1 Uniform Acceleration

Total Page:16

File Type:pdf, Size:1020Kb

1 Uniform Acceleration Physics 139 Relativity Relativity Notes 2003 G. F. SMOOT Oce 398 Le Conte DepartmentofPhysics, University of California, Berkeley, USA 94720 Notes to b e found at: http://aether.lbl.gov/www/classes/p139/homework/homework.html 1 Uniform Acceleration This material is to prepare a transition towards General Relativity via the Equivalence Principle by rst understanding uniform acceleration. The Equivalence Principle stated in a simple form: Equivalence Principle: A uniform gravitational eld is equivalent to a uniform acceleration. This is not very precise statement and one lesson wehave learned in Sp ecial Relativity is the need to b e precise in our statements, de nitions, and use of co ordinates. We will come to a more precise statement of the Equivalence Principle in terms like at a space-time p oint with gravitational acceleration ~g there is a tangent reference frame undergoing uniform acceleration that is equivalent. This is similar to the instantaneous rest frame of Sp ecial Relativity in the case of an ob ject undergoing acceleration. We rst need to understand carefully what is a uniform acceleration reference frame, whichwe will do in steps. First imagine a reference frame { a rigid framework of rulers and clo cks, our standard reference frame { undergoing uniform acceleration. In classical nonrelativistic physics we can imagine a rigid framework to whichwe can apply a force which will cause it to move with constant acceleration. However, in Sp ecial Relativity no causal impulse can travel faster than the sp eed of light, thus the frame work cannot b e in nitely rigid. When the force causing the acceleration is rst applied, the p oint where the force is rst applied b egins to accelerate rst and as the casual impulse moves out, the other p ortions join in the acceleration. Consider a simple long ro d as an example: If one pulls on a long ro d, it will lengthen at rst as the end b eing pulled starts moving b efore the other end even knows it is. Then as it gains sp eed, Lorentz-FitzGerald contraction will cause it to shorten. If one pushes on the long ro d from b ehind, it will rst shorten as the end with the force moves toward the other end which sits there unaware of the some to arrive acceleration. All ob jects, however rigid, evidently display some degree of elasticity during acceleration. It is clear that in Sp ecial Relativity no ro d can b e in nitely rigid but must b e elastic at some level. Home work problem: prove that since the sp eed 1 of sound is less than or equal to the sp eed of light, that the rigidityofany material is less than xxx? As a b o dy accelerates, it moves in a continuous fashion from one inertial system to another. If it is to retain its same rest length in its instantaneous rest system, then it length relative to its original inertial system will have to decrease continuously b ecause of Lorentz-FitzGerald length contraction. If, on the other hand, it retained the same length relative to the original inertial system, then the Lorentz-FitzGerald contraction would require its rest length to increase as its gains sp eed. This is not very satisfactory. Either way, the metric will dep end up on time. If wewant a direct comparison to gravity,we need to require an accelerated co ordinate system to have a time indep endent form. 1.1 Accelerating a Point Mass A uniformly accelerating p oint mass is one that is sub ject to the same force in each and every one of its instantaneous rest systems. I.e. a uniformly accelerating p oint ~ mass is sub ject to a constant force F = m ~g along the +x-axis in a co ordinate system o which is the inertial frame where its velo city is zero instantaneous rest frame. Instantaneous 0 Lab oratory Frame S Rest Frame S 0 ct = ct ct L 6 6 @ @ 6 @ @ @ - @ 0 - x x = x L @ x 0 @ @ @ Light Cone Acceleration transforms as 2 0 d x a x a = = 1 x 3 0 2 vu dt 3 x 1+ 2 c 3 0 so that in the instantaneous rest frame a = a . In the instantaneous rest frame 0 F = F .Nowwe can solve the equation of motion in either of twoways: from the x x acceleration or from the force. In Problem Set 2 we solved the problem for a uniformly 1 accelerating ro cket using the acceleration transformation. 1 0 0 In ro cket frame the acceleration was a = g Note reversal of S and S compared to discussion x 2 Here we use force transformation. 0 dp x 0 F = = m g = F o x x 0 dt 2 d m c o = m g o 0 dct g 0 d = dct 2 c 0 g gt 0 = ct = 2 2 c c where the constantofintegration is set equal to zero b ecause we de ne the time zero to b e when = 0. This can b e turned into an equation for alone: 0 g gt 0 p = ct = = 2 2 c c 1 ! 2 2 0 gt = 2 1 c 0 gt =c q = 3 2 0 1+gt =c So that, from the lab oratory, observing the test particle start from rest we rst see its velo city increasing linearly with time as we classically exp ect for a particle under uniform acceleration. Then as the velo city b egins to b e a signi cant fraction of the sp eed of light, the term in the denominator b ecomes increasing imp ortant and the velo city increases ever more slowly in time and only approaches the sp eed of light asymptotically. The shap e of the tra jectory of a particle undergoing uniform acceleration is a hyp erb ola and not the classical parab ola, but for lowvelo cities they are indistinguishable conics. Note also s 2 0 gt 1 p = 1+ 4 = 2 c 1 If we lo ok at the Lorentz factor ,we see that it is rst very nearly unity and then as the velo city b egins to saturate, increases linearly with time. This is simply conservation of energy, as the constant acceleration force in the instantaneous rest frame is constantly doing work W = cF . Now take a side step and evaluate in terms of proper time. 0 0 dt dt r d = = 2 0 gt 1+ c 3=2 2 2 in this section. Thus the acceleration in the Earth frame was a = 1 v =c g = dv =dt. x x p 3=2 2 2 2 2 Regrouping we had gdt = du = 1 v =c and integrating gives gt = v= 1 v =c or x p 2 1+g t=c . v=c = g t=c= 3 ! Z 0 0 dt c gt 1 r = = sinh 2 0 g c gt 1+ c 0 or inverting the equation to nd t in terms of prop er time g g 0 sinh 5 t = c c end aside 0 0 0 Nowwe can solve for x using the de nition of = dx =dct . 0 0 dx = dct Z Z 0 0 0 0 0 ct =ct ct =ct gt =c 0 0 0 q x = x + dct =x + dct o o 0 0 2 ct =0 ct =0 0 1+gt =c s 2 2 c g 0 0 ct =ct 0 0 = 1+ ct j + x 0 t =0 o 2 g c q 2 2 c c 2 0 0 + x 6 = 1+gt =c o g g De ne 2 c 0 0 x x 7 P o g Then our equation b ecomes s 2 2 c g 0 0 0 ct x x = 1+ P 2 g c 2 2 g g 0 0 0 x x = 1+ ct P 2 2 c c 2 2 g g 0 0 0 = 1 8 x x ct P 2 2 c c This last equation describ es a hyp erb ola. Note that we can nd a formula for x in 0 0 terms of given the last equation for x in terms of t . 2 0 2 2 2 0 0 gt =c =1 g=c x x P 2 0 2 2 2 2 2 0 0 =1+gt =c =1+sinh g =c=cosh g =c g=c x x P or 2 2 2 c c g c g 0 0 0 x = x + = x cosh + cosh P 0 g c g g c 0 Note that x is directly related to the x in the accelerating frame. 0 0 Because the world line is a hyp erb ola in Minkowski space, the world line of the p oint mass approaches the light line asymptotically. This means all events on the 4 world line will have a space like relationship to all events to the left of the fo cal p oint 0 P 0;x . P 2 c 0 0 x = x 9 P o g So that the distance b etween the rest p oint and fo cal p oint is prop ortional to the inverse of the acceleration. insert gure here showing frames with small acceleration and with large accelerations. s 2 0 0 gt =c g gt 0 0 r = x x = 1+ 10 p 2 2 0 c c gt 1+ c Therefore 0 ct = = tan 11 0 0 x x P where is the horizontal angle.
Recommended publications
  • Quantum Phase Space in Relativistic Theory: the Case of Charge-Invariant Observables
    Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 3, 1448–1453 Quantum Phase Space in Relativistic Theory: the Case of Charge-Invariant Observables A.A. SEMENOV †, B.I. LEV † and C.V. USENKO ‡ † Institute of Physics of NAS of Ukraine, 46 Nauky Ave., 03028 Kyiv, Ukraine E-mail: [email protected], [email protected] ‡ Physics Department, Taras Shevchenko Kyiv University, 6 Academician Glushkov Ave., 03127 Kyiv, Ukraine E-mail: [email protected] Mathematical method of quantum phase space is very useful in physical applications like quantum optics and non-relativistic quantum mechanics. However, attempts to generalize it for the relativistic case lead to some difficulties. One of problems is band structure of energy spectrum for a relativistic particle. This corresponds to an internal degree of freedom, so- called charge variable. In physical problems we often deal with such dynamical variables that do not depend on this degree of freedom. These are position, momentum, and any combination of them. Restricting our consideration to this kind of observables we propose the relativistic Weyl–Wigner–Moyal formalism that contains some surprising differences from its non-relativistic counterpart. This paper is devoted to the phase space formalism that is specific representation of quan- tum mechanics. This representation is very close to classical mechanics and its basic idea is a description of quantum observables by means of functions in phase space (symbols) instead of operators in the Hilbert space of states. The first idea about this representation has been proposed in the early days of quantum mechanics in the well-known Weyl work [1].
    [Show full text]
  • Spacetime Diagrams(1D in Space)
    PH300 Modern Physics SP11 Last time: • Time dilation and length contraction Today: • Spacetime • Addition of velocities • Lorentz transformations Thursday: • Relativistic momentum and energy “The only reason for time is so that HW03 due, beginning of class; HW04 assigned everything doesn’t happen at once.” 2/1 Day 6: Next week: - Albert Einstein Questions? Intro to quantum Spacetime Thursday: Exam I (in class) Addition of Velocities Relativistic Momentum & Energy Lorentz Transformations 1 2 Spacetime Diagrams (1D in space) Spacetime Diagrams (1D in space) c · t In PHYS I: v In PH300: x x x x Δx Δx v = /Δt Δt t t Recall: Lucy plays with a fire cracker in the train. (1D in space) Spacetime Diagrams Ricky watches the scene from the track. c· t In PH300: object moving with 0<v<c. ‘Worldline’ of the object L R -2 -1 0 1 2 x object moving with 0>v>-c v c·t c·t Lucy object at rest object moving with v = -c. at x=1 x=0 at time t=0 -2 -1 0 1 2 x -2 -1 0 1 2 x Ricky 1 Example: Ricky on the tracks Example: Lucy in the train ct ct Light reaches both walls at the same time. Light travels to both walls Ricky concludes: Light reaches left side first. x x L R L R Lucy concludes: Light reaches both sides at the same time In Ricky’s frame: Walls are in motion In Lucy’s frame: Walls are at rest S Frame S’ as viewed from S ... -3 -2 -1 0 1 2 3 ..
    [Show full text]
  • Reflection Invariant and Symmetry Detection
    1 Reflection Invariant and Symmetry Detection Erbo Li and Hua Li Abstract—Symmetry detection and discrimination are of fundamental meaning in science, technology, and engineering. This paper introduces reflection invariants and defines the directional moments(DMs) to detect symmetry for shape analysis and object recognition. And it demonstrates that detection of reflection symmetry can be done in a simple way by solving a trigonometric system derived from the DMs, and discrimination of reflection symmetry can be achieved by application of the reflection invariants in 2D and 3D. Rotation symmetry can also be determined based on that. Also, if none of reflection invariants is equal to zero, then there is no symmetry. And the experiments in 2D and 3D show that all the reflection lines or planes can be deterministically found using DMs up to order six. This result can be used to simplify the efforts of symmetry detection in research areas,such as protein structure, model retrieval, reverse engineering, and machine vision etc. Index Terms—symmetry detection, shape analysis, object recognition, directional moment, moment invariant, isometry, congruent, reflection, chirality, rotation F 1 INTRODUCTION Kazhdan et al. [1] developed a continuous measure and dis- The essence of geometric symmetry is self-evident, which cussed the properties of the reflective symmetry descriptor, can be found everywhere in nature and social lives, as which was expanded to 3D by [2] and was augmented in shown in Figure 1. It is true that we are living in a spatial distribution of the objects asymmetry by [3] . For symmetric world. Pursuing the explanation of symmetry symmetry discrimination [4] defined a symmetry distance will provide better understanding to the surrounding world of shapes.
    [Show full text]
  • From Relativistic Time Dilation to Psychological Time Perception
    From relativistic time dilation to psychological time perception: an approach and model, driven by the theory of relativity, to combine the physical time with the time perceived while experiencing different situations. Andrea Conte1,∗ Abstract An approach, supported by a physical model driven by the theory of relativity, is presented. This approach and model tend to conciliate the relativistic view on time dilation with the current models and conclusions on time perception. The model uses energy ratios instead of geometrical transformations to express time dilation. Brain mechanisms like the arousal mechanism and the attention mechanism are interpreted and combined using the model. Matrices of order two are generated to contain the time dilation between two observers, from the point of view of a third observer. The matrices are used to transform an observer time to another observer time. Correlations with the official time dilation equations are given in the appendix. Keywords: Time dilation, Time perception, Definition of time, Lorentz factor, Relativity, Physical time, Psychological time, Psychology of time, Internal clock, Arousal, Attention, Subjective time, Internal flux, External flux, Energy system ∗Corresponding author Email address: [email protected] (Andrea Conte) 1Declarations of interest: none Preprint submitted to PsyArXiv - version 2, revision 1 June 6, 2021 Contents 1 Introduction 3 1.1 The unit of time . 4 1.2 The Lorentz factor . 6 2 Physical model 7 2.1 Energy system . 7 2.2 Internal flux . 7 2.3 Internal flux ratio . 9 2.4 Non-isolated system interaction . 10 2.5 External flux . 11 2.6 External flux ratio . 12 2.7 Total flux .
    [Show full text]
  • Physics 9Hb: Special Relativity & Thermal/Statistical Physics
    PHYSICS 9HB: SPECIAL RELATIVITY & THERMAL/STATISTICAL PHYSICS Tom Weideman University of California, Davis UCD: Physics 9HB – Special Relativity and Thermal/Statistical Physics This text is disseminated via the Open Education Resource (OER) LibreTexts Project (https://LibreTexts.org) and like the hundreds of other texts available within this powerful platform, it freely available for reading, printing and "consuming." Most, but not all, pages in the library have licenses that may allow individuals to make changes, save, and print this book. Carefully consult the applicable license(s) before pursuing such effects. Instructors can adopt existing LibreTexts texts or Remix them to quickly build course-specific resources to meet the needs of their students. Unlike traditional textbooks, LibreTexts’ web based origins allow powerful integration of advanced features and new technologies to support learning. The LibreTexts mission is to unite students, faculty and scholars in a cooperative effort to develop an easy-to-use online platform for the construction, customization, and dissemination of OER content to reduce the burdens of unreasonable textbook costs to our students and society. The LibreTexts project is a multi-institutional collaborative venture to develop the next generation of open-access texts to improve postsecondary education at all levels of higher learning by developing an Open Access Resource environment. The project currently consists of 13 independently operating and interconnected libraries that are constantly being optimized by students, faculty, and outside experts to supplant conventional paper-based books. These free textbook alternatives are organized within a central environment that is both vertically (from advance to basic level) and horizontally (across different fields) integrated.
    [Show full text]
  • Physics 200 Problem Set 7 Solution Quick Overview: Although Relativity Can Be a Little Bewildering, This Problem Set Uses Just A
    Physics 200 Problem Set 7 Solution Quick overview: Although relativity can be a little bewildering, this problem set uses just a few ideas over and over again, namely 1. Coordinates (x; t) in one frame are related to coordinates (x0; t0) in another frame by the Lorentz transformation formulas. 2. Similarly, space and time intervals (¢x; ¢t) in one frame are related to inter- vals (¢x0; ¢t0) in another frame by the same Lorentz transformation formu- las. Note that time dilation and length contraction are just special cases: it is time-dilation if ¢x = 0 and length contraction if ¢t = 0. 3. The spacetime interval (¢s)2 = (c¢t)2 ¡ (¢x)2 between two events is the same in every frame. 4. Energy and momentum are always conserved, and we can make e±cient use of this fact by writing them together in an energy-momentum vector P = (E=c; p) with the property P 2 = m2c2. In particular, if the mass is zero then P 2 = 0. 1. The earth and sun are 8.3 light-minutes apart. Ignore their relative motion for this problem and assume they live in a single inertial frame, the Earth-Sun frame. Events A and B occur at t = 0 on the earth and at 2 minutes on the sun respectively. Find the time di®erence between the events according to an observer moving at u = 0:8c from Earth to Sun. Repeat if observer is moving in the opposite direction at u = 0:8c. Answer: According to the formula for a Lorentz transformation, ³ u ´ 1 ¢tobserver = γ ¢tEarth-Sun ¡ ¢xEarth-Sun ; γ = p : c2 1 ¡ (u=c)2 Plugging in the numbers gives (notice that the c implicit in \light-minute" cancels the extra factor of c, which is why it's nice to measure distances in terms of the speed of light) 2 min ¡ 0:8(8:3 min) ¢tobserver = p = ¡7:7 min; 1 ¡ 0:82 which means that according to the observer, event B happened before event A! If we reverse the sign of u then 2 min + 0:8(8:3 min) ¢tobserver 2 = p = 14 min: 1 ¡ 0:82 2.
    [Show full text]
  • Physics 325: General Relativity Spring 2019 Problem Set 2
    Physics 325: General Relativity Spring 2019 Problem Set 2 Due: Fri 8 Feb 2019. Reading: Please skim Chapter 3 in Hartle. Much of this should be review, but probably not all of it|be sure to read Box 3.2 on Mach's principle. Then start on Chapter 6. Problems: 1. Spacetime interval. Hartle Problem 4.13. 2. Four-vectors. Hartle Problem 5.1. 3. Lorentz transformations and hyperbolic geometry. In class, we saw that a Lorentz α0 α β transformation in 2D can be written as a = L β(#)a , that is, 0 ! ! ! a0 cosh # − sinh # a0 = ; (1) a10 − sinh # cosh # a1 where a is spacetime vector. Here, the rapidity # is given by tanh # = β; cosh # = γ; sinh # = γβ; (2) where v = βc is the velocity of frame S0 relative to frame S. (a) Show that two successive Lorentz boosts of rapidity #1 and #2 are equivalent to a single α γ α Lorentz boost of rapidity #1 +#2. In other words, check that L γ(#1)L(#2) β = L β(#1 +#2), α where L β(#) is the matrix in Eq. (1). You will need the following hyperbolic trigonometry identities: cosh(#1 + #2) = cosh #1 cosh #2 + sinh #1 sinh #2; (3) sinh(#1 + #2) = sinh #1 cosh #2 + cosh #1 sinh #2: (b) From Eq. (3), deduce the formula for tanh(#1 + #2) in terms of tanh #1 and tanh #2. For the appropriate choice of #1 and #2, use this formula to derive the special relativistic velocity tranformation rule V − v V 0 = : (4) 1 − vV=c2 Physics 325, Spring 2019: Problem Set 2 p.
    [Show full text]
  • Relativity and Fundamental Physics
    Relativity and Fundamental Physics Sergei Kopeikin (1,2,*) 1) Dept. of Physics and Astronomy, University of Missouri, 322 Physics Building., Columbia, MO 65211, USA 2) Siberian State University of Geosystems and Technology, Plakhotny Street 10, Novosibirsk 630108, Russia Abstract Laser ranging has had a long and significant role in testing general relativity and it continues to make advance in this field. It is important to understand the relation of the laser ranging to other branches of fundamental gravitational physics and their mutual interaction. The talk overviews the basic theoretical principles underlying experimental tests of general relativity and the recent major achievements in this field. Introduction Modern theory of fundamental interactions relies heavily upon two strong pillars both created by Albert Einstein – special and general theory of relativity. Special relativity is a cornerstone of elementary particle physics and the quantum field theory while general relativity is a metric- based theory of gravitational field. Understanding the nature of the fundamental physical interactions and their hierarchic structure is the ultimate goal of theoretical and experimental physics. Among the four known fundamental interactions the most important but least understood is the gravitational interaction due to its weakness in the solar system – a primary experimental laboratory of gravitational physicists for several hundred years. Nowadays, general relativity is a canonical theory of gravity used by astrophysicists to study the black holes and astrophysical phenomena in the early universe. General relativity is a beautiful theoretical achievement but it is only a classic approximation to deeper fundamental nature of gravity. Any possible deviation from general relativity can be a clue to new physics (Turyshev, 2015).
    [Show full text]
  • 8. Special Relativity
    8. Special Relativity Although Newtonian mechanics gives an excellent description of Nature, it is not uni- versally valid. When we reach extreme conditions — the very small, the very heavy or the very fast — the Newtonian Universe that we’re used to needs replacing. You could say that Newtonian mechanics encapsulates our common sense view of the world. One of the major themes of twentieth century physics is that when you look away from our everyday world, common sense is not much use. One such extreme is when particles travel very fast. The theory that replaces New- tonian mechanics is due to Einstein. It is called special relativity. The effects of special relativity become apparent only when the speeds of particles become comparable to the speed of light in the vacuum. Universally denoted as c, the speed of light is c = 299792458 ms−1 This value of c is exact. In fact, it would be more precise to say that this is the definition of what we mean by a meter: it is the distance travelled by light in 1/299792458 seconds. For the purposes of this course, we’ll be quite happy with the approximation c 3 108 ms−1. ≈ × The first thing to say is that the speed of light is fast. Really fast. The speed of sound is around 300 ms−1; escape velocity from the Earth is around 104 ms−1; the orbital speed of our solar system in the Milky Way galaxy is around 105 ms−1. As we shall soon see, nothing travels faster than c.
    [Show full text]
  • Simulating Gamma-Ray Binaries with a Relativistic Extension of RAMSES? A
    A&A 560, A79 (2013) Astronomy DOI: 10.1051/0004-6361/201322266 & c ESO 2013 Astrophysics Simulating gamma-ray binaries with a relativistic extension of RAMSES? A. Lamberts1;2, S. Fromang3, G. Dubus1, and R. Teyssier3;4 1 UJF-Grenoble 1 / CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, 38041 Grenoble, France e-mail: [email protected] 2 Physics Department, University of Wisconsin-Milwaukee, Milwaukee WI 53211, USA 3 Laboratoire AIM, CEA/DSM - CNRS - Université Paris 7, Irfu/Service d’Astrophysique, CEA-Saclay, 91191 Gif-sur-Yvette, France 4 Institute for Theoretical Physics, University of Zürich, Winterthurestrasse 190, 8057 Zürich, Switzerland Received 11 July 2013 / Accepted 29 September 2013 ABSTRACT Context. Gamma-ray binaries are composed of a massive star and a rotation-powered pulsar with a highly relativistic wind. The collision between the winds from both objects creates a shock structure where particles are accelerated, which results in the observed high-energy emission. Aims. We want to understand the impact of the relativistic nature of the pulsar wind on the structure and stability of the colliding wind region and highlight the differences with colliding winds from massive stars. We focus on how the structure evolves with increasing values of the Lorentz factor of the pulsar wind, keeping in mind that current simulations are unable to reach the expected values of pulsar wind Lorentz factors by orders of magnitude. Methods. We use high-resolution numerical simulations with a relativistic extension to the hydrodynamics code RAMSES we have developed. We perform two-dimensional simulations, and focus on the region close to the binary, where orbital motion can be ne- glected.
    [Show full text]
  • Doppler Boosting and Cosmological Redshift on Relativistic Jets
    Doppler Boosting and cosmological redshift on relativistic jets Author: Jordi Fernández Vilana Advisor: Valentí Bosch i Ramon Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. Abstract: In this study our goal was to identify the possible effects that influence with the Spectral Energy Distribution of a blazar, which we deducted that are Doppler Boosting effect and cosmological redshift. Then we investigated how the spectral energy distribution varies by changing intrinsic parameters of the jet like its Lorentz factor, the angle of the line of sight respect to the jet orientation or the blazar redshift. The obtained results showed a strong enhancing of the Spectral Energy Distribution for nearly 0º angles and high Lorentz factors, while the increase in redshift produced the inverse effect, reducing the normalization of the distribution and moving the peak to lower energies. These two effects compete in the observations of all known blazars and our simple model confirmed the experimental results, that only those blazars with optimal characteristics, if at very high redshift, are suitable to be measured by the actual instruments, making the study of blazars with a high redshift an issue that needs very deep observations at different wavelengths to collect enough data to properly characterize the source population. jet those particles are moving at relativistic speeds, producing I. INTRODUCTION high energy interactions in the process. This scenario produces a wide spectrum of radiation that mainly comes, as we can see in more detail in [2], from Inverse Compton We know that active galactic nuclei or AGN are galaxies scattering. Low energy photons inside the jet are scattered by with an accreting supermassive blackhole in the centre.
    [Show full text]
  • Lecture Notes 17: Proper Time, Proper Velocity, the Energy-Momentum 4-Vector, Relativistic Kinematics, Elastic/Inelastic
    UIUC Physics 436 EM Fields & Sources II Fall Semester, 2015 Lect. Notes 17 Prof. Steven Errede LECTURE NOTES 17 Proper Time and Proper Velocity As you progress along your world line {moving with “ordinary” velocity u in lab frame IRF(S)} on the ct vs. x Minkowski/space-time diagram, your watch runs slow {in your rest frame IRF(S')} in comparison to clocks on the wall in the lab frame IRF(S). The clocks on the wall in the lab frame IRF(S) tick off a time interval dt, whereas in your 2 rest frame IRF( S ) the time interval is: dt dtuu1 dt n.b. this is the exact same time dilation formula that we obtained earlier, with: 2 2 uu11uc 11 and: u uc We use uurelative speed of an object as observed in an inertial reference frame {here, u = speed of you, as observed in the lab IRF(S)}. We will henceforth use vvrelative speed between two inertial systems – e.g. IRF( S ) relative to IRF(S): Because the time interval dt occurs in your rest frame IRF( S ), we give it a special name: ddt = proper time interval (in your rest frame), and: t = proper time (in your rest frame). The name “proper” is due to a mis-translation of the French word “propre”, meaning “own”. Proper time is different than “ordinary” time, t. Proper time is a Lorentz-invariant quantity, whereas “ordinary” time t depends on the choice of IRF - i.e. “ordinary” time is not a Lorentz-invariant quantity. 222222 The Lorentz-invariant interval: dI dx dx dx dx ds c dt dx dy dz Proper time interval: d dI c2222222 ds c dt dx dy dz cdtdt22 = 0 in rest frame IRF(S) 22t Proper time: ddtttt 21 t 21 11 Because d and are Lorentz-invariant quantities: dd and: {i.e.
    [Show full text]