underlying molecular mechanisms explaining the genetic risk conferred by those genomic loci, and recognizing putative functional causative variants). This roadmap involves integration of transcriptomic data, epidemiological and bioinformatic methods, as well as in vitro and in vivo experimental approaches. These tools will promote the translation of genetic discoveries to physiological mechanisms, and ultimately guide the development of preventive, therapeutic and prognostic measures for psychiatric disorders. Molecular Psychiatry (2017) 22, 497–511; doi:10.1038/mp.2016.241; published online 3 January 2017 RECENT GENETIC ANALYSES OF NEUROPSYCHIATRIC neurodevelopment and brain function. For example, GRM3, DISORDERS GRIN2A, SRR and GRIA1 were known to involve in the neuro- Schizophrenia, bipolar disorder, major depressive disorder and transmission mediated by glutamate signaling and synaptic autism are highly prevalent complex neuropsychiatric diseases plasticity.
    [Show full text]
  • Inhibitory Effects of Some Flavonoids on Thioredoxin Reductase Purified from Chicken Liver ABSTRACT INTRODUCTION
    Brazilian Journal of Poultry Science Revista Brasileira de Ciência Avícola Inhibitory Effects of Some Flavonoids on ISSN 1516-635X 2019 / v.21 / n.2 / 001-008 Thioredoxin Reductase Purified from Chicken http://dx.doi.org/10.1590/1806-9061-2018-0982 Liver Original Article Author(s) ABSTRACT Türkoğlu E.AI https://orcid.org/0000-0001-7850-6456 Thioredoxin reductases (TrxRs) are selenocysteine-containing Kuzu MII https://orcid.org/0000-0002-1375-7673 flavoenzymes that reduce Trxin NADPH-dependent manner. In the Ayasan TIII https://orcid.org/0000-0001-7397-6483 view of the direct vital role of TrxR in a wide range of biochemical and IV Inci H https://orcid.org/0000-0002-9791-0435 physiological processes, methods to inhibit this enzyme are clinically Eratak SVV https://orcid.org/0000-0003-3788-8704 important. TrxR has recently emerged as a new candidate in anticancer I Department of Pharmaceutical Biotechnology, drug investigations because of overexpression in tumorous cells. In this Faculty of Pharmacy, University of Health Sciences, Istanbul 34668, Turkey. study, TrxR from chick liver was purified 94.6-fold with a yield of 4.86% II Deparment of Chemistry, Faculty of Science and a specific activity of 0.19 EU/mg. K and V values of TrxR for and Letters, Ağrı İbrahim Çeçen University, Ağrı M max 04100, Turkey. DTNB were calculated as 0.9 mM and 0,03 EU/mL, respectively. Then, III East Mediterranean Agricultural Research Institute, Karatas Road, Adana 01321, Turkey. the effects of the flavonoids hesperidin, naringenin, chlorogenic acid, IV Department of Animal Science, Faculty of ferulic acid, naringin, 3,4-dihydoxybenzoic acid, and ellagic acid on the Agriculture, Bingöl University, Bingöl 12000, Turkey.
    [Show full text]
  • Genomic Insights Into the Uncultured Genus &Lsquo
    The ISME Journal (2014) 8, 2463–2477 & 2014 International Society for Microbial Ecology All rights reserved 1751-7362/14 www.nature.com/ismej ORIGINAL ARTICLE Genomic insights into the uncultured genus ‘Candidatus Magnetobacterium’ in the phylum Nitrospirae Wei Lin1,2,7, Aihua Deng3,7, Zhang Wang4, Ying Li2,5, Tingyi Wen3, Long-Fei Wu2,6, Martin Wu4 and Yongxin Pan1,2 1Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of the Earth’s Deep Interior, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China; 2France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences, Beijing, China; 3CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; 4Department of Biology, University of Virginia, Charlottesville, VA, USA; 5State Key Laboratory of Agro-Biotechnology and Laboratoire International Associe Franco-Chinois de Bio-Mineralisation et Nano-Structures, College of Biological Sciences, China Agricultural University, Beijing, China and 6Laboratoire de Chimie Bacte´rienne, Aix-Marseille Universite´, CNRS, Marseille Cedex 20, France Magnetotactic bacteria (MTB) of the genus ‘Candidatus Magnetobacterium’ in phylum Nitrospirae are of great interest because of the formation of hundreds of bullet-shaped magnetite magneto- somes in multiple bundles of chains per cell. These bacteria are worldwide distributed in aquatic environments and have important roles in the biogeochemical cycles of iron and sulfur. However, except for a few short genomic fragments, no genome data are available for this ecologically important genus, and little is known about their metabolic capacity owing to the lack of pure cultures. Here we report the first draft genome sequence of 3.42 Mb from an uncultivated strain tentatively named ‘Ca.
    [Show full text]
  • Illness-Induced Changes in Thyroid Hormone Metabolism: Focus on the Tissue Level
    r e V i e W illness-induced changes in thyroid hormone metabolism: focus on the tissue level J. Kwakkel*, E. Fliers, A. Boelen Department of Endocrinology & Metabolism, Academic Medical Center, University of Amsterdam, the Netherlands, *corresponding author: tel.: +31 (0)20-566 67 01, fax: +31 (0)20-691 76 82, e-mail: [email protected] a b s t r a C t during illness changes in thyroid hormone metabolism ring and the outer (tyrosyl) ring of T4 can be deiodinated, occur, collectively known as the non-thyroidal illness ultimately leading to the formation of 3,3’-di-iodothyronine syndrome (NTIS). NTIS is characterised by low serum (T2) (figure 1). thyroid hormone levels without the expected rise in serum thyroid-stimulating hormone, indicating a major change in thyroid hormone feedback regulation. recent studies n o n - t H yroidal illness syndro M e have made clear that during NTIS differential changes in thyroid hormone metabolism occur in various tissues, the During illness many aspects of thyroid hormone net effect of which may be either activation or inhibition of metabolism change, collectively known as the thyroid hormone action. in this review we discuss systemic non-thyroidal illness syndrome (NTIS). The hallmark of and local changes in thyroid hormone metabolism during NTIS is decreased serum thyroid hormone levels without illness, highlighting their physiological implications in an increase in TSH and TRH expression, indicating terms of disease course. the absence of negative feedback regulation. This may represent a useful adaptation of the body to counteract excessive catabolism observed during illness and can be K e y W o r d s viewed as a part of the acute phase response.4 However, especially during prolonged critical illness in the ICU Deiodinase, inflammation, non-thyroidal illness syndrome, setting NTIS may be maladaptative.5 thyroid hormone figure 1.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Type 3 Lodothyronine Deiodinase: Cloning, in Vitro Expression, and Functional Analysis of the Placental Selenoenzyme
    Type 3 lodothyronine deiodinase: cloning, in vitro expression, and functional analysis of the placental selenoenzyme. D Salvatore, … , D L St Germain, P R Larsen J Clin Invest. 1995;96(5):2421-2430. https://doi.org/10.1172/JCI118299. Research Article Type 3 iodothyronine deiodinase (D3) catalyzes the conversion of T4 and T3 to inactive metabolites. It is highly expressed in placenta and thus can regulate circulating fetal thyroid hormone concentrations throughout gestation. We have cloned and expressed a 2.1-kb human placental D3 cDNA which encodes a 32-kD protein with a Km of 1.2 nM for 5 deiodination of T3 and 340 nM for 5' deiodination of reverse T3. The reaction requires DTT and is not inhibited by 6n- propylthiouracil. We quantitated transiently expressed D3 by specifically labeling the protein with bromoacetyl [125I]T3. The Kcat/Km ratio for 5 deiodination of T3 was over 1,000-fold that for 5' deiodination of reverse T3. Human D3 is a selenoenzyme as evidenced by (a) the presence of an in frame UGA codon at position 144, (b) the synthesis of a 32-kD 75Se-labeled protein in D3 cDNA transfected cells, and (c) the presence of a selenocysteine insertion sequence element in the 3' untranslated region of the mRNA which is required for its expression. The D3 selenocysteine insertion sequence element is more potent than that in the type 1 deiodinase or glutathione peroxidase gene, suggesting a high priority for selenocysteine incorporation into this enzyme. The conservation of this enzyme from Xenopus laevis tadpoles to humans implies an essential role for regulation of thyroid hormone inactivation during embryological development.
    [Show full text]
  • Emerging Players in the Regulation of Protein S-Nitrosation in Plants
    plants Review Thioredoxins: Emerging Players in the Regulation of Protein S-Nitrosation in Plants Tereza Jedelská , Lenka Luhová and Marek Petˇrivalský * Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitel ˚u27, 78371 Olomouc, Czech Republic; [email protected] (T.J.); [email protected] (L.L.) * Correspondence: [email protected] Received: 17 August 2020; Accepted: 22 October 2020; Published: 24 October 2020 Abstract: S-nitrosation has been recognized as an important mechanism of ubiquitous posttranslational modification of proteins on the basis of the attachment of the nitroso group to cysteine thiols. Reversible S-nitrosation, similarly to other redox-based modifications of protein thiols, has a profound effect on protein structure and activity and is considered as a convergence of signaling pathways of reactive nitrogen and oxygen species. This review summarizes the current knowledge on the emerging role of the thioredoxin-thioredoxin reductase (TRXR-TRX) system in protein denitrosation. Important advances have been recently achieved on plant thioredoxins (TRXs) and their properties, regulation, and functions in the control of protein S-nitrosation in plant root development, translation of photosynthetic light harvesting proteins, and immune responses. Future studies of plants with down- and upregulated TRXs together with the application of genomics and proteomics approaches will contribute to obtain new insights into plant S-nitrosothiol metabolism and its regulation. Keywords: denitrosation;
    [Show full text]
  • DHFR Inhibitors: Reading the Past for Discovering Novel Anticancer Agents
    molecules Review DHFR Inhibitors: Reading the Past for Discovering Novel Anticancer Agents Maria Valeria Raimondi 1,*,† , Ornella Randazzo 1,†, Mery La Franca 1 , Giampaolo Barone 1 , Elisa Vignoni 2, Daniela Rossi 2 and Simona Collina 2,* 1 Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; [email protected] (O.R.); [email protected] (M.L.F.); [email protected] (G.B.) 2 Drug Sciences Department, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, via Taramelli 12, 27100 Pavia, Italy; [email protected] (E.V.); [email protected] (D.R.) * Correspondence: [email protected] (M.V.R.); [email protected] (S.C.); Tel.: +390-912-389-1915 (M.V.R.); +390-382-987-379 (S.C.) † These Authors contributed equally to this work. Academic Editors: Simona Collina and Mariarosaria Miloso Received: 25 February 2019; Accepted: 20 March 2019; Published: 22 March 2019 Abstract: Dihydrofolate reductase inhibitors are an important class of drugs, as evidenced by their use as antibacterial, antimalarial, antifungal, and anticancer agents. Progress in understanding the biochemical basis of mechanisms responsible for enzyme selectivity and antiproliferative effects has renewed the interest in antifolates for cancer chemotherapy and prompted the medicinal chemistry community to develop novel and selective human DHFR inhibitors, thus leading to a new generation of DHFR inhibitors. This work summarizes the mechanism of action, chemical, and anticancer profile of the DHFR inhibitors discovered in the last six years. New strategies in DHFR drug discovery are also provided, in order to thoroughly delineate the current landscape for medicinal chemists interested in furthering this study in the anticancer field.
    [Show full text]
  • +3 Oxidation State) Methyltransferase (AS3MT
    Environmental and Molecular Mutagenesis 58:411^422 (2017) Research Article Associations between Arsenic (13OxidationState) Methyltransferase (AS3MT) and N-6 Adenine-specific DNA Methyltransferase1 (N6AMT1) Polymorphisms, Arsenic Metabolism, and Cancer Risk in a Chilean Population Rosemarie de la Rosa,1 Craig Steinmaus,1 Nicholas K. Akers,1 Lucia Conde,1 Catterina Ferreccio,2 David Kalman,3 Kevin R. Zhang,1 Christine F.Skibola,1 Allan H. Smith,1 Luoping Zhang,1 and Martyn T.Smith1* 1Superfund Research Program, Divisions of Environmental Health Sciences and Epidemiology, School of Public Health, University of California, Berkeley, California 2Departamento de Salud Publica, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Advanced Center for Chronic Diseases, ACCDiS, Santiago, Chile 3Department of Environmental & Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, DC Inter-individual differences in arsenic metabolism have gene. We found several AS3MT polymorphisms asso- been linked to arsenic-related disease risks. Arsenic ciated with both urinary arsenic metabolite profiles (13) methyltransferase (AS3MT) is the primary and cancer risk. For example, compared to wildtypes, enzyme involved in arsenic metabolism, and we previ- individuals carrying minor alleles in AS3MT ously demonstrated in vitro that N-6 adenine-specific rs3740393 had lower %MMA (mean differ- DNA methyltransferase 1 (N6AMT1) also methylates ence 521.9%, 95% CI: 23.3, 20.4), higher the toxic inorganic arsenic (iAs) metabolite, monome- %DMA (mean difference 5 4.0%, 95% CI: 1.5, 6.5), thylarsonous acid (MMA), to the less toxic dimethylar- and lower odds ratios for bladder (OR 5 0.3; 95% sonic acid (DMA). Here, we evaluated whether CI: 0.1–0.6) and lung cancer (OR 5 0.6; 95% CI: AS3MT and N6AMT1 gene polymorphisms alter 0.2–1.1).
    [Show full text]
  • Arsenic-Associated Diabetes: Mechanisms and the Role of Arsenic Metabolism
    ARSENIC-ASSOCIATED DIABETES: MECHANISMS AND THE ROLE OF ARSENIC METABOLISM Madelyn C. Huang A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Curriculum of Toxicology within the School of Medicine. Chapel Hill 2018 Approved by: Miroslav Stýblo Rebecca Fry Ilona Jaspers Eric Klett Zuzana Drobná © 2018 Madelyn C. Huang ALL RIGHTS RESERVED ii ABSTRACT Madelyn C. Huang: Arsenic-associated diabetes: mechanisms and the role of arsenic metabolism (Under the direction of Miroslav Stýblo) Inorganic arsenic (iAs) is a ubiquitous drinking water and food contaminant. Chronic exposure to iAs has been linked to diabetes mellitus in many populations. Experimental studies support these associations and suggest mechanisms, but the precise pathogenesis of iAs- associated diabetes is unclear. Efficient metabolism of iAs through methylation, catalyzed by arsenic (+3) methyltransferase (AS3MT), influences the risk of iAs-associated disease. Additionally, higher intake of methyl donor nutrients such as folate and methylcobalamin (B12) has been linked to increased efficiency of iAs metabolism and lowered disease risk. However, while metabolism of iAs facilitates its excretion from the body, iAs metabolites are more toxic than iAs itself. The role of iAs metabolism in iAs toxicity is understudied, especially in cardiometabolic disease. Understanding how iAs metabolism affects iAs-associated diabetes will help design appropriate intervention strategies and improve risk assessment. This project investigated how iAs metabolism influences iAs-associated diabetes. First, we compared metabolite profiles of C57BL6 (WT) with As3mt-KO (KO) mice, which cannot methylate iAs, with and without exposure to iAs.
    [Show full text]
  • Thyroxine Binding to Type III Iodothyronine Deiodinase Craig A
    www.nature.com/scientificreports OPEN Thyroxine binding to type III iodothyronine deiodinase Craig A. Bayse*, Eric S. Marsan, Jenna R. Garcia & Alexis T. Tran‑Thompson Iodothyronine deiodinases (Dios) are important selenoproteins that control the concentration of the active thyroid hormone (TH) triiodothyronine through regioselective deiodination. The X‑ray structure of a truncated monomer of Type III Dio (Dio3), which deiodinates TH inner rings through a selenocysteine (Sec) residue, revealed a thioredoxin-fold catalytic domain supplemented with an unstructured Ω-loop. Loop dynamics are driven by interactions of the conserved Trp207 with solvent in multi-microsecond molecular dynamics simulations of the Dio3 thioredoxin(Trx)-fold domain. Hydrogen bonding interactions of Glu200 with residues conserved across the Dio family anchor the loop’s n‑terminus to the active site Ser‑cys-Thr‑Sec sequence. A key long‑lived loop conformation coincides with the opening of a cryptic pocket that accommodates thyroxine (T4) through an I⋯Se halogen bond to Sec170 and the amino acid group with a polar cleft. The Dio3-T4 complex is stabilized by an I⋯O halogen bond between an outer ring iodine and Asp211, consistent with Dio3 selectivity for inner ring deiodination. Non-conservation of residues, such as Asp211, in other Dio types in the fexible portion of the loop sequence suggests a mechanism for regioselectivity through Dio type- specifc loop conformations. Cys168 is proposed to attack the selenenyl iodide intermediate to regenerate Dio3 based upon structural comparison with related Trx-fold proteins. Iodothyronine deiodinase (Dio) membrane selenoproteins regulate thyroid hormone (TH) activity through regioselective deiodination (Fig. 1a)1–10.
    [Show full text]